Association between Nutrient-Based Dietary Patterns and Bladder Cancer in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Data Collection
2.3. Statistical Analysis
2.3.1. Factorability of the Original Matrix
2.3.2. Dietary Pattern Identification
2.3.3. Reproducibility, Reliability, and Validity of Dietary Patterns
2.3.4. Risk Estimates
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: Globocan sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Osch, F.H.; Jochems, S.H.; van Schooten, F.J.; Bryan, R.T.; Zeegers, M.P. Quantified relations between exposure to tobacco smoking and bladder cancer risk: A meta-analysis of 89 observational studies. Int. J. Epidemiol. 2016, 45, 857–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Zalabani, A.H.; Stewart, K.F.; Wesselius, A.; Schols, A.M.; Zeegers, M.P. Modifiable risk factors for the prevention of bladder cancer: A systematic review of meta-analyses. Eur. J. Epidemiol. 2016, 31, 811–851. [Google Scholar]
- Burger, M.; Catto, J.W.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.A.; La Vecchia, C.; Shariat, S.; et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar]
- Malats, N.; Real, F.X. Epidemiology of bladder cancer. Hematol. Oncol. Clin. N. Am. 2015, 29, 177–189. [Google Scholar]
- Pelucchi, C.; Bosetti, C.; Negri, E.; Malvezzi, M.; La Vecchia, C. Mechanisms of disease: The epidemiology of bladder cancer. Nat. Clin. Pract. Urol. 2006, 3, 327–340. [Google Scholar] [CrossRef]
- World Cancer Research Fund International/American Institute for Cancer Research. Continuous Update Project Report: Diet, Nutrition, Physical Activity and Bladder Cancer. 2015. Available online: Https://www.Wcrf.Org/dietandcancer/bladder-cancer (accessed on 21 February 2020).
- Abufaraj, M.; Tabung, F.K.; Shariat, S.F.; Moschini, M.; Devore, E.; Papantoniou, K.; Yang, L.; Strohmaier, S.; Rohrer, F.; Markt, S.C.; et al. Association between inflammatory potential of diet and bladder cancer risk: Results of 3 united states prospective cohort studies. J. Urol. 2019, 202, 484–489. [Google Scholar]
- Bravi, F.; Spei, M.E.; Polesel, J.; Di Maso, M.; Montella, M.; Ferraroni, M.; Serraino, D.; Libra, M.; Negri, E.; La Vecchia, C.; et al. Mediterranean diet and bladder cancer risk in italy. Nutrients 2018, 10, 1061. [Google Scholar] [CrossRef] [Green Version]
- Dugue, P.A.; Hodge, A.M.; Brinkman, M.T.; Bassett, J.K.; Shivappa, N.; Hebert, J.R.; Hopper, J.L.; English, D.R.; Milne, R.L.; Giles, G.G. Association between selected dietary scores and the risk of urothelial cell carcinoma: A prospective cohort study. Int. J. Cancer 2016, 139, 1251–1260. [Google Scholar] [CrossRef] [Green Version]
- Mai, V.; Kant, A.K.; Flood, A.; Lacey, J.V., Jr.; Schairer, C.; Schatzkin, A. Diet quality and subsequent cancer incidence and mortality in a prospective cohort of women. Int. J. Epidemiol. 2005, 34, 54–60. [Google Scholar] [CrossRef]
- Witlox, W.J.A.; van Osch, F.H.M.; Brinkman, M.; Jochems, S.; Goossens, M.E.; Weiderpass, E.; White, E.; van den Brandt, P.A.; Giles, G.G.; Milne, R.L.; et al. An inverse association between the mediterranean diet and bladder cancer risk: A pooled analysis of 13 cohort studies. Eur. J. Nutr. 2020, 59, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Stefani, E.; Boffetta, P.; Ronco, A.L.; Deneo-Pellegrini, H.; Acosta, G.; Mendilaharsu, M. Dietary patterns and risk of bladder cancer: A factor analysis in uruguay. Cancer Causes Control. 2008, 19, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- De Stefani, E.; Deneo-Pellegrini, H.; Boffetta, P.; Ronco, A.L.; Aune, D.; Acosta, G.; Mendilaharsu, M.; Brennan, P.; Ferro, G. Dietary patterns and risk of cancer: A factor analysis in uruguay. Int. J. Cancer 2009, 124, 1391–1397. [Google Scholar] [CrossRef]
