Sex Differences and Commonalities in the Impact of a Palatable Meal on Thalamic and Insular Connectivity
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Design and Procedure
2.3. Intervention: Probe Meal
2.4. Outcome Measures
2.4.1. Assessment of Subjective Responses
2.4.2. Neuroimaging
2.5. Statistical Analysis
2.5.1. Perception Measurements
2.5.2. Brain Connectivity
2.5.3. Correlation of Brain Connectivity and Sensations
3. Results
3.1. Demographics
3.2. Meal-Related Sensations
3.3. Brain Imaging
3.3.1. Anterior Insular Connectivity
3.3.2. Thalamic Connectivity
3.3.3. Correlations between Brain Activity and Sensations
4. Discussion
5. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Livovsky, D.M.; Pribic, T.; Azpiroz, F. Food, eating, and the gastrointestinal tract. Nutrients 2020, 12, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pribic, T.; Hernandez, L.; Nieto, A.; Malagelada, C.; Accarino, A.; Azpiroz, F. Effects of meal palatability on postprandial sensations. Neurogastroenterol. Motil. 2017, 30, e13248. [Google Scholar] [CrossRef] [PubMed]
- Thanarajah, S.E.; Backes, H.; DiFeliceantonio, A.G.; Albus, K.; Cremer, A.L.; Hanssen, R.; Lippert, R.N.; Cornely, O.A.; Small, D.M.; Brüning, J.C.; et al. Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab. 2019, 29, 695–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, S.; Kullmann, S.; Veit, R. Food related processes in the insular cortex. Front. Hum. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Osadchiy, V.; Mayer, E. Brain–gut–microbiome interactions in obesity and food addiction. Nat. Rev. Gastroenterol. Hepatol. 2020, in press. [Google Scholar]
- Pribic, T.; Kilpatrick, L.; Ciccantelli, B.; Malagelada, C.; Accarino, A.; Rovira, A.; Pareto, D.; Mayer, E.; Azpiroz, F. Brain networks associated with cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2017, 29, e13031. [Google Scholar] [CrossRef]
- Monrroy, H.; Pribic, T.; Galan, C.; Nieto, A.; Amigó, N.; Accarino, A.; Correig, X.; Azpiroz, F. Meal enjoyment and tolerance in women and men. Nutrients 2019, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Monrroy, H.; Borghi, G.; Pribic, T.; Galan, C.; Nieto, A.; Amigó, N.; Accarino, A.; Correig, X.; Azpiroz, F. Biological response to meal ingestion: Gender differences. Nutrients 2019, 11, 702. [Google Scholar] [CrossRef] [Green Version]
- Masihy, M.; Monrroy, H.; Borghi, G.; Pribic, T.; Galan, C.; Nieto, A.; Accarino, A.; Azpiroz, F. Influence of eating schedule on the postprandial response: Gender differences. Nutrients 2019, 11, 401. [Google Scholar] [CrossRef] [Green Version]
- Clayton, J.A. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol. Behav. 2018, 187, 2–5. [Google Scholar] [CrossRef]
