Beneficial Effects of Isoflavones in the Kidney of Obese Rats Are Mediated by PPAR-Gamma Expression
Abstract
:1. Introduction
2. Methods
2.1. Animals, Experimental Design, and Diets
2.2. Measurement of Visceral Fat
2.3. Measurement of Systolic Blood Pressure (SBP)
2.4. Biochemical Analysis
2.5. Systemic Hemodynamics
2.6. Immunohistochemistry
2.7. Western Blotting
2.8. Oxidative and Nitrosative Stress
2.9. Statistical Analysis
3. Results
3.1. Metabolic Parameters
3.2. Evaluation of Renal Function
3.3. Analysis of the Kidney Cortex
3.4. Oxidative and Nitrosative Stress in Urine
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drewnowski, A. The Real Contribution of Added Sugars and Fats to Obesity. Epidemiol. Rev. 2007, 29, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 24, 2221–2236. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.O.; Melanson, E.L.; Wyatt, H.T. Dietary fat intake and regulation of energy balance: Implications for obesity. J. Nutr. 2000, 130, 284–288. [Google Scholar] [CrossRef] [Green Version]
- French, R.T. Fats and food intake. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 629–634. [Google Scholar] [CrossRef]
- Odermatt, A. The Western-style diet: A major risk factor for impaired kidney function and chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2011, 301, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.Y.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef]
- Hariharan, D.; Vellanki, K.; Kramer, H. The Western Diet and Chronic Kidney Disease. Curr. Hypertens. Rep. 2015, 17, 16. [Google Scholar] [CrossRef]
- Ellington, A.A.; Malik, A.R.; Klee, G.G.; Turner, S.T.; Rule, A.D.; Mosley, T.H.; Kullo, I.J. Association of plasma resistin with glomerular filtration rate and albuminuria in hypertensive adults. Hypertension 2007, 50, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Kovesdy, C.P.; Furth, S.L.; Zoccali, C.; World Kidney Day Steering Committee. Obesity and kidney disease: Hidden consequences of the epidemic. J. Nephrol. 2017, 30, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tapp, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Ter, H.K.W.; Serlie, M.J. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 6, 981. [Google Scholar]
- Gersch, M.S.; Mu, W.; Cirillo, P.; Reungjui, S.; Zhang, L.; Roncal, C.; Sautin, Y.Y.; Johnson, R.J.; Nakagawa, T. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am. J. Physiol. Ren. Physiol. 2007, 293, 1256–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, T.; Kosugi, T.; Gersch, M.; Connor, T.; Sanchez-Lozada, L.G.; Lanaspa, M.A.; Roncal, C.; Perez-Pozo, S.E.; Johnson, R.J.; Nakagawa, T. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Am. J. Physiol. Ren. Physiol. 2010, 298, 712–720. [Google Scholar] [CrossRef] [Green Version]
- Kizhner, T.; Werman, M.J. Long-term fructose intake: Biochemical consequences and altered renal histology in the male rat. Metabolism 2002, 51, 1538–1547. [Google Scholar] [CrossRef]
- Zaoui, P.; Rossini, E.; Pinel, N.; Cordonnier, D.; Halimi, S.; Morel, F. High fructose-fed rats: A model of glomerulosclerosis involving the renin-angiotensin system and renal gelatinases. Ann. N. Y. Acad. Sci. 1999, 878, 716–719. [Google Scholar] [CrossRef]
