Association between Dietary Habits and Physical Function in Brazilian and Italian Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.1.1. Brazilian Study Sample
2.1.2. Italian Study Sample
2.2. Anthropometric Measurements
2.3. Dietary Assessment
2.4. Physical Function Assessment
2.4.1. Isometric Handgrip Strength Test
2.4.2. Five-Time Sit-To-Stand Test
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Pearson’s Correlation between Physical Function and Dietary Characteristics According to Country
3.3. Binary Logistic Regression for Physical Function and Dietary Characteristics According to Country
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hadders-Algra, M. Early human motor development: From variation to the ability to vary and adapt. Neurosci. Biobehav. Rev. 2018, 90, 411–427. [Google Scholar] [CrossRef] [PubMed]
- Coelho Junior, H.; Uchida, M.; Gonçalves, I.O.; Calvani, R.; Rodrigues, B.; Picca, A.; Onder, G.; Landi, F.; Bernabei, R.; Marzetti, E. Age- and Gender-Related Changes in Physical Function in Community-dwelling Brazilian adults aged 50-102 years. J. Geriatr. Phys. Ther. 2019. [Google Scholar] [CrossRef]
- Marzetti, E.; Hwang, A.-C.; Tosato, M.; Peng, L.-N.; Calvani, R.; Picca, A.; Chen, L.-K.; Landi, F. Age-related changes of skeletal muscle mass and strength among Italian and Taiwanese older people: Results from the Milan EXPO 2015 survey and the I-Lan Longitudinal Aging Study. Exp. Gerontol. 2018, 102, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Kuh, D.; Bassey, E.J.; Butterworth, S.; Hardy, R.; Wadsworth, M.E.J. Grip strength, postural control, and functional leg power in a representative cohort of British men and women: Associations with physical activity, health status, and socioeconomic conditions. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 224–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosano, C.; Simonsick, E.M.; Harris, T.B.; Kritchevsky, S.B.; Brach, J.; Visser, M.; Yaffe, K.; Newman, A.B. Association between physical and cognitive function in healthy elderly: The health, aging and body composition study. Neuroepidemiology 2005, 24, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.L.; Buchanan, C.K.; Nahin, R.L.; Dekosky, S.T.; Atkinson, H.H.; Carlson, M.C.; Williamson, J.D.; Ginkgo Evaluation of Memory (GEM) Study Investigators. Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 1244–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abellan van Kan, G.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Gillette Guyonnet, S.; Inzitari, M.; et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 215. [Google Scholar] [CrossRef] [Green Version]
- Cöster, M.E.; Karlsson, M.; Ohlsson, C.; Mellström, D.; Lorentzon, M.; Ribom, E.; Rosengren, B. Physical function tests predict incident falls: A prospective study of 2969 men in the Swedish Osteoporotic Fractures in Men study. Scand. J. Public Health 2018. [Google Scholar] [CrossRef]
- World Health Organization. World Report on Ageing and Health. 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/186463/9789240694811_eng.pdf?sequence=1 (accessed on 1 May 2020).
