Effect of Oral Choline Alfoscerate on Patients with Keratoconjunctivitis Sicca
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Shimazaki, J. Definition and Diagnostic Criteria of Dry Eye Disease: Historical Overview and Future Directions. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES7–DES12. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, E.C.; Henderson, M.; Massaro-Giordano, M.; Bunya, V.Y. Advances in dry eye disease treatment. Curr. Opin. Ophthalmol. 2019, 30, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Galor, A.; Moein, H.R.; Lee, C.; Rodriguez, A.; Felix, E.R.; Sarantopoulos, K.D.; Levitt, R.C. Neuropathic pain and dry eye. Ocul. Surf. 2018, 16, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Casu, M.A.; Wong, T.P.; De Koninck, Y.; Ribeiro-da-Silva, A.; Cuello, A.C. Aging causes a preferential loss of cholinergic innervation of characterized neocortical pyramidal neurons. Cereb. Cortex 2002, 12, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011, 221, 555–563. [Google Scholar] [CrossRef]
- Rudchenko, A.; Akude, E.; Cooper, E. Synapses on sympathetic neurons and parasympathetic neurons differ in their vulnerability to diabetes. J. Neurosci. 2014, 34, 8865–8874. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; M, V.J.; Qu, Y.; He, X.; Ou, S.; Bu, J.; Jia, C.; Wang, J.; Wu, H.; Liu, Z.; et al. Dry Eye Management: Targeting the Ocular Surface Microenvironment. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [Green Version]
- Kam, W.R.; Sullivan, D.A. Neurotransmitter influence on human meibomian gland epithelial cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8543–8548. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Tan, D.T.; Beuerman, R.W. Expression and function of muscarinic receptor subtypes on human cornea and conjunctiva. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2987–2996. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academic Press: Washington, WA, USA, 1998. [Google Scholar] [CrossRef]
- Parnetti, L.; Mignini, F.; Tomassoni, D.; Traini, E.; Amenta, F. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective approaches or need for re-evaluation? J. Neurol. Sci. 2007, 257, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Song, G.J.; Suk, K. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases. Front. Aging Neurosci. 2017, 9, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartolini, A.; Di Cesare Mannelli, L.; Ghelardini, C. Analgesic and antineuropathic drugs acting through central cholinergic mechanisms. Recent Pat. CNS Drug Discov. 2011, 6, 119–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and validity of the Ocular Surface Disease Index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Klimek, L.; Bergmann, K.C.; Biedermann, T.; Bousquet, J.; Hellings, P.; Jung, K.; Merk, H.; Olze, H.; Schlenter, W.; Stock, P.; et al. Visual analogue scales (VAS): Measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care: Position Paper of the German Society of Allergology (AeDA) and the German Society of Allergy and Clinical Immunology (DGAKI), ENT Section, in collaboration with the working group on Clinical Immunology, Allergology and Environmental Medicine of the German Society of Otorhinolaryngology, Head and Neck Surgery (DGHNOKHC). Allergo. J. Int. 2017, 26, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Salsman, J.M.; Schalet, B.D.; Andrykowski, M.A.; Cella, D. The impact of events scale: A comparison of frequency versus severity approaches to measuring cancer-specific distress. Psychooncology 2015, 24, 1738–1745. [Google Scholar] [CrossRef]
- Mehta, A.K.; Singh, B.P.; Arora, N.; Gaur, S.N. Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma. Immunobiology 2010, 215, 527–534. [Google Scholar] [CrossRef]
- Hoover, D.B. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol. Ther. 2017, 179, 1–16. [Google Scholar] [CrossRef]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef]
- Naser, P.V.; Kuner, R. Molecular, Cellular and Circuit Basis of Cholinergic Modulation of Pain. Neuroscience 2018, 387, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M.; Gebhart, G.F. Tonic cholinergic inhibition of spinal mechanical transmission. Pain 1991, 46, 211–222. [Google Scholar] [CrossRef]
- Matsumoto, M.; Xie, W.; Inoue, M.; Ueda, H. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Mol. Pain 2007, 3, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scapicchio, P.L. Revisiting Choline Alphoscerate Profile: A New, Perspective, Role in Dementia? Int. J. Neurosci. 2013, 123, 444–449. [Google Scholar] [CrossRef]
- Yagci, A.; Gurdal, C. The role and treatment of inflammation in dry eye disease. Int. Ophthalmol. 2014, 34, 1291–1301. [Google Scholar] [CrossRef]