- Takabatake, Y.; Yamamoto, T.; Isaka, Y. Stagnation of autophagy: A novel mechanism of renal lipotoxicity. Autophagy 2017, 13, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Nosadini, R.; Tonolo, G. Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 79–85. [Google Scholar] [CrossRef]
- Keane, W.F. The role of lipids in renal disease: Future challenges. Kidney Int. 2000, 57, 27–31. [Google Scholar] [CrossRef]
- Abrass, C.K. Cellular lipid metabolism and the role of lipids in progressive renal disease. Am. J. Nephrol. 2004, 24, 46–53. [Google Scholar] [CrossRef]
- Guebre-Egziabher, F.; Alix, P.M.; Laetitia, K.; Pelletier, C.; Kalbacher, E.; Fouque, D.; Soulage, C.O. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 2013, 95, 1971–1979. [Google Scholar] [CrossRef]
- Kume, S.; Uzu, T.; Araki, S.-I.; Sugimoto, T.; Isshiki, K.; Chin-Kanasaki, M.; Sakaguchi, M.; Kubota, N.; Terauchi, Y.; Kadowaki, T.; et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J. Am. Soc. Nephrol. 2007, 18, 2715–2723. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.J.; Obi, Y.; Tortorici, A.R.; Kalantar-Zadeh, K. Dietary protein intake and chronic kidney disease. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 77–85. [Google Scholar] [CrossRef]
- Mcgraw, N.J.; Krul, E.S.; Grunz-Borgmann, E.; Parrish, A.R. Soy-based renoprotection. World J. Nephrol. 2016, 5, 233–257. [Google Scholar] [CrossRef]
- De Franciscis, P.; Colacurci, N.; Riemma, G.; Conte, A.; Pittana, E.; Guida, M.; Schiattarella, A. A Nutraceutical Approach to Menopausal Complaints. Medicina 2019, 55, 544. [Google Scholar] [CrossRef] [Green Version]
- Taku, K.; Melby, M.K.; Kronenberg, F.; Kurzer, M.S.; Messina, M. Extracted or Synthesized Soybean Isoflavones Reduce Menopausal Hot Flash Frequency and Severity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Menopause 2012, 19, 776–790. [Google Scholar] [CrossRef]
- Cupisti, A.; Ghiadoni, L.; D’Alessandro, C.; Kardasz, I.; Morelli, E.; Panichi, V.; Locati, D.; Morandi, S.; Saba, A.; Barsotti, G.; et al. Soy protein diet improves endothelial dysfunction in renal transplant patients. Nephrol. Dial. Transpl. 2007, 22, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Ranich, T.; Bhathena, S.J.; Velasquez, M.T. Protective effects of dietary phytoestrogens in chronic renal disease. J. Ren. Nutr. 2001, 11, 183–193. [Google Scholar] [CrossRef]
- Fanti, P.; Stephenson, T.J.; Kaariainen, I.M.; Rezkalla, B.; Tsukamoto, Y.; Morishita, T.; Nomura, M.; Kitiyakara, C.; Custer, L.J.; Franke, A.A. Serum isoflavones and soy food intake in Japanese, Thai, and American end-stage renal disease patients on chronic haemodialysis. Nephrol. Dial. Transpl. 2003, 18, 1862–1868. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Wei-Jie, Y. Effects of soy protein containing isoflavones in patients with chronic kidney disease: A systematic review and meta-analysis. Clin. Nutr. 2016, 35, 117–124. [Google Scholar] [CrossRef]
- Taku, K.; Umegaki, K.; Sato, Y.; Taki, Y.; Endoh, K.; Watanabe, S. Soy isoflavones lower serum total and LDL cholesterol in humans: A meta-analysis of 11 randomized controlled trials. Am. J. Clin. Nutr. 2007, 85, 1148–1156. [Google Scholar] [CrossRef]
- Richardson, S.I.; Steffen, L.M.; Swett, K.; Smith, C.; Burke, L.; Zhou, X.; Shikany, J.M.; Rodriguez, C.J. Dietary Total Isoflavone Intake Is Associated with Lower Systolic Blood Pressure: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. J. Clin. Hypertens. 2016, 18, 778–783. [Google Scholar] [CrossRef] [Green Version]