- Di Maso, M.; Turati, F.; Bosetti, C.; Montella, M.; Libra, M.; Negri, E.; Ferraroni, M.; La Vecchia, C.; Serraino, D.; Polesel, J. Food consumption, meat cooking methods and diet diversity and the risk of bladder cancer. Cancer Epidemiol. 2019, 63, 101595. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Taborelli, M.; Montella, M.; Libra, M.; La Vecchia, C.; Tavani, A.; Crispo, A.; Grimaldi, M.; Facchini, G.; Jenkins, D.J.A.; et al. Associations of dietary carbohydrates, glycaemic index and glycaemic load with risk of bladder cancer: A case-control study. Br. J. Nutr. 2017, 118, 722–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Strikoudi, P.; Spei, M.E.; Parpinel, M.; Serraino, D.; Montella, M.; Libra, M.; La Vecchia, C.; Rosato, V. Flavonoids and bladder cancer risk. Cancer Causes Control. 2019, 30, 527–535. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Rosato, V.; Rossi, M.; Libra, M.; Montella, M.; Serraino, D.; La Vecchia, C. Dietary inflammatory index and risk of bladder cancer in a large italian case-control study. Urology 2017, 100, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Sette, S.; Le Donne, C.; Piccinelli, R.; Mistura, L.; Ferrari, M.; Leclercq, C.; Group, I.-S.S. The third national food consumption survey, inran-scai 2005-06: Major dietary sources of nutrients in Italy. Int. J. Food Sci. Nutr. 2013, 64, 1014–1021. [Google Scholar] [CrossRef]
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C.; Turrini, A.; Group, I.-S.S. The italian national food consumption survey inran-scai 2005-06: Main results in terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [Green Version]
- Polesel, J.; Bosetti, C.; Di Maso, M.; Montella, M.; Libra, M.; Garbeglio, A.; Zucchetto, A.; Turati, F.; Talamini, R.; La Vecchia, C.; et al. Duration and intensity of tobacco smoking and the risk of papillary and non-papillary transitional cell carcinoma of the bladder. Cancer Causes Control. 2014, 25, 1151–1158. [Google Scholar] [CrossRef]
- Moch, H.; Humphrey, P.A.; Ulbright, T.M.; Reuter, V. Who Classification of Tumours of the Urinary System and Male Genital Organs; International Agency for Research on Cancer (IARC): Lyon, France, 2016. [Google Scholar]
- Di Maso, M.; Bosetti, C.; Taborelli, M.; Montella, M.; Libra, M.; Zucchetto, A.; Turati, F.; Parpinel, M.; Negri, E.; Tavani, A.; et al. Dietary water intake and bladder cancer risk: An italian case-control study. Cancer Epidemiol. 2016, 45, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Gnagnarella, P.; Parpinel, M.; Salvini, S.; Franceschi, S.; Palli, D.; Boyle, P. The update of the italian food composition database. J. Food Comp. Anal. 2004, 17, 509–522. [Google Scholar] [CrossRef]
- Salvini, S.; Parpinel, M.; Gnagnarella, P.; Maisonneuve, P.; Turrini, A. Banca Di Composizione Degli Alimenti Per Studi Epidemiologici in Italia; Istituto europeo di oncologia: Milano, Italia, 1998. [Google Scholar]
- Decarli, A.; Franceschi, S.; Ferraroni, M.; Gnagnarella, P.; Parpinel, M.T.; La Vecchia, C.; Negri, E.; Salvini, S.; Falcini, F.; Giacosa, A. Validation of a food-frequency questionnaire to assess dietary intakes in cancer studies in italy. Results for specific nutrients. Ann. Epidemiol. 1996, 6, 110–118. [Google Scholar] [CrossRef]
- Franceschi, S.; Negri, E.; Salvini, S.; Decarli, A.; Ferraroni, M.; Filiberti, R.; Giacosa, A.; Talamini, R.; Nanni, O.; Panarello, G.; et al. Reproducibility of an italian food frequency questionnaire for cancer studies: Results for specific food items. Eur. J. Cancer 1993, 29A, 2298–2305. [Google Scholar] [CrossRef]
- Pett, M.A.; Lackey, N.R.; Sullivan, J.J. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research; Sage: Sozende Oaks, CA, USA, 2003. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 5th ed.; Prentice Hall: Upper Saddler River, NJ, USA, 2002. [Google Scholar]
- Comrey, A.; Lee, H.B. A first Course in Factor Analysis, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1992. [Google Scholar]
- Bravi, F.; Bertuccio, P.; Turati, F.; Serraino, D.; Edefonti, V.; Dal Maso, L.; Decarli, A.; Montella, M.; Zucchetto, A.; La Vecchia, C.; et al. Nutrient-based dietary patterns and endometrial cancer risk: An italian case-control study. Cancer Epidemiol. 2015, 39, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. Northwestern University: Evanston, Illinois. Available online: http://CRAN.Rproject.org/package=psychR (accessed on 31 July 2019).