- Ruigrok, A.N.V.; Salimi-Khorshidi, G.; Lai, M.-C.; Baron-Cohen, S.; Lombardo, M.V.; Tait, R.J.; Suckling, J. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2013, 39, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Macey, P.M.; Rieken, N.S.; Ogren, J.A.; Macey, K.E.; Kumar, R.; Harper, R.M. Sex differences in insular cortex gyri responses to a brief static handgrip challenge. Boil. Sex Differ. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Mayer, E.A.; Labus, J.S.; Bhatt, R.R.; Ju, T.; Love, A.; Bal, A.; Tillisch, K.; Naliboff, B.; SanMiguel, C.P.; et al. Sex commonalities and differences in obesity-related alterations in intrinsic brain activity and connectivity. Obesity 2017, 26, 340–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucyi, A.; Hodaie, M.; Davis, K.D. Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J. Neurophysiol. 2012, 108, 3382–3392. [Google Scholar] [CrossRef]
- Dai, Y.-J.; Zhang, X.; Yang, Y.; Nan, H.-Y.; Yu, Y.; Sun, Q.; Yan, L.-F.; Hu, B.; Zhang, J.; Qiu, Z.-Y.; et al. Gender differences in functional connectivities between insular subdivisions and selective pain-related brain structures. J. Headache Pain 2018, 19, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, L.; Green, E.; Murphy, C. Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas. Appetite 2011, 57, 421–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornier, M.-A.; Salzberg, A.K.; Endly, D.C.; Bessesen, D.H.; Tregellas, J.R. Sex-based differences in the behavioral and neuronal responses to food. Physiol. Behav. 2010, 99, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.M.; Loughead, J.; Bakizada, Z.M.; Hopkins, C.; Geliebter, A.; Gur, R.C.; Wadden, T.A. Sex/gender differences in neural correlates of food stimuli: A systematic review of functional neuroimaging studies. Obes. Rev. 2017, 18, 687–699. [Google Scholar] [CrossRef]
- Pool, E.-M.; Rehme, A.K.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Functional resting-state connectivity of the human motor network: Differences between right- and left-handers. NeuroImage 2015, 109, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Manichanh, C.; Eck, A.; Varela, E.; Roca, J.; Clemente, J.C.; González, A.; Knights, D.; Knight, R.; Estrella, S.; Hernandez, C.; et al. Anal gas evacuation and colonic microbiota in patients with flatulence: Effect of diet. Gut 2013, 63, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Burri, E.; Barba, E.; Huaman, J.W.; Cisternas, D.; Accarino, A.; Soldevilla, A.; Malagelada, J.-R.; Azpiroz, F. Mechanisms of postprandial abdominal bloating and distension in functional dyspepsia. Gut 2013, 63, 395–400. [Google Scholar] [CrossRef]
- Barba, E.; Burri, E.; Accarino, A.; Cisternas, D.; Quiroga, S.; Monclus, E.; Navazo, I.; Malagelada, J.; Azpiroz, F. Abdomino-thoracic mechanisms of functional abdominal distension and correction by biofeedback. Gastroenterology 2015, 148, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Ciccantelli, B.; Pribic, T.; Malagelada, C.; Accarino, A.; Azpiroz, F. Relation between cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Pribic, T.; Nieto, A.; Hernandez, L.; Malagelada, C.; Accarino, A.; Azpiroz, F. Appetite influences the responses to meal ingestion. Neurogastroenterol. Motil. 2017, 29, e13072. [Google Scholar] [CrossRef]
