The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Taiwanese Adults
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Study Participants
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease: The Framingham Study. Am. J. Med. 1977, 62, 707–714. [Google Scholar] [CrossRef]
- Singh, V.N. High HDL Cholesterol (Hyperalphalipoproteinemia). 2014. Available online: https://emedicine.medscape.com/article/121187-overview (accessed on 25 February 2019).
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486. [Google Scholar]
- Yamashita, S.; Maruyama, T.; Hirano, K.-I.; Sakai, N.; Nakajima, N.; Matsuzawa, Y. Molecular mechanisms, lipoprotein abnormalities and atherogenicity of hyperalphalipoproteinemia. Atherosclerosis 2000, 152, 271–285. [Google Scholar] [CrossRef]
- Bermúdez, V.; Cano, R.; Cano, C.; Bermúdez, F.; Arraiz, N.; Acosta, L.; Finol, F.; Pabón, M.R.; Amell, A.; Reyna, N. Pharmacologic management of isolated low high-density lipoprotein syndrome. Pharmacologic Management of Isolated Low High-Density Lipoprotein Syndrome. Am. J. Ther. 2008, 15, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Ariza, M.-J.; Sánchez-Chaparro, M.-Á.; Barón, F.-J.; Hornos, A.-M.; Calvo-Bonacho, E.; Rioja, J.; Valdivielso, P.; Gelpi, J.-A.; González-Santos, P. Additive effects of LPL, APOA5 and APOE variant combinations on triglyceride levels and hypertriglyceridemia: Results of the ICARIA genetic sub-study. BMC Med Genet. 2010, 11, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahid, S.U.; Shabana, N.; Cooper, J.A.; Rehman, A.; Humphries, S.E. Common variants in the genes of triglyceride and HDL-C metabolism lack association with coronary artery disease in the Pakistani subjects. Lipids Heal. Dis. 2017, 16, 24. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.K.; Rimm, E.B.; Rader, D.; Schmidt, E.B.; Sørensen, T.I.; Vogel, U.; Overvad, K.; Mukamal, K.J. S447X variant of the lipoprotein lipase gene, lipids, and risk of coronary heart disease in 3 prospective cohort studies. Am. Hear. J. 2009, 157, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Emamian, M.; Avan, A.; Pasdar, A.; Mirhafez, S.R.; Sadeghzadeh, M.; Moghadam, M.S.; Parizadeh, S.M.R.; Ferns, G.A.; Ghayour-Mobarhan, M. The lipoprotein lipase S447X and cholesteryl ester transfer protein rs5882 polymorphisms and their relationship with lipid profile in human serum of obese individuals. Gene 2015, 558, 195–199. [Google Scholar] [CrossRef]
- Rip, J.; Nierman, M.C.; Wareham, N.J.; Luben, R.; Bingham, S.A.; Day, N.E.; van Miert, J.N.; Hutten, B.A.; Kastelein, J.J.; Kuivenhoven, J.A. Serum lipoprotein lipase concentration and risk for future coronary artery disease: The EPIC-Norfolk prospective population study. Arter. Thromb. Vasc. Boil. 2006, 26, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Sagoo, G.S.; Tatt, I.; Salanti, G.; Butterworth, A.S.; Sarwar, N.; van Maarle, M.; Jukema, J.W.; Wiman, B.; Kastelein, J.J.; Bennet, A.M. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: A HuGE association review and meta-analysis. Am. J. Epidemiol. 2008, 168, 1233–1246. [Google Scholar] [CrossRef] [Green Version]