- Durua, K.C.; KovalevaaI, E.G.; Danilova, G.; van der Bijlc, P.; Belousovab, A.V. The potential beneficial role of isoflavones in type 2 diabetes mellitus. Nutr. Res. 2018, 59, 1–15. [Google Scholar] [CrossRef]
- Tan, J.; Huang, C.; Luo, Q.; Liu, W.; Cheng, D.; Li, Y.; Xia, Y.; Li, C.; Tang, L.; Fang, J.; et al. Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO). Molecules 2019, 24, 2809. [Google Scholar] [CrossRef] [Green Version]
- Medjakovic, S.; Mueller, M.; Jungbauer, A. Potential health-modulating effects of isoflavones and metabolites via activation of PPAR and AhR. Nutrients 2010, 2, 241–279. [Google Scholar] [CrossRef] [Green Version]
- Blay, M.; Espinel, A.E.; Delgado, M.A.; Baiges, I.; Bladao, C.; Arola, L.; Salvada, J. Isoflavone effect on gene expression profile and biomarkers of inflammation. J. Pharm. Biomed. 2010, 51, 382–390. [Google Scholar] [CrossRef]
- Ruiz-Larrea, M.B.; Mohan, A.R.; Paganga, G.; Miller, N.J.; Bolwell, G.P.; Rice-Evans, C.A. Antioxidant activity of phytoestrogenic isoflavones. Free Radic. Res. 1997, 26, 63–70. [Google Scholar] [CrossRef]
- Patel, R.P.; Barnes, S. Isoflavones and PPAR Signaling: A Critical Target in Cardiovascular, Metastatic, and Metabolic Disease. PPAR Res. 2010, 10, 153252. [Google Scholar] [CrossRef] [Green Version]
- Ricketts, M.L.; Moore, D.D.; Banz, W.J.; Mezei, O.; Shay, N.F. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. J. Nutr. Biochem. 2005, 16, 321–330. [Google Scholar] [CrossRef]
- Corrales, P.; Izquierdo-Lahuerta, A.; Medina-Gómez, G. Maintenance of Kidney Metabolic Homeostasis by PPAR Gamma. Int. J. Mol. Sci. 2018, 19, 2063. [Google Scholar] [CrossRef] [Green Version]
- Rigano, D.; Sirignano, C.; Taglialatela-Scafati, O. The potential of natural products for targeting PPARα. Acta pharmaceutica Sinica 2017, 7, 427–438. [Google Scholar] [CrossRef]
- Braissant, O.; Foufelle, F.; Scotto, C.; Dauca, M.; Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss-Tóth, E.; Roszer, T. PPARgamma in Kidney Physiology and Pathophysiology. PPAR Res. 2008, 2008, 183108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobulescu, I.A.; Lotan, Y.; Zhang, J.; Rosenthal, T.R.; Rogers, J.T.; Adams-Huet, B.; Sakhaee, K.; Moe, O.W. Triglycerides in the human kidney cortex: Relationship with body size. PLoS ONE 2014, 9, e101285. [Google Scholar] [CrossRef] [Green Version]
- Mather, A.; Pollock, C. Glucose handling by the kidney. Kidney Int. 2011, 79, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chinetti, G.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res. 2000, 49, 497–505. [Google Scholar] [CrossRef]
- Martin, H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2010, 690, 57–63. [Google Scholar] [CrossRef]
- Chacko, B.K.; Chandler, R.T.; D’Alessandro, T.L.; Mundhekar, A.; Khoo, N.K.; Botting, N.; Barnes, S.; Patel, R.P. Anti-inflammatory effects of isoflavones are dependent on flow and human endothelial cell PPARγ. J. Nutr. 2007, 137, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Matin, A.; Gavande, N.; Kim, M.S.; Yang, N.X.; Salam, N.K.; Hanrahan, J.R.; Roubin, R.; Hibbs, D.E. 7-Hydroxy-benzopyran-4-one derivatives: A novel pharmacophore of peroxisome proliferator-activated receptor α and -γ (PPARα and γ) dual agonists. J. Med. Chem. 2009, 52, 6835–6850. [Google Scholar] [CrossRef]