- Bernaards, C.A.; Jennrich, R.I. Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educ. Psychol. Meas. 2005, 65, 676–696. [Google Scholar] [CrossRef]
- Lucenteforte, E.; Scita, V.; Bosetti, C.; Bertuccio, P.; Negri, E.; La Vecchia, C. Food groups and alcoholic beverages and the risk of stomach cancer: A case-control study in italy. Nutr. Cancer 2008, 60, 577–584. [Google Scholar] [CrossRef]
- Michaud, D.S.; Pietinen, P.; Taylor, P.R.; Virtanen, M.; Virtamo, J.; Albanes, D. Intakes of fruits and vegetables, carotenoids and vitamins a, e, c in relation to the risk of bladder cancer in the atbc cohort study. Br. J. Cancer 2002, 87, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Roswall, N.; Olsen, A.; Christensen, J.; Dragsted, L.O.; Overvad, K.; Tjonneland, A. Micronutrient intake and risk of urothelial carcinoma in a prospective danish cohort. Eur. Urol. 2009, 56, 764–770. [Google Scholar] [CrossRef]
- Dugue, P.A.; Brinkman, M.T.; Hodge, A.M.; Bassett, J.K.; Bolton, D.; Longano, A.; Hopper, J.L.; Southey, M.C.; English, D.R.; Milne, R.L.; et al. Dietary intake of nutrients involved in one-carbon metabolism and risk of urothelial cell carcinoma: A prospective cohort study. Int. J. Cancer 2018, 143, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Vrieling, A.; Bueno-De-Mesquita, H.B.; Ros, M.M.; Kampman, E.; Aben, K.K.; Buchner, F.L.; Jansen, E.H.; Roswall, N.; Tjonneland, A.; Boutron-Ruault, M.C.; et al. One-carbon metabolism biomarkers and risk of urothelial cell carcinoma in the european prospective investigation into cancer and nutrition. Int. J. Cancer 2019, 145, 2349–2359. [Google Scholar] [PubMed]
- Wu, J.W.; Cross, A.J.; Baris, D.; Ward, M.H.; Karagas, M.R.; Johnson, A.; Schwenn, M.; Cherala, S.; Colt, J.S.; Cantor, K.P.; et al. Dietary intake of meat, fruits, vegetables, and selective micronutrients and risk of bladder cancer in the new england region of the united states. Br. J. Cancer 2012, 106, 1891–1898. [Google Scholar]
- Crippa, A.; Larsson, S.C.; Discacciati, A.; Wolk, A.; Orsini, N. Red and processed meat consumption and risk of bladder cancer: A dose-response meta-analysis of epidemiological studies. Eur. J. Nutr. 2018, 57, 689–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogevinas, M.; Garcia-Closas, M.; Trichpoulos, D. Urinary bladder cancer. In Cancer Epidemiology, 2nd ed.; Adami, H.-O., Hunter, D., Trichpoulos, D., Eds.; Oxford Universiy Press: New York, NY, USA, 2008; pp. 573–596. [Google Scholar]
- D’Avanzo, B.; La Vecchia, C.; Katsouyanni, K.; Negri, E.; Trichopoulos, D. An assessment, and reproducibility of food frequency data provided by hospital controls. Eur. J. Cancer Prev. 1997, 6, 288–293. [Google Scholar] [CrossRef]
- Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 2017, 75, 405–419. [Google Scholar]
- Newby, P.K.; Tucker, K.L. Empirically derived eating patterns using factor or cluster analysis: A review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef]