- Cole, D.M.; Smith, S.M.; Beckmann, C.F. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 2010, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Destrieux, C.; Fischl, B.; Dale, A.; Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 2010, 53, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, R.A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 1915, 10, 507. [Google Scholar] [CrossRef]
- McIntosh, A.R.; Bookstein, F.; Haxby, J.; Grady, C. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 1996, 3, 143–157. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, A.R.; Lobaugh, N.J. Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage 2004, 23, S250–S263. [Google Scholar] [CrossRef]
- Smeets, P.; De Graaf, K.; Stafleu, A.; Van Osch, M.J.; Nievelstein, R.A.J.; Van Der Grond, J. Effect of satiety on brain activation during chocolate tasting in men and women. Am. J. Clin. Nutr. 2006, 83, 1297–1305. [Google Scholar] [CrossRef]
- Mayer, E.A.; Naliboff, B.D.; Craig, A.B. Neuroimaging of the Brain-Gut Axis: From Basic Understanding to Treatment of Functional GI Disorders. Gastroenterology 2006, 131, 1925–1942. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Kahnt, T.; Tobler, P.N.; Hayashi, M.J.; Tanabe, H.C.; Yoshida, Y.; Carlson, S.; Sadato, N.; Kanai, R.; Walsh, V. Salience signals in the right temporoparietal junction facilitate value-based decisions. J. Neurosci. 2013, 33, 863–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoettinger, E.; Aichhorn, M.; Anderson, B.; Danckert, J. The neural systems for perceptual updating. Neuropsychology 2018, 112, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Avery, J.A.; Kerr, K.L.; Ingeholm, J.E.; Burrows, K.; Bodurka, J.; Simmons, W. A common gustatory and interoceptive representation in the human mid-insula. Hum. Brain Mapp. 2015, 36, 2996–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurth, F.; Zilles, K.; Fox, P.T.; Laird, A.R.; Eickhoff, S.B. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Anat. Embryol. 2010, 214, 519–534. [Google Scholar] [CrossRef]
- Simmons, W.; Rapuano, K.M.; Kallman, S.J.; Ingeholm, J.E.; Miller, B.; Gotts, S.J.; Avery, J.A.; Hall, K.D.; Martin, A. Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nat. Neurosci. 2013, 16, 1551–1552. [Google Scholar] [CrossRef]
- Small, D.M. Taste representation in the human insula. Anat. Embryol. 2010, 214, 551–561. [Google Scholar] [CrossRef]
- Veldhuizen, M.; Albrecht, J.; Zelano, C.; Boesveldt, S.; Breslin, P.; Lundström, J.N. Identification of human gustatory cortex by activation likelihood estimation. Hum. Brain Mapp. 2011, 32, 2256–2266. [Google Scholar] [CrossRef] [Green Version]
Seed Region | X | Y | Z | BSR | Num. | Pre-1 rz | Pre-2 rz | Post rz | |||
---|---|---|---|---|---|---|---|---|---|---|---|
mm | mm | mm | voxels | F | M | F | M | F | M | ||
Left anterior insula | |||||||||||
L precentral, postcentral | −60 | 8 | 28 | 6.75 | 8808 | 0.20 | 0.39 | 0.25 | 0.45 | 0.15 | 0.17 |