- Bitto, A.; Altavilla, D.; Bonaiuto, A.; Polito, F.; Minutoli, L.; Di Stefano, V.; Giuliani, D.; Guarini, S.; Arcoraci, V.; Squadrito, F. Effects of aglycone genistein in a rat experimental model of postmenopausal metabolic syndrome. J. Endocrinol. 2009, 200, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Noriega-López, L.; Tovar, A.R.; González-Granillo, M.; Hernández-Pando, R.; Escalante, B.; Santillán-Doherty, P.; Torres, N. Pancreatic insulin secretion in rats fed a soy protein high fat diet depends on the interaction between the amino acid pattern and isoflavones. J. Biol. Chem. 2007, 282, 20657–20666. [Google Scholar] [CrossRef] [Green Version]
- Ronis, M.J.; Chen, Y.; Badeaux, J.; Badger, T.M. Dietary soy protein isolate attenuates metabolic syndrome in rats via effects on PPAR, LXR, and SREBP signaling. J. Nutr. 2009, 139, 1431–1438. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.D.; Zhang, L.; Shadoan, M.K.; Kavanagh, K.; Chen, H.; Tresnasari, K.; Kaplan, J.R.; Adams, M.R.; Trenasari, K. Effects of soy protein and isoflavones on insulin resistance and adiponectin in male monkeys. Metabolism 2008, 57, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Brasil, C.M. Diretriz Brasileira para o Cuidado e a Utilização de Animais em Atividades de Ensino ou de Pesquisa Científica—DBCA. Resolução Norm. MCTI 2016, 23, 1–50. [Google Scholar]
- CONCEA-CNDCDEA/MDCTEI. Diretriz brasileira para o cuidado e a utilização de animais para fins científicos e didáticos. Resolução Norm. 2013, 181, 1–52. [Google Scholar]
- Taussky, H.H. A microcolorimetric determination of creatine in urine by the Jaffe reaction. J. Biol. Chem. 1954, 208, 853–861. [Google Scholar]
- Bergmeyer, H.U. Methods of enzymatic analysis. Fla. Publ. 1985, 9, 435–449. [Google Scholar]
- Orsonneau, J.L.; Douet, P.; Massoubre, C.; Lustenberger, P.; Bernard, S. An improved pyrogallol red-molybdate method for determining total urinary protein. Clin. Chem. 1989, 35, 2233–2236. [Google Scholar] [CrossRef]
- Bonora, E.; Moghetti, P.; Zancanaro, C.; Cigolini, M.; Querena, M.; Cacciatori, V.; Corgnati, A.; Muggeo, M. Estimates of in vivo insulin action in man: Comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. J. Clin. Endocrinol. Metab. 1989, 68, 374–378. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin-Phenol reagent. J. Biol. Chem. 1951, 193, 265. [Google Scholar]
- Beuge, J.A.; Aust, S. The thiobarbituric acid assay. Methods Enzymol. 1978, 52, 306–307. [Google Scholar]
- Wolff, S.P. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994, 233, 182–189. [Google Scholar]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Almogati, J.G. Glycated Hemoglobin as a Predictor of the Length of Hospital Stay in Patients Following Coronary Bypass Graft Surgery in the Saudi Population. Braz. J. Cardiovasc. Surg. 2019, 34, 28–32. [Google Scholar] [CrossRef]
- Sabbisetti, V.S.; Waikar, S.S.; Antoine, D.J.; Smiles, A.; Wang, C.; Ravisankar, A.; Ito, K.; Sharma, S.; Ramadesikan, S.; Lee, M.; et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 2014, 25, 2177–2186. [Google Scholar] [CrossRef]