- Kelley, G.A.; Kelley, K.S. Effects of diet, aerobic exercise, or both on non-HDL-C in adults: A meta-analysis of randomized controlled trials. Cholesterol 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jan, C.-F.; Chang, H.-C.; Tantoh, D.M.; Chen, P.-H.; Liu, W.-H.; Huang, J.-Y.; Wu, M.-C.; Liaw, Y.-P. Duration-response association between exercise and HDL in both male and female Taiwanese adults aged 40 years and above. Oncotarget 2018, 9, 2120. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S.; Franklin, B. Aerobic exercise and lipids and lipoproteins in patients with cardiovascular disease: A meta-analysis of randomized controlled trials. J. Cardiopulm. Rehabil. 2006, 26, 131. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S.; Tran, Z.V. Aerobic exercise and lipids and lipoproteins in women: A meta-analysis of randomized controlled trials. J. Women’s Health 2004, 13, 1148–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, S.; Tanaka, S.; Saito, K.; Shu, M.; Sone, Y.; Onitake, F.; Suzuki, E.; Shimano, H.; Yamamoto, S.; Kondo, K. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007, 167, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.D.; Rader, D.J. Does Exercise Increase HDL Cholesterol in Those Who Need It the Most? American Heart Association: Chicago, IL, USA, 2001. [Google Scholar]
- Wang, Y.; Xu, D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Disease 2017, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Mahgoub, M.S.E.-D.; Aly, S. The effects of continuous vs intermittent exercise on lipid profile in obese children. Int. J. Ther. Rehabil. 2015, 22, 272–276. [Google Scholar] [CrossRef]
- Kim, N.J.; Lee, S.I. The effect of exercise type on cardiovascular disease risk index factors in male workers. J. Prev. Med. Public Health 2006, 39, 462–468. [Google Scholar]
- Patterson, S.; Pattison, J.; Legg, H.; Gibson, A.-M.; Brown, N. The impact of badminton on health markers in untrained females. J. Sports Sci. 2017, 35, 1098–1106. [Google Scholar] [CrossRef]
- Carlisle, A.; Sharp, N. Exercise and outdoor ambient air pollution. Br. J. Sports Med. 2001, 35, 214–222. [Google Scholar] [CrossRef]
- Oja, P.; Kelly, P.; Pedisic, Z.; Titze, S.; Bauman, A.; Foster, C.; Hamer, M.; Hillsdon, M.; Stamatakis, E. Associations of specific types of sports and exercise with all-cause and cardiovascular-disease mortality: A cohort study of 80 306 British adults. Br. J. Sports Med. 2017, 51, 812–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TaiwanBiobank. Available online: https://www.twbiobank.org.tw/new_web/ (accessed on 31 January 2019).
- Kelley, G.A.; Kelley, K. Aerobic exercise and HDL2-C: A meta-analysis of randomized controlled trials. Atherosclerosis 2006, 184, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aellen, R.; Hollmann, W.; Boutellier, U. Effects of aerobic and anaerobic training on plasma lipoproteins. Int. J. Sports Med. 1993, 14, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Goode, R.; Firstbrook, J.; Shephard, R. Effects of exercise and a cholesterol-free diet on human serum lipids. Can. J. Physiol. Pharmacol. 1966, 44, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Leon, A.S.; Rankinen, T.; Gagnon, J.; Skinner, J.S.; Wilmore, J.H.; Rao, D.; Bouchard, C. Changes in blood lipids consequent to aerobic exercise training related to changes in body fatness and aerobic fitness. Metab. Clin. Exp. 2001, 50, 841–848. [Google Scholar] [CrossRef]