R insula | 40 | −32 | 18 | 6.72 | 6054 | 0.24 | 0.48 | 0.32 | 0.56 | 0.18 | 0.30 |
Bilat precuneus | 4 | −54 | 10 | 6.16 | 4470 | 0.06 | 0.27 | 0.12 | 0.33 | 0.01 | 0.07 |
Bilat medial superior frontal | 2 | 56 | 16 | 5.63 | 2180 | 0.19 | 0.35 | 0.23 | 0.40 | 0.10 | 0.14 |
R precentral, postcentral | 32 | −20 | 50 | 5.62 | 1223 | 0.10 | 0.24 | 0.14 | 0.26 | 0.01 | 0.00 |
L SMA | −12 | 0 | 70 | 5.19 | 420 | 0.21 | 0.31 | 0.16 | 0.39 | 0.16 | 0.19 |
L superior frontal | −16 | 28 | 46 | 5.18 | 368 | 0.03 | 0.17 | 0.08 | 0.18 | −0.08 | 0.14 |
Bilat paracentral lobule | −4 | −24 | 68 | 4.74 | 549 | 0.16 | 0.25 | 0.22 | 0.37 | 0.08 | 0.12 |
Right anterior insula | |||||||||||
L insula, Bilat postcentral, precentral, paracentral lobule, inferior frontal, SMA | −36 | −26 | 22 | 7.46 | 30687 | 0.16 | 0.43 | 0.23 | 0.47 | 0.08 | 0.28 |
Bilat lingual | 12 | −44 | −8 | 6.54 | 4286 | 0.02 | 0.25 | 0.07 | 0.30 | −0.08 | 0.10 |
Bilat medial superior frontal | 2 | 66 | 18 | 5.88 | 4002 | 0.03 | 0.28 | 0.07 | 0.31 | 0.00 | 0.06 |
R inferior frontal | 26 | 24 | −2 | 5.51 | 910 | 0.19 | 0.30 | 0.28 | 0.43 | 0.20 | 0.16 |
L precuneus | −16 | −76 | 38 | 4.52 | 150 | 0.28 | 0.40 | 0.27 | 0.46 | 0.24 | 0.30 |
R calcarine | 8 | −98 | −8 | 4.48 | 193 | −0.08 | 0.15 | −0.17 | 0.17 | −0.10 | 0.05 |
Left thalamus | |||||||||||
R superior parietal, angular | 28 | −68 | 54 | 6.44 | 1463 | 0.03 | 0.21 | 0.01 | 0.21 | 0.17 | 0.32 |
R fusiform | 38 | −40 | −18 | 6.40 | 1366 | −0.08 | 0.05 | −0.14 | 0.06 | 0.05 | 0.12 |
R medial superior frontal | 14 | 62 | 30 | 6.39 | 637 | 0.06 | 0.30 | −0.01 | 0.24 | 0.25 | 0.37 |
R mid frontal | 40 | 52 | −4 | 6.35 | 2734 | −0.02 | 0.12 | −0.09 | 0.05 | 0.19 | 0.25 |
L fusiform | −46 | −54 | −14 | 6.34 | 1165 | −0.07 | 0.12 | −0.09 | 0.13 | 0.12 | 0.25 |
R putamen, insula | 36 | 0 | −2 | 6.31 | 2286 | 0.01 | 0.18 | −0.12 | 0.14 | 0.08 | 0.28 |
L putamen, insula | −38 | −6 | −2 | 5.96 | 2890 | 0.03 | 0.20 | 0.00 | 0.16 | 0.19 | 0.41 |
L inferior frontal | −44 | 28 | 0 | 5.73 | 910 | 0.05 | 0.17 | −0.07 | 0.06 | 0.13 | 0.34 |
L mid occipital | −32 | −88 | 16 | 5.54 | 1739 | −0.02 | 0.10 | −0.15 | 0.08 | 0.14 | 0.24 |
R superior frontal | 16 | 38 | 50 | 5.52 | 582 | 0.08 | 0.17 | −0.06 | 0.11 | 0.25 | 0.29 |
L superior frontal | −18 | 32 | 56 | 5.22 | 154 | 0.10 | 0.21 | 0.03 | 0.25 | 0.21 | 0.38 |
R medial OFC | 6 | 56 | −4 | 5.11 | 480 | 0.14 | 0.27 | 0.06 | 0.24 | 0.23 | 0.35 |
L calcarine | −8 | −58 | 8 | 5.05 | 772 | 0.03 | 0.17 | −0.01 | 0.21 | 0.23 | 0.33 |
L inferior parietal | −28 | −46 | 40 | 4.38 | 150 | 0.00 | 0.12 | −0.08 | 0.06 | 0.11 | 0.17 |
Right thalamus | |||||||||||
R putamen, R insula | 34 | 2 | −2 | 6.75 | 4820 | 0.09 | 0.22 | −0.07 | 0.15 | 0.17 | 0.33 |
R fusiform | 40 | −50 | −18 | 5.78 | 861 | −0.12 | −0.04 | −0.15 | 0.02 | 0.01 | 0.20 |
R superior parietal | 28 | −68 | 54 | 5.58 | 494 | 0.10 | 0.21 | 0.06 | 0.22 | 0.18 | 0.34 |