- Roncone, M.; Bartlett, H.; Eperjesi, F. Essential fatty acids for dry eye: A review. Contact Lens Anterior Eye 2010, 33, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Miljanović, B.; Trivedi, K.A.; Dana, M.R.; Gilbard, J.P.; Buring, J.E.; Debra A Schaumberg, D.A. Relation between dietary n-3 and n-6 fatty acids and clinically diagnosed dry eye syndrome in women. Am. J. Clin. Nutr. 2005, 82, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.D.; Singh, R.; McClellan, A.J.; Weikert, M.P.; Scoper, S.V.; Joly, T.J.; Whitley, W.O.; Kakkar, E.; Pflugfelder, S.C. Long-term supplementation with n-6 and n-3 PUFAs improves moderate to severe keratoconjunctivitis sicca: A randomized double-blind clinical trial. Cornea 2013, 32, 1297–1304. [Google Scholar] [CrossRef]
- Jackson, M.A.; Burrell, K.; Gaddie, I.B.; Richardson, S.D. Efficacy of a new prescription-only medical food supplement in alleviating signs and symptoms of dry eye, with or without concomitant cyclosporine A. Clin. Ophthalmol. 2011, 5, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.; Fonseca, E.C.; Alves, M.F.; Malki, L.T.; Arruda, G.V.; Reinach, P.S.; Rocha, E.M. Dry eye disease treatment: A systematic review of published trials and a critical appraisal of therapeutic strategies. Ocul. Surf. 2013, 11, 181–192. [Google Scholar] [CrossRef]
- Kangari, H.; Eftekhari, M.H.; Sardari, S.; Hashemi, H.; Salamzadeh, J.; Ghassemi-Broumand, M.; Khabazkhoob, M. Short-term consumption of oral omega-3 and dry eye syndrome. Ophthalmology 2013, 120, 2191–2196. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.; Kumar, P.; Kumar, M.; Mehra, N.; Mishra, A. A randomized controlled trial of omega-3 fatty acids in dry eye syndrome. Int. J. Ophthalmol. 2013, 6, 811–816. [Google Scholar] [PubMed]
- Wojtowicz, J.C.; Butovich, I.; Uchiyama, E.; Agee, S.; McCulley, J.P. Pilot, prospective, randomized, double-masked, placebo-controlled clinical trial of an omega-3 supplement for dry eye. Cornea 2011, 30, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brignole-Baudouin, F.; Baudouin, C.; Aragona, P.; Rolando, M.; Labetoulle, M.; Pisella, P.J.; Barabino, S.; Siou-Mermet, R.; Creuzot-Garcher, C. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients. Acta Ophthalmol. 2011, 89, 591–597. [Google Scholar] [CrossRef]
- Bhargava, R.; Kumar, P.; Phogat, H.; Kaur, A.; Kumar, M. Oral omega-3 fatty acids treatment in computer vision syndrome related dry eye. Contact Lens Anterior Eye 2015, 38, 206–210. [Google Scholar] [CrossRef]
Before Taking Oral Choline Alfoscerate | Two Weeks after Taking Oral Choline Alfoscerate | Six Weeks after Taking Oral Choline Alfoscerate | |
---|---|---|---|
N | 47 | 44 | 32 |
Age (y) | 62.8 ± 9.3 | 62.9 ± 9.1 | 61.9 ± 8.9 |
Male:female | 9:38 | 8:36 | 5:27 |
TBUT (s) | 5.9 ± 2.7 | 7.2 ± 2.9 * | 7.5 ± 2.6 * |
FSS | 0.27 ± 0.61 | 0.26 ± 0.53 | 0.27 ± 0.57 |
Lid hyperemia | 1.5 ± 0.9 | 1.3 ± 0.9 † | 1.1 ± 0.9 † |
OSDI | 51.1 ± 24.3 | 40.4 ± 18.7 * | 36.2 ± 16.4 * |
VAS | 3.2 ± 2.5 | 2.1 ± 1.8 * | 2.1 ± 1.7 |
Impact on the daily life | 2.8 ± 0.9 | 2.5 ± 1.0 † | 2.4 ± 0.8 † |
Daily frequency | 2.7 ± 1.0 | 2.2 ± 1.1 † | 1.9 ± 0.9 † |
Before Taking Oral Choline Alfoscerate | Two Weeks after Taking Oral Choline Alfoscerate | Six Weeks after Taking Oral Choline Alfoscerate | |
---|---|---|---|
Dryness | 2.0 ± 1.0 | 1.8 ± 0.9 | 1.6 ± 0.7 † |
FB sensation | 1.8 ± 1.0 | 1.6 ± 0.9 | 1.3 ± 0.7 † |
Coldness | 1.4 ± 1.1 | 0.9 ± 1.0 † | 1.1 ± 0.9 † |
Fatigue | 1.7 ± 1.1 | 1.4 ± 0.9 † | 1.6 ± 0.7 |
Pain | 1.2 ± 1.1 | 0.7 ± 0.7 † | 0.8 ± 0.7 |
Photophobia | 1.2 ± 1.2 | 1.2 ± 1.1 | 1.1 ± 1.0 |
Before Taking Oral Choline Alfoscerate | Two Weeks after Taking Oral Choline Alfoscerate | Six Weeks After Taking Oral Choline Alfoscerate | |
---|---|---|---|
Dryness | 2.3 ± 1.1 | 1.9 ± 1.0 † | 1.8 ± 0.9 † |
FB sensation | 2.2 ± 1.1 | 1.9 ± 1.1 | 1.5 ± 1.0 † |
Coldness | 1.5 ± 1.1 | 1.1 ± 1.1 † | 1.2 ± 0.9 † |
Fatigue | 1.9 ± 1.2 | 1.4 ± 1.0 † | 1.5 ± 1.0 |
Pain | 1.5 ± 1.2 | 1.1 ± 1.1 † | 1.0 ± 0.9 |
Photophobia | 1.3 ± 1.2 | 1.2 ± 1.1 | 1.1 ± 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.J.; Hwang, J.S.; Shin, Y.J. Effect of Oral Choline Alfoscerate on Patients with Keratoconjunctivitis Sicca. Nutrients 2020, 12, 1526. https://doi.org/10.3390/nu12051526
Choi JJ, Hwang JS, Shin YJ. Effect of Oral Choline Alfoscerate on Patients with Keratoconjunctivitis Sicca. Nutrients. 2020; 12(5):1526. https://doi.org/10.3390/nu12051526
Chicago/Turabian StyleChoi, Jin Ju, Jin Sun Hwang, and Young Joo Shin. 2020. "Effect of Oral Choline Alfoscerate on Patients with Keratoconjunctivitis Sicca" Nutrients 12, no. 5: 1526. https://doi.org/10.3390/nu12051526
APA StyleChoi, J. J., Hwang, J. S., & Shin, Y. J. (2020). Effect of Oral Choline Alfoscerate on Patients with Keratoconjunctivitis Sicca. Nutrients, 12(5), 1526. https://doi.org/10.3390/nu12051526