- Swain, D.P.; Franklin, B.A. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am. J. Cardiol. 2006, 97, 141–147. [Google Scholar] [CrossRef]
- Ghanbari-Niaki, A.; Khabazian, B.M.; Hossaini-Kakhak, S.A.; Rahbarizadeh, F.; Hedayati, M. Treadmill exercise enhances ABCA1 expression in rat liver. Biochem. Biophys. Res. Commun. 2007, 361, 841–846. [Google Scholar] [CrossRef]
- Higashi, Y.; Sasaki, S.; Kurisu, S.; Yoshimizu, A.; Sasaki, N.; Matsuura, H.; Kajiyama, G.; Oshima, T. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: Role of endothelium-derived nitric oxide. Circulation 1999, 100, 1194–1202. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, J.; Shindo, M.; Tanaka, H.; Ando, M.; Arakawa, K. A long-term aerobic exercise program decreases the obesity index and increases the high density lipoprotein cholesterol concentration in obese children. Int. J. Obes. 1987, 11, 339–345. [Google Scholar]
- Zorba, E.; Cengiz, T.; Karacabey, K. Exercise training improves body composition, blood lipid profile and serum insulin levels in obese children. J. Sports Med. Phys. Fit. 2011, 51, 664–669. [Google Scholar]
- Jiménez, Ó.H.; Ramírez-Vélez, R. Strength training improves insulin sensitivity and plasma lipid levels without altering body composition in overweight and obese subjects. Endocrinol. Nutr. 2011, 58, 169–174. [Google Scholar]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | No Exercise | Aerobic Exercise | Badminton | p-Value | |||
---|---|---|---|---|---|---|---|
(n = 5053) | (n = 2461) | (n = 29) | |||||
n (%) | Mean ± SE | n (%) | Mean ± SE | n (%) | Mean ± SE | ||
rs328 | |||||||
CC | 4069(80.53) | 52.64 ± 0.20 a | 1997(81.15) | 54.42 ± 0.30 b | 22(75.86) | 54.73 ± 3.76 ab | <0.0001 |
CG+GG | 984(19.47) | 54.68 ± 0.42 a | 464(18.85) | 57.00 ± 0.64 b | 7(24.14) | 64.00 ± 4.22 ab | 0.0020 |
CG | 935(18.50) | 54.56 ± 0.43 a | 438(17.80) | 56.97 ± 0.65 b | 7(24.14) | 64.00 ± 4.22 ab | 0.0017 |
GG | 49(0.97) | 56.96 ± 1.85 | 26(1.06) | 57.58 ± 3.30 | - | - | 0.8603 |
Sex | |||||||
Female | 2753(54.48) | 57.78 ± 0.25 a | 1310(53.23) | 59.24 ± 0.38 b | 8(27.59) | 72.50 ± 7.63 c | <0.0001 |
Male | 2300(45.52) | 47.36 ± 0.22 a | 1151(46.77) | 49.97 ± 0.35 b | 21(72.41) | 51.05 ± 2.08 ab | <0.0001 |
Waist–hip ratio | |||||||
Male < 0.9; female < 0.8 | 1986(39.30) | 54.64 ± 0.30 a | 929(37.75) | 56.31 ± 0.46 b | 15(51.72) | 57.07 ± 3.85 ab | 0.0076 |
Male ≥ 0.9; female ≥ 0.8 | 3067(60.70) | 52.00 ± 0.23 a | 1532(62.25) | 54.05 ± 0.34 b | 14(48.28) | 56.86 ± 5.05 ab | <0.0001 |
Body fat (%) | |||||||
Male < 25; female < 30 | 2580(51.06) | 55.37 ± 0.27 | 1375(55.87) | 56.30 ± 0.38 | 16(55.17) | 61.13 ± 4.69 | 0.0390 |