- Steck, S.E.; Murphy, E.A. Dietary patterns and cancer risk. Nat. Rev. Cancer 2020, 20, 125–138. [Google Scholar]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Edefonti, V.; De Vito, R.; Dalmartello, M.; Patel, L.; Salvatori, A.; Ferraroni, M. Reproducibility and validity of a posteriori dietary patterns: A systematic review. Adv. Nutr. 2020, 11, 293–326. [Google Scholar] [CrossRef]
Bartlett’s Test of Sphericity:p-Value < 0.001 | |
Overall Measure of Sampling Adequacy (Kaiser–Meyer–Olkin statistic) 1: 0.86 | |
Individual Measures of Sampling Adequacy: | |
0.60–0.69 | retinol, linoleic acid |
0.70–0.79 | total fiber, starch, vitamin E, monounsaturated fatty acids, vitamin D |
0.80–0.89 | lycopene, vegetable protein, other polyunsaturated fatty acids, riboflavin, animal protein, saturated fatty acids, sodium, calcium, iron, vitamin C, potassium, folate |
≥0.90 | phosphorus, niacin, zinc, thiamin, cholesterol, soluble carbohydrates, linolenic acid, vitamin B6, beta-carotene equivalents |
Nutrient | Dietary Patterns | Communalities | |||
---|---|---|---|---|---|
Animal Products | Vitamins and Fiber | Starch-Rich | Animal Unsaturated Fatty Acids | ||
Animal protein | 0.79 | −0.23 | −0.20 | 0.43 | 0.90 |
Vegetable protein | 0.13 | −0.45 | −0.85 | 0.18 | 0.97 |
Cholesterol | 0.78 | −0.12 | −0.22 | 0.42 | 0.84 |
Saturated fatty acids | 0.82 | −0.26 | −0.25 | 0.16 | 0.82 |
Monounsaturated fatty acids | 0.48 | −0.57 | −0.24 | 0.33 | 0.72 |
Linoleic acid | 0.46 | −0.27 | −0.25 | 0.45 | 0.54 |
Linolenic acid | 0.60 | −0.29 | −0.23 | 0.31 | 0.59 |
Other polyunsaturated fatty acids | 0.28 | −0.19 | −0.12 | 0.87 | 0.89 |
Soluble carbohydrates | 0.43 | −0.61 | −0.16 | − | 0.59 |
Starch | 0.13 | −0.20 | −0.93 | 0.14 | 0.94 |
Sodium | 0.42 | − | −0.82 | − | 0.87 |
Calcium | 0.83 | −0.30 | −0.17 | − | 0.82 |
Potassium | 0.48 | −0.72 | −0.30 | 0.25 | 0.90 |
Phosphorus | 0.77 | −0.39 | −0.37 | 0.22 | 0.93 |
Iron | 0.45 | −0.49 | −0.36 | 0.35 | 0.69 |
Zinc | 0.66 | −0.39 | −0.43 | 0.42 | 0.94 |
Thiamin (vitamin B1) | 0.56 | −0.56 | −0.41 | 0.25 | 0.85 |
Riboflavin (vitamin B2) | 0.82 | −0.40 | −0.18 | 0.12 | 0.88 |
Vitamin B6 | 0.53 | −0.61 | 0.29 | 0.39 | 0.89 |
Total folate | 0.48 | −0.68 | −0.34 | 0.22 | 0.85 |
Niacin | 0.40 | −0.47 | −0.33 | 0.58 | 0.83 |
Vitamin C | 0.20 | −0.88 | − | − | 0.82 |
Retinol | 0.47 | − | − | 0.13 | 0.25 |
Beta-carotene equivalents | 0.17 | −0.80 | − | 0.23 | 0.73 |
Lycopene | − | −0.45 | −0.22 | 0.37 | 0.40 |
Vitamin D | 0.17 | −0.18 | − | 0.82 | 0.74 |
Vitamin E | 0.35 | −0.73 | −0.19 | 0.41 | 0.86 |
Total fiber (Englyst) | 0.10 | −0.81 | −0.33 | 0.13 | 0.80 |
Proportion of explained variance (%) | 26.59 | 24.31 | 13.88 | 13.31 | |
Cumulative explained variance (%) | 26.59 | 50.90 | 64.78 | 78.09 |
Food Group | Animal Products | Vitamins and Fiber | Starch-Rich | Animal Unsaturated Fatty Acids |