- Raj, D.S.; Pecoits-Filho, R.; Kimme, P.L. Inflammation in Chronic Kidney Disease. Chronic Ren. Dis. 2015, 199–212. [Google Scholar] [CrossRef]
- Li, X.C.; Zhuo, J.L. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr. Hypertens. Rep. 2016, 18, 63. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.; Zhang, P. Soy isoflavone: The multipurpose phytochemical. Biomed. Rep. 2013, 1, 697–701. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Y.; Ding, G.; Xu, Y.; Bai, M.; Zhang, Y.; Jia, Z.; Huang, S.; Zhang, A. Renal tubular epithelium-targeted peroxisome proliferator-activated receptor-γ and antagonizes renal fibrogenesis. Oncotarget 2016, 40, 64690–64701. [Google Scholar] [CrossRef] [Green Version]
- Sarafidis, P.A.; Bakris, G.L. Protection of the kidney by thiazolidinediones: An assessment from bench to bedside. Kidney Int. 2006, 70, 1223–1233. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.S.; Tan, W.R.; Low, Z.S.; Marvalim, C.; Lee, J.Y.H.; Tan, N.S. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int. J. Mol. Sci. 2019, 20, 5055. [Google Scholar] [CrossRef] [Green Version]
- Horita, S.; Nakamura, M.; Satoh, N.; Suzuki, M.; Seki, G. Thiazolidinediones and Edema: Recent Advances in the Pathogenesis of Thiazolidinediones-Induced Renal Sodium Retention. PPAR Res. 2015, 2015, 646423. [Google Scholar] [CrossRef]
- Monami, M.; Dicembrini, I.; Mannucci, E. Thiazolidinediones and cancer: Results of a meta-analysis of randomized clinical trials. Acta Diabetol. 2014, 51, 91–101. [Google Scholar] [CrossRef]
- Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.; Heiss, E.H.; et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 2014, 92, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Hong, F.; Xu, P.; Zhai, Y. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Int. J. Mol. Sci. 2018, 19, 2189. [Google Scholar] [CrossRef] [Green Version]
- Higgins, L.S.; Depaol, I.A.M. Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. Am. J. Clin. Nut. 2010, 91, 267S–272S. [Google Scholar] [CrossRef] [Green Version]
- Escasany, E.; Izquierdo-Lahuerta, A.; Medina-Gomez, G. Underlying Mechanisms of Renal Lipotoxicity in Obesity. Nephron 2019, 143, 28–32. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Berl, T.; Henrich, W. Kidney-heart interactions: Epidemiology, pathogenesis, and treatment. Clin. J. Am. Soc. Nephrol. 2006, 1, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Benson, S.C.; Pershadsingh, H.A.; Ho, C.I.; Chittiboyina, A.; Desai, P.; Pravenec, M.; Qi, N.; Wang, J.; Avery, M.A.; Kurtz, T.W. Identification of Telmisartan as a Unique Angiotensin II Receptor Antagonist with Selective PPARγ-Modulating Activity. Hypertension 2004, 43, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ortega, M.; Rupérez, M.; Esteban, V.; Rodriguez-Vita, J.; Sanchez-Lopez, E.; Carvajal, G.; Egido, J. Angiotensin II: A key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transpl. 2006, 21, 16–20. [Google Scholar] [CrossRef]
- Molinas, S.M.; Cortés-González, C.; González-Bobadilla, Y.; Monasterolo, L.A.; Cruz, C.; Elías, M.M.; Bobadilla, N.A.; Trumper, L. Effects of losartan pretreatment in an experimental model of ischemic acute kidney injury. Nephron Exp. Nephrol. 2009, 112, 10–19. [Google Scholar] [CrossRef]