- Lorenzo-López, L.; Maseda, A.; de Labra, C.; Regueiro-Folgueira, L.; Rodríguez-Villamil, J.L.; Millán-Calenti, J.C. Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatr. 2017, 17, 108. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Kiesswetter, E.; Drey, M.; Sieber, C.C. Nutrition, frailty, and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 43–48. [Google Scholar] [CrossRef]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am. J. Clin. Nutr. 2005, 82, 1065–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Metab. 2006, 291, E381–E387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho-Júnior, H.J.; Milano-Teixeira, L.; Rodrigues, B.; Bacurau, R.; Marzetti, E.; Uchida, M. Relative protein intake and physical function in older adults: A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1330. [Google Scholar] [CrossRef] [Green Version]
- Coelho-Júnior, H.J.; Rodrigues, B.; Uchida, M.; Marzetti, E. Low protein intake is associated with frailty in older adults: A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Haaf, D.; van Dongen, E.; Nuijten, M.; Eijsvogels, T.; de Groot, L.; Hopman, M. Protein Intake and Distribution in Relation to Physical Functioning and Quality of Life in Community-Dwelling Elderly People: Acknowledging the Role of Physical Activity. Nutrients 2018, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Gregorio, L.; Brindisi, J.; Kleppinger, A.; Sullivan, R.; Mangano, K.M.; Bihuniak, J.D.; Kenny, A.M.; Kerstetter, J.E.; Insogna, K.L. Adequate dietary protein is associated with better physical performance among post-menopausal women 60–90 years. J. Nutr. Health Aging 2014, 18, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho-Júnior, H.J.; Calvani, R.; Picca, A.; Gonçalves, I.O.; Landi, F.; Bernabei, R.; Cesari, M.; Uchida, M.C.; Marzetti, E. Protein-related dietary parameters and frailty status in older community-dwellers across different frailty instruments. Nutrients 2020, 12, 508. [Google Scholar] [CrossRef] [Green Version]
- Volpi, E.; Campbell, W.W.; Dwyer, J.T.; Johnson, M.A.; Jensen, G.L.; Morley, J.E.; Wolfe, R.R. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the prot-age study group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Calvani, R.; Miccheli, A.; Landi, F.; Bossola, M.; Cesari, M.; Leeuwenburgh, C.; Sieber, C.C.; Bernabei, R.; Marzetti, E. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J. Frailty Aging 2013, 2, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, E.; Di Castelnuovo, A.; Costanzo, S.; Persichillo, M.; Bracone, F.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M.; et al. Socioeconomic and psychosocial determinants of adherence to the Mediterranean diet in a general adult Italian population. Eur. J. Public Health 2019, 29, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Mukherjea, A.; Underwood, K.C.; Stewart, A.L.; Ivey, S.L.; Kanaya, A.M. Asian Indian views on diet and health in the United States: Importance of understanding cultural and social factors to address disparities. Fam. Community Health 2013, 36, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.G.M.; Houser, R.F.; Mattei, J.; Lichtenstein, A.H.; Folta, S.C. Qualitative exploration of cultural factors influencing diet among African-, Caribbean- and US-born Blacks living in the northeast USA. J. Nutr. Sci. 2019, 8, e23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez-Ramírez, C.; Théodore, F.L.; Villalobos, A.; Allen-Leigh, B.; Jiménez-Corona, A.; Nigenda, G.; Lewis, S. The importance of the cultural dimension of food in understanding the lack of adherence to diet regimens among Mayan people with diabetes. Public Health Nutr. 2019, 22, 3238–3249. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística IBGE-Poá. Available online: https://cidades.ibge.gov.br/brasil/sp/poa/panorama (accessed on 1 May 2020).