---|---|---|---|---|
Milk | 0.45 | 0.15 | – | –0.18 |
Coffee | – | – | – | – |
Tea and decaffeinated coffee | – | – | – | – |
Bread | 0.35 | – | 0.17 | 0.19 |
Pasta and rice | 0.18 | 0.32 | 0.29 | 0.20 |
Soup | – | 0.10 | 0.13 | – |
Eggs | 0.35 | – | 0.13 | 0.18 |
White meat | 0.18 | 0.13 | 0.10 | 0.14 |
Red meat | 0.38 | – | 0.18 | 0.41 |
Liver | 0.40 | –0.03 | –0.08 | 0.14 |
Processed meat | 0.32 | –0.02 | 0.19 | 0.13 |
Fish | – | – | – | 0.64 |
Cheese | 0.63 | – | 0.18 | – |
Potatoes | 0.17 | 0.13 | 0.12 | 0.12 |
Pulses | – | 0.24 | 0.16 | – |
Leafy vegetables | 0.13 | 0.40 | – | – |
Fruiting vegetables | – | 0.45 | – | 0.11 |
Root vegetables | 0.06 | 0.39 | – | 0.10 |
Cruciferous vegetables | – | 0.24 | – | 0.10 |
Other vegetables | 0.23 | 0.39 | – | 0.10 |
Citrus fruit | – | 0.50 | – | – |
Other fruits | – | 0.63 | – | – |
Soft drinks and fruit juices | 0.15 | – | – | – |
Desserts | 0.37 | – | 0.17 | – |
Sugar and candies | 0.24 | 0.22 | – | – |
Butter and margarine | 0.24 | – | – | – |
Specified seed oils | – | – | – | 0.18 |
Unspecified seed oils | 0.17 | – | – | 0.44 |
Olive oil | 0.12 | 0.52 | 0.11 | 0.11 |
Dietary Pattern | Quartile Category, OR (95% CI) | p Trend 3 | Per 1 SD 4 | |||
---|---|---|---|---|---|---|
I 2 | II | III | IV | |||
Animal products | 1 | 0.93 (0.66–1.30) | 0.72 (0.50–1.03) | 0.70 (0.48–1.01) | 0.026 | 0.91 (0.80–1.04) |
Vitamins and fiber | 1 | 0.77 (0.55–1.09) | 0.92 (0.66–1.30) | 0.70 (0.49–0.98) | 0.109 | 0.89 (0.79–1.01) |
Starch-rich | 1 | 1.25 (0.90–1.75) | 1.50 (1.06–2.11) | 1.28 (0.90–1.81) | 0.107 | 1.02 (0.90–1.15) |
Animal unsaturated fatty acids | 1 | 0.82 (0.58–1.15) | 0.58 (0.41–0.82) | 0.81 (0.58–1.15) | 0.084 | 0.91 (0.81–1.03) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edefonti, V.; La Vecchia, C.; Di Maso, M.; Crispo, A.; Polesel, J.; Libra, M.; Parpinel, M.; Serraino, D.; Ferraroni, M.; Bravi, F. Association between Nutrient-Based Dietary Patterns and Bladder Cancer in Italy. Nutrients 2020, 12, 1584. https://doi.org/10.3390/nu12061584
Edefonti V, La Vecchia C, Di Maso M, Crispo A, Polesel J, Libra M, Parpinel M, Serraino D, Ferraroni M, Bravi F. Association between Nutrient-Based Dietary Patterns and Bladder Cancer in Italy. Nutrients. 2020; 12(6):1584. https://doi.org/10.3390/nu12061584
Chicago/Turabian StyleEdefonti, Valeria, Carlo La Vecchia, Matteo Di Maso, Anna Crispo, Jerry Polesel, Massimo Libra, Maria Parpinel, Diego Serraino, Monica Ferraroni, and Francesca Bravi. 2020. "Association between Nutrient-Based Dietary Patterns and Bladder Cancer in Italy" Nutrients 12, no. 6: 1584. https://doi.org/10.3390/nu12061584
APA StyleEdefonti, V., La Vecchia, C., Di Maso, M., Crispo, A., Polesel, J., Libra, M., Parpinel, M., Serraino, D., Ferraroni, M., & Bravi, F. (2020). Association between Nutrient-Based Dietary Patterns and Bladder Cancer in Italy. Nutrients, 12(6), 1584. https://doi.org/10.3390/nu12061584