L anterior insula, inferior frontal gyrus | −46 | 16 | −2 | 5.51 | 917 | 0.01 | 0.16 | −0.01 | 0.21 | 0.23 | 0.26 |
R mid occipital gyrus | 36 | −84 | 24 | 5.38 | 212 | −0.05 | 0.11 | −0.15 | 0.07 | 0.08 | 0.18 |
L fusiform gyrus | −48 | −54 | −14 | 5.27 | 261 | −0.01 | 0.16 | −0.06 | 0.16 | 0.14 | 0.21 |
L posterior insula | −36 | −6 | 0 | 5.20 | 1498 | 0.02 | 0.22 | 0.01 | 0.14 | 0.13 | 0.39 |
R mid frontal gyrus | 22 | 44 | 28 | 5.07 | 609 | 0.06 | 0.17 | 0.00 | 0.15 | 0.13 | 0.28 |
Bilat SMA | 2 | 26 | 58 | 5.00 | 307 | 0.03 | 0.30 | 0.07 | 0.33 | 0.24 | 0.31 |
R medial OFC | 6 | 54 | −2 | 4.87 | 280 | 0.13 | 0.27 | 0.07 | 0.25 | 0.22 | 0.30 |
L angular gyrus | −40 | −54 | 24 | 4.84 | 368 | −0.05 | 0.11 | −0.11 | 0.04 | 0.11 | 0.14 |
L mid occipital | −28 | −88 | 16 | 4.55 | 296 | −0.06 | 0.07 | −0.12 | 0.05 | 0.06 | 0.20 |
L cerebellum | −18 | −74 | −28 | 4.41 | 435 | 0.19 | 0.35 | 0.19 | 0.30 | 0.30 | 0.42 |
Region | X mm | Y mm | Z mm | BSR | Size Voxels | Well-Being r | Satiety r |
---|---|---|---|---|---|---|---|
FEMALES | |||||||
Left thalamus | |||||||
R mid-temporal | 64 | −46 | −4 | 7.25 | 391 | 0.74 | 0.53 |
R fusiform gyrus | 40 | −42 | −22 | 5.45 | 217 | 0.69 | 0.69 |
L pINS | −32 | −32 | 16 | 4.70 | 254 | 0.61 | 0.38 |
Right thalamus | |||||||
L pINS | −36 | −26 | 10 | 6.45 | 291 | 0.70 | 0.33 |
R midINS | 40 | −4 | −14 | 6.15 | 177 | 0.60 | 0.44 |
R fusiform gyrus | 28 | −40 | −12 | 4.96 | 171 | 0.50 | 0.54 |
MALES | |||||||
Left anterior insula | |||||||
L TPJ | −44 | −44 | 22 | 5.38 | 191 | −0.72 | −0.56 |
Right anterior insula | |||||||
R inferior frontal | 42 | 16 | 22 | 5.43 | 288 | 0.69 | 0.40 |
L precentral | −32 | −6 | 50 | 5.04 | 427 | 0.65 | 0.46 |
R midfrontal | 36 | 10 | 46 | −4.87 | 288 | 0.57 | 0.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilpatrick, L.; Pribic, T.; Ciccantelli, B.; Malagelada, C.; Livovsky, D.M.; Accarino, A.; Pareto, D.; Azpiroz, F.; Mayer, E.A. Sex Differences and Commonalities in the Impact of a Palatable Meal on Thalamic and Insular Connectivity. Nutrients 2020, 12, 1627. https://doi.org/10.3390/nu12061627
Kilpatrick L, Pribic T, Ciccantelli B, Malagelada C, Livovsky DM, Accarino A, Pareto D, Azpiroz F, Mayer EA. Sex Differences and Commonalities in the Impact of a Palatable Meal on Thalamic and Insular Connectivity. Nutrients. 2020; 12(6):1627. https://doi.org/10.3390/nu12061627
Chicago/Turabian StyleKilpatrick, Lisa, Teodora Pribic, Barbara Ciccantelli, Carolina Malagelada, Dan M. Livovsky, Anna Accarino, Deborah Pareto, Fernando Azpiroz, and Emeran A. Mayer. 2020. "Sex Differences and Commonalities in the Impact of a Palatable Meal on Thalamic and Insular Connectivity" Nutrients 12, no. 6: 1627. https://doi.org/10.3390/nu12061627
APA StyleKilpatrick, L., Pribic, T., Ciccantelli, B., Malagelada, C., Livovsky, D. M., Accarino, A., Pareto, D., Azpiroz, F., & Mayer, E. A. (2020). Sex Differences and Commonalities in the Impact of a Palatable Meal on Thalamic and Insular Connectivity. Nutrients, 12(6), 1627. https://doi.org/10.3390/nu12061627