Male ≥ 25; female ≥ 30 | 2473(48.94) | 50.59 ± 0.24 a | 1086(44.13) | 53.14 ± 0.38 b | 13(44.83) | 51.85 ± 3.44 ab | <0.0001 |
Coffee drinking | |||||||
Yes | 3350(66.30) | 54.39 ± 0.33 a | 1666(67.70) | 55.70 ± 0.49 b | 20(68.97) | 56.67 ± 6.57 ab | <0.0001 |
No | 1703(33.70) | 52.35 ± 0.22 | 795(32.30) | 54.53 ± 0.33 | 9(31.03) | 57.10 ± 3.49 | 0.0740 |
Age | |||||||
30–40 | 1818(35.98) | 53.60 ± 0.30 | 332(13.49) | 55.46 ± 0.73 | 10(34.48) | 57.60 ± 5.90 | 0.0403 |
41–50 | 1595(31.57) | 52.88 ± 0.33 a | 583(23.69) | 54.90 ± 0.55 b | 9(31.03) | 61.00 ± 6.54 ab | 0.0016 |
51–60 | 1138(22.52) | 52.87 ± 0.39 a | 925(37.59) | 54.69 ± 0.45 b | 6(20.69) | 48.00 ± 3.84 ab | 0.0050 |
61–70 | 502(9.93) | 51.83 ± 0.57 a | 621(25.23) | 54.93 ± 0.56 b | 4(13.79) | 59.75 ± 5.99 ab | 0.0004 |
BMI | |||||||
Normal | 2364(46.78) | 57.40 ± 0.27 a | 1220(49.57) | 58.79 ± 0.39 b | 14(48.28) | 60.64 ± 5.29 ab | 0.0087 |
Underweight | 159(3.15) | 64.99 ± 1.14 | 43(1.75) | 67.98 ± 2.39 | - | - | 0.2355 |
Overweight | 1460(28.89) | 49.76 ± 0.30 a | 778(31.61) | 52.17 ± 0.44 b | 9(31.03) | 56.67 ± 3.94 ab | <0.0001 |
Obese | 1070(21.18) | 46.07 ± 0.31 | 420(17.07) | 47.36 ± 0.50 | 6(20.69) | 48.83 ± 5.61 | 0.0775 |
Smoking | |||||||
Never | 3861(76.41) | 54.74 ± 0.21 a | 1947(79.11) | 56.39 ± 0.31 b | 22(75.86) | 59.68 ± 3.78 ab | <0.0001 |
Quit | 505(9.99) | 48.58 ± 0.51 | 329(13.37) | 49.95 ± 0.64 | 5(17.24) | 51.80 ± 3.68 | 0.2129 |
Current | 687(13.60) | 46.72 ± 0.44 | 185(7.52) | 48.05 ± 0.92 | 2(6.90) | 40.00 ± 2.00 | 0.2693 |
Drinking | |||||||
Never | 4563(90.30) | 53.34 ± 0.19 a | 2209(89.76) | 55.37 ± 0.29 b | 25(86.21) | 58.80 ± 3.43 ab | <0.0001 |
Quit | 114(2.26) | 44.67 ± 0.96 | 94(3.82) | 47.34 ± 1.13 | - | - | 0.0710 |
Current | 376(7.44) | 51.86 ± 0.70 | 158(6.42) | 52.84 ± 1.01 | 4(13.79) | 45.50 ± 2.50 | 0.4497 |
Vegetarian | |||||||
No | 4543(89.91) | 53.13 ± 0.19 a | 2251(91.47) | 55.22 ± 0.29 b | 26(89.66) | 57.15 ± 3.45 ab | <0.0001 |
Former | 258(5.11) | 54.37 ± 0.92 | 104(4.23) | 53.44 ± 1.33 | 2(6.90) | 57.00 ± 1.00 | 0.8250 |
Current | 252(4.99) | 49.89 ± 0.71 | 106(4.31) | 49.69 ± 1.08 | 1(3.45) | 52.00 | 0.9698 |
Variables | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
β | SE | p-Value | β | SE | p-Value | |
Exercise (Ref: no exercise) | ||||||
Aerobic exercise | 1.3997 | 0.2945 | <0.0001 | - | - | - |
Badminton | - | - | - | 5.6585 | 2.0616 | 0.0061 |
rs328 (Ref: CC) | ||||||
CG + GG | 2.3351 | 0.3310 | <0.0001 | 2.1152 | 0.3920 | <0.0001 |
Sex (Ref: Female) | ||||||
Male | −9.6065 | 0.3437 | <0.0001 | −9.7497 | 0.4074 | <0.0001 |
Waist–hip ratio (Ref: Male < 0.9; Female < 0.8) | ||||||
Male ≥ 0.9; Female ≥ 0.8 | −3.0988 | 0.3096 | <0.0001 | −2.8774 | 0.3675 | <0.0001 |
Body fat rate (Ref: Male < 25; Female < 30) | ||||||
Male ≥25; Female ≥ 30 | −1.9633 | 0.3428 | <0.0001 | −2.1231 | 0.4099 | <0.0001 |
Coffee (Ref: No) | ||||||
Yes | 1.2102 | 0.2800 | <0.0001 | 1.1652 | 0.3325 | 0.0005 |
Age (Ref: (30–40)) | ||||||
41–50 | 0.6271 | 0.3502 | 0.0734 | 0.8015 | 0.3846 | 0.0372 |
51–60 | 1.1843 | 0.3685 | 0.0013 | 1.2700 | 0.4284 | 0.0030 |
61–70 | 1.2547 | 0.4466 | 0.0050 | 0.7730 | 0.5716 | 0.1763 |