- Gautier, E.L.; Chow, A.; Spanbroek, R.; Marcelin, G.; Greter, M.; Jakubzick, C.; Bogunovic, M.; Leboeuf, M.; Van Rooijen, N.; Habenicht, A.J.R.; et al. Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J. Immunol. 2012, 189, 2614–2624. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Ting, A.T.; Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 1998, 391, 82–86. [Google Scholar] [CrossRef]
- Wang, D.; Shi, L.; Xin, W.; Xu, J.; Xu, J.; Li, Q.; Xu, Z.; Wang, J.; Wang, G.; Yao, W.; et al. Activation of PPARγ inhibits proinflammatory cytokines production by upregulation of miR-124 in vitro and in vivo. Biochem. Biophys. Res. Commun. 2017, 86, 726–731. [Google Scholar] [CrossRef]
- Schupp, M.; Janke, J.; Clasen, R.; Unger, T.; Kintscher, U. Angiotensin Type 1 Receptor Blockers Induce Peroxisome Proliferator-Activated Receptor-g Activity. Circulation 2004, 109, 2054–2057. [Google Scholar] [CrossRef] [Green Version]
- Kobori, H.; Mori, H.; Masaki, T.; Nishiyama, A. Angiotensin II blockade and renal protection. Curr. Pharm. Des. 2013, 19, 3033–3042. [Google Scholar] [CrossRef] [Green Version]
- Navar, L.G.; Harrison-Bernard, L.M.; Imig, J.D.; Cervenka, L.; Mitchell, K.D. Renal responses to AT1 receptor blockade. Am. J. Hypertens. 2000, 13, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Lin, Y.; Luo, R.; Chen, S.; Wang, F.; Zheng, P.; Levi, M.; Yang, T.; Wang, W. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. Am. J. Physiol. Ren. Physiol. 2016, 310, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Welsh, G.I.; Hale, L.; Eremina, V.; Jeansson, M.; Maezawa, Y.; Lennon, R.; Pons, D.A.; Owen, R.J.; Satchell, S.C.; Miles, M.; et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 2010, 12, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Sieber, J.; Lindenmeyer, M.T.; Kampe, K.; Campbell, K.N.; Cohen, C.D.; Hopfer, H.; Mundel, P.; Jehle, A.W. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am. J. Physiol. Ren. Physiol. 2010, 299, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Food Consumption (g) | Basal | 30 Days | 60 Days | 90 Days | 120 Days |
---|---|---|---|---|---|
CTL | - | 14.11 ± 0.88 | 15.17 ± 0.31 | 15.15 ± 0.34 | 15.54 ± 0.25 |
DH | - | 17.83 ± 0.67 + | 19.05 ± 0.10 * | 19.08 ± 0.21 ¥ | 19.03 ± 0.33 ₸ |
DH+ISO | - | 19.01 ± 0.28 ++ | 18.74 ± 0.51 * | 18.93 ± 0.43 ¥ | 19.24 ± 0.30 ₸ |
Food Calorie (Kcal) | Basal | 30 days | 60 days | 90 days | 120 days |
CTL | - | 55.04 ± 3.48 | 59.15 ± 1.22 | 59.07 ± 1.31 | 60.61 ± 0.98 |
DH | - | 100.76 ± 3.78 + | 107.65 ± 0.55 * | 107.80 ± 1.16 ¥ | 107.50 ± 1.84 ₸ |
DH+ISO | - | 107.43 ± 1.56 ++ | 105.88 ± 2.89 * | 106.94 ± 2.41 ¥ | 108.71 ± 1.70 ₸ |
Weight (g) | Basal | 30 days | 60 days | 90 days | 120 days |
CTL | 184.40 ± 5.22 | 198.25 ± 3.37 | 312.55 ± 5.41 | 353.20 ± 12.05 | 402.10 ± 11.08 |
DH | 183.20 ± 5.23 | 222.45 ± 4.44 + | 371.50 ± 17.98 * | 464.00 ± 14.49 ¥ | 553.25 ± 18.76 ₸ |
DH+ISO | 175.00 ± 6.63 | 203.20 ± 2.61 ++ | 365.70 ± 11.11 * | 450.10 ± 12.99 ¥ | 520.05 ± 19.60 ₸ |
Visceral Fat (g) | Basal | 60 Days | 90 Days | 120 Days |
---|---|---|---|---|
CTL | - | - | - | 53.12 ± 5.50 |
DH | - | - | - | 244.81 ± 11.78 ₸ |
DH+ISO | - | - | - | 123.44 ± 5.75 ₸ ₸₸ |
Triglycerides (mg/dL) | Basal | 60 days | 90 days | 120 days |
CTL | 130.00 ± 5.59 | 134.20 ± 3.12 | 135.60 ± 4.35 | 155.00 ± 3.96 |
DH | 141.40 ± 4.79 | 163.20 ± 1.56 * | 183.80 ± 2.03 ¥ | 189.80 ± 1.98 ₸ |
DH+ISO | 122.80 ± 3,26 | 152.60 ± 4.30 * | 165.20 ± 4.34 ¥ ¥¥ | 174.40 ± 3.14 ₸ ₸₸ |
Total cholesterol (mg/dL) | Basal | 60 days | 90 days | 120 days |
CTL | 104.40 ± 5.76 | 107.00 ± 4.06 | 131.00 ± 4.56 | 133.40 ± 2.87 |
DH | 94.20 ± 4.12 | 228.20 ± 6.86 * | 260.40 ± 13.63 ¥ | 290.40 ± 4.21 ₸ |
DH+ISO | 102.60 ± 8.58 | 170.80 ± 31.66 * | 232.20 ± 20.92 ¥ | 165.60 ± 2.96 ₸ ₸₸ |
HDL cholesterol (mg/dL) | Basal | 60 days | 90 days | 120 days |
CTL | 285.79 ± 2.12 | 250.14 ± 21.65 | 232.92 ± 26.24 | 245.80 ± 13.60 |
DH | 236.94 ± 10.97 | 177.80 ± 10.14 * | 140.80 ± 14.03 ¥ | 108.15 ± 1.66 ₸ |
DH+ISO | 268.72 ± 3.99 | 209.80 ± 23.12 | 185,80 ± 16.13 | 187.22 ± 18.34 ₸ ₸₸ |
Glycated Hemoglobin (%) | Basal | 30 Days | 60 Days | 90 Days | 120 Days |
---|---|---|---|---|---|
CTL 120 days | - | - | - | - | 4.48 ± 0.24 |
DH 120 days | - | - | - | - | 8.12 ± 0.39 ₸ |
DH+ISO 120 days | - | - | - | - | 6.50 ± 0.39 ₸ ₸₸ |
Glucose (mg/mL) | Basal | 30 days | 60 days | 90 days | 120 days |
CTL | 89.00 ± 5.70 | 91.0 7 ± 2.26 | 90.50 ± 2.55 | 92.00 ± 2.53 | 96.40 ± 2.27 |
DH | 85.00 ± 2.28 | 112.27 ± 2.05 + | 124.20 ± 2.75 * | 124.30 ± 0.47 ¥ | 127.30 ± 1.90 ₸ |
DH+ISO | 87.20 ± 5.34 | 116.80 ± 1.93 + | 122.50 ± 1.76 * | 118.30 ± 2.49 ¥ | 117.25 ± 0.93 ₸ ₸₸ |
Polyuria (mL) | Basal | 30 days | 60 days | 90 days | 120 days |
CTL | 9.20 ± 0.37 | - | 11.00 ± 0.95 | 9.60 ± 0.93 | 9.80 ± 0.86 |
DH | 9.80 ± 0.37 | - | 11.40 ± 0.98 | 15.20 ± 0.37 ¥ | 18.20 ± 0.84 ₸ |
DH+ISO | 9.40 ± 1.21 | - | 11.20 ± 0.92 | 10.80 ± 1.50 ¥ | 13.60 ± 1.03 ₸ ₸₸ |
kITT (% min) | 0 | 10 min | 20 min | 30 min | - |
CTL 120 days | 99.25 ± 1.12 | 85.25 ± 2.49 | 75.50 ± 1.13 | 52.00 ± 1.41 | - |
DH 120 days | 122.20 ± 1.85 | 108.40 ± 3.26 + | 96.60 ± 5.41 * | 78.60 ± 7.03 ¥ | - |
DH+ISO 120 days | 108.00 ± 2.66 | 92.20 ± 3.02 | 81.80 ± 1.32 | 68.60 ± 4.68 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, E.d.A.; Convento, M.B.; Castino, B.; Leme, A.M.; de Oliveira, A.S.; Aragão, A.; Fernandes, S.M.; Carbonel, A.; Dezoti, C.; Vattimo, M.d.F.; et al. Beneficial Effects of Isoflavones in the Kidney of Obese Rats Are Mediated by PPAR-Gamma Expression. Nutrients 2020, 12, 1624. https://doi.org/10.3390/nu12061624
Pessoa EdA, Convento MB, Castino B, Leme AM, de Oliveira AS, Aragão A, Fernandes SM, Carbonel A, Dezoti C, Vattimo MdF, et al. Beneficial Effects of Isoflavones in the Kidney of Obese Rats Are Mediated by PPAR-Gamma Expression. Nutrients. 2020; 12(6):1624. https://doi.org/10.3390/nu12061624
Chicago/Turabian StylePessoa, Edson de Andrade, Márcia Bastos Convento, Bianca Castino, Ala Moana Leme, Andréia Silva de Oliveira, Alef Aragão, Sheila Marques Fernandes, Adriana Carbonel, Cassiane Dezoti, Maria de Fátima Vattimo, and et al. 2020. "Beneficial Effects of Isoflavones in the Kidney of Obese Rats Are Mediated by PPAR-Gamma Expression" Nutrients 12, no. 6: 1624. https://doi.org/10.3390/nu12061624
APA StylePessoa, E. d. A., Convento, M. B., Castino, B., Leme, A. M., de Oliveira, A. S., Aragão, A., Fernandes, S. M., Carbonel, A., Dezoti, C., Vattimo, M. d. F., Schor, N., & Borges, F. T. (2020). Beneficial Effects of Isoflavones in the Kidney of Obese Rats Are Mediated by PPAR-Gamma Expression. Nutrients, 12(6), 1624. https://doi.org/10.3390/nu12061624