BMI (Ref: Normal) | ||||||
Underweight | 5.7177 | 0.8290 | <0.0001 | 5.3988 | 0.9199 | <0.0001 |
Overweight | −4.2243 | 0.3476 | <0.0001 | −4.1937 | 0.4219 | <0.0001 |
Obese | −6.7836 | 0.4444 | <0.0001 | −6.5573 | 0.5266 | <0.0001 |
Smoking (Ref: Never) | ||||||
Former | −0.4754 | 0.4606 | 0.3021 | −0.3537 | 0.5650 | 0.5313 |
Current | −3.4372 | 0.4607 | <0.0001 | −3.3528 | 0.5198 | <0.0001 |
Drinking (Ref: Never) | ||||||
Former | −0.9769 | 0.8229 | 0.2352 | −0.6859 | 1.0817 | 0.5261 |
Current | 4.5933 | 0.5418 | <0.0001 | 4.7457 | 0.6295 | <0.0001 |
Vegetarian (Ref: No) | ||||||
Former | −0.0541 | 0.6115 | 0.9295 | 0.5785 | 0.7065 | 0.4129 |
Yes | −6.0180 | 0.6175 | <0.0001 | −5.3671 | 0.7201 | <0.0001 |
β | SE | p-Value | |
---|---|---|---|
Exercise (Ref: no exercise) | |||
Aerobic exercise | 1.4077 | 0.2948 | <0.0001 |
Badminton | 5.6052 | 2.1100 | 0.0079 |
rs328 (Ref: CC) | |||
CG+GG | 2.3521 | 0.3306 | <0.0001 |
Sex (Ref: Female) | |||
Male | −9.6558 | 0.3435 | <0.0001 |
WHR (Ref: Male<0.9; Female<0.8) | |||
Male ≥ 0.9; Female ≥ 0.8 | −3.0905 | 0.3095 | <0.0001 |
Body fat rate (Ref: Male < 25; female < 30) | |||
Male ≥ 25; female ≥ 30 | −2.0067 | 0.3428 | <0.0001 |
Coffee (Ref: No) | |||
Yes | 1.1931 | 0.2797 | <0.0001 |
Age (Ref:30–40) | |||
41–50 | 0.6273 | 0.3498 | 0.0730 |
51–60 | 1.1515 | 0.3682 | 0.0018 |
61–70 | 1.2305 | 0.4461 | 0.0058 |
BMI (Ref: Normal) | |||
Underweight | 5.7009 | 0.8298 | <0.0001 |
Overweight | −4.1867 | 0.3473 | <0.0001 |
Obese | −6.7435 | 0.4442 | <0.0001 |
Smoking (Ref: Never) | |||
Former | −0.4787 | 0.4596 | 0.2977 |
Current | −3.4080 | 0.4603 | <0.0001 |
Drinking (Ref: Never) | |||
Former | −0.9741 | 0.8236 | 0.2369 |
Current | 4.4928 | 0.5402 | <0.0001 |
Vegetarian (Ref: No) | |||
Former | −0.0589 | 0.6104 | 0.9231 |
Current | −6.0259 | 0.6174 | <0.0001 |
CC | CG + GG | |||||
---|---|---|---|---|---|---|
β | SE | p-Value | β | SE | p-Value | |
Exercise (Ref: no exercise) | ||||||
Aerobic exercise | 1.2489 | 0.3279 | 0.0001 | 2.1472 | 0.6766 | 0.0015 |
Badminton | 4.6375 | 2.4277 | 0.0561 | 8.6775 | 4.2688 | 0.0423 |
p for trend | <0.0001 | 0.0004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassef, Y.; Lee, K.-J.; Nfor, O.N.; Tantoh, D.M.; Chou, M.-C.; Liaw, Y.-P. The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Taiwanese Adults. Nutrients 2020, 12, 1204. https://doi.org/10.3390/nu12051204
Nassef Y, Lee K-J, Nfor ON, Tantoh DM, Chou M-C, Liaw Y-P. The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Taiwanese Adults. Nutrients. 2020; 12(5):1204. https://doi.org/10.3390/nu12051204
Chicago/Turabian StyleNassef, Yasser, Kuan-Jung Lee, Oswald Ndi Nfor, Disline Manli Tantoh, Ming-Chih Chou, and Yung-Po Liaw. 2020. "The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Taiwanese Adults" Nutrients 12, no. 5: 1204. https://doi.org/10.3390/nu12051204
APA StyleNassef, Y., Lee, K. -J., Nfor, O. N., Tantoh, D. M., Chou, M. -C., & Liaw, Y. -P. (2020). The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Taiwanese Adults. Nutrients, 12(5), 1204. https://doi.org/10.3390/nu12051204