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A.M.; Ortolani, E.; Salini, S.; Pafundi, T.; Savera, G.; Pantanelli, C.; et al. Cardiovascular health metrics, muscle mass and function among Italian community-dwellers: The Lookup 7+ project. Eur. J. Public Health 2018, 28, 766–772. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Fusco, D.; Sisto, A.; Ortolani, E.; Savera, G.; Salini, S.; Marzetti, E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results From the Milan EXPO Survey. J. Am. Med. Dir. Assoc. 2017, 18, 88.e17–88.e24. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; D’Angelo, E.; Martone, A.M.; Serafini, E.; Ortolani, E.; Savera, G.; Salini, S.; et al. Relationship between cardiovascular health metrics and physical performance in community-living people: Results from the Longevity check-up (Lookup) 7+ project. Sci. Rep. 2018, 8, 16353. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Calvani, R.; Gonçalves, I.O.; Rodrigues, B.; Picca, A.; Landi, F.; Bernabei, R.; Uchida, M.C.; Marzetti, E. High relative consumption of vegetable protein is associated with faster walking speed in well-functioning older adults. Aging Clin. Exp. Res. 2019, 1–8. [Google Scholar] [CrossRef]
- Anção, M.; Cuppari, L.; Draibe, A.; Sigulem, D. Programa de Apoio à Nutrição Nutwin: Versão 1.5; Departamento de Informática em Saúde SPDM: São Paulo-SP, Brazil, 2002. [Google Scholar]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Picca, A.; Ortolani, E.; Savera, G.; Salini, S.; Ramaschi, M.; Bernabei, R.; et al. Animal-derived protein consumption is associated with muscle mass and strength in community-dwellers: Results from the Milan Expo survey. J. Nutr. Health Aging 2017, 21, 1050–1056. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Neutzling, M.B.; Rombaldi, A.J.; Azevedo, M.R.; Hallal, P.C. Fatores associados ao consumo de frutas, legumes e verduras em adultos de uma cidade no Sul do Brasil. Cad. Saude Publica 2009, 25, 2365–2374. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Cardoso, L.; Sá Carvalho, M.; Gonçalves Cruz, O.; Melere, C.; Luft, V.C.; Bisi Molina, M.D.C.; Perim de Faria, C.; Benseñor, I.M.; Alvim Matos, S.M.; Mendes da Fonseca, M.D.J.; et al. Eating patterns in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): An exploratory analysis. Cad. Saude Publica 2016, 32, e00066215. [Google Scholar] [CrossRef] [Green Version]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Ortolani, E.; Savera, G.; D’Angelo, E.; Sisto, A.; Marzetti, E. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence. Nutrients 2016, 8, 295. [Google Scholar] [CrossRef]
- Da Silva Gomes Ribeiro, C.; Corção, M. The consumption of meat in Brazil: Between socio-cultural and nutritional values. Demetra 2013, 8, 425–438. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, A.; Lampignano, L.; De Pergola, G. Mediterranean Diet Pyramid: A Proposal for Italian People. A Systematic Review of Prospective Studies to Derive Serving Sizes. Nutrients 2019, 11, 1296. [Google Scholar] [CrossRef] [Green Version]
- Pannemans, D.L.; Wagenmakers, A.J.; Westerterp, K.R.; Schaafsma, G.; Halliday, D. Effect of protein source and quantity on protein metabolism in elderly women. Am. J. Clin. Nutr. 1998, 68, 1228–1235. [Google Scholar] [CrossRef] [Green Version]
- McLean, R.R.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; Sahni, S. Dietary Protein Intake Is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Pallottini, A.C.; Sales, C.H.; Vieira, D.A.D.S.; Marchioni, D.M.; Fisberg, R.M. Dietary BCAA Intake Is Associated with Demographic, Socioeconomic and Lifestyle Factors in Residents of São Paulo, Brazil. Nutrients 2017, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Ottestad, I.; Ulven, S.M.; Øyri, L.K.L.; Sandvei, K.S.; Gjevestad, G.O.; Bye, A.; Sheikh, N.A.; Biong, A.S.; Andersen, L.F.; Holven, K.B. Reduced plasma concentration of branched-chain amino acids in sarcopenic older subjects: A cross-sectional study. Br. J. Nutr. 2018, 120, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Mattick, J.S.A.; Kamisoglu, K.; Ierapetritou, M.G.; Androulakis, I.P.; Berthiaume, F. Branched-chain amino acid supplementation: Impact on signaling and relevance to critical illness. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 449–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boirie, Y.; Gachon, P.; Beaufrère, B. Splanchnic and whole-body leucine kinetics in young and elderly men. Am. J. Clin. Nutr. 1997, 65, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Wall, B.T.; Gorissen, S.H.; Pennings, B.; Koopman, R.; Groen, B.B.L.; Verdijk, L.B.; Van Loon, L.J.C. Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PLoS ONE 2015, 10, e0140903. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Chen, F.; Wang, R.; Bai, P.; Zhang, Y.; Zhao, W.; Chen, J.; Yang, L.; Yang, X.; Li, M. Protein Requirements of Elderly Chinese Adults Are Higher than Current Recommendations. J. Nutr. 2020, 150, 1208–1213. [Google Scholar] [CrossRef]
- Rafii, M.; Chapman, K.; Elango, R.; Campbell, W.W.; Ball, R.O.; Pencharz, P.B.; Courtney-Martin, G. Dietary Protein Requirement of Men >65 Years Old Determined by the Indicator Amino Acid Oxidation Technique Is Higher than the Current Estimated Average Requirement. J. Nutr. 2015, 146, 681–687. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, R.J.; Hugo, F.N.; Hilgert, J.B.; Padilha, D.M.P. Association between oral health status and nutritional status in south Brazilian independent-living older people. Nutrition 2008, 24, 546–553. [Google Scholar] [CrossRef]
- McGrath, R.; Stastny, S.; Casperson, S.; Jahns, L.; Roemmich, J.; Hackney, K.J. Daily Protein Intake and Distribution of Daily Protein Consumed Decreases Odds for Functional Disability in Older Americans. J. Aging Health 2019. [Google Scholar] [CrossRef]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
Variables | Brazilians (n = 75) | Italians (n = 53) |
---|---|---|
General characteristics | ||
Age (years) | 75.2 ± 7.5 (60–85) | 77.6 ± 5.5 (70–80) |
Height (m) | 1.57 ± 0.1 (1.4–1.7) | 1.54 ± 0.1 (1.4–1.6) |
Body weight (kg) | 70.8 ± 12.8 (39–98) | 70.2 ± 13.3 (44.5–96) |
BMI (kg/m2) | 28.6 ± 5.2 (16.2–38) | 29.8 ± 5.6 (18.5–42.4) |
Physical function | ||
IHG strength (kg) | 20.0 ± 10.9 (7–42) | 13.1 ± 6.8 (4–32) * |
IHG/BMI | 1.2 ± 3.1 (0.2–1.6) | 0.4 ± 0.2 (0.1–1.2) * |
5 × STS (s) | 11.9 ± 3.3 (7–22) | 16.7 ± 6.0 (4–14) * |
Diet | ||
Total daily protein intake (g) | 72.7 ± 26.8 (41–129) | 63.9 ± 19.2 (26–63) * |
Body weight-adjusted daily protein consumption (g kg−1∙day−1) | 1.04 ± 0.41 (0.2–2.4) | 1.09 ± 0.44 (0.4–1.2) |
Relative daily protein consumption (% kcal) | 22.9 ± 5.3 (13.9–38.3) | 17.6 ± 4.7 (9–43) * |
Daily animal protein intake (g) | 29.7 ± 17.2 (4–71) | 41.5 ± 17.7 (11–43) * |
Relative daily animal protein intake (% kcal) | 39.7 ± 18.5 (6.5–82.4) | 63.9 ± 16.2 (17–94) * |
Daily plant-based protein intake (g) | 37.9 ± 17.2 (10–76) | 19.0 ± 8.4 (2–29) * |
Relative daily plant-based protein intake (% kcal) | 52.7 ± 16.4 (6.7–89.8) | 30.5 ± 13.7 (7–47) * |
Daily isoleucine intake (mg) | 2409 ± 1155 (835–9138) | 2512 ± 921 (1119–4557) |
Daily leucine intake (mg) | 4437 ± 2142 (1601–9725) | 4516 ± 1607 (1816–9655) |
Daily valine intake (mg) | 2744 ± 1314 (1066–6861) | 2935 ± 1047 (1160–6508) |
Brazilians | Italians | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IHG | IHG/BMI | 5 × STS | IHG | IHG/BMI | 5 × STS | |||||||
Low | High | Low | High | Low | High | Low | High | Low | High | Low | High | |
Age (years) | ||||||||||||
Low | 13 (17.3%) | 22 (29.3%) | 17 (22.7%) | 18 (24.1%) | 17 (22.7%) | 18 (23.9%) | 12 (22.6%) | 15 (28.3%) | 15 (28.3%) | 12 (22.6%) | 13 (24.5%) | 14 (26.5%) |
High | 22 (29.3%) | 18 (24.1%) | 26 (34.6%) | 14 (18.6%) | 20 (26.7%) | 20 (26.7%) | 10 (18.9%) | 16 (30.2%) | 14 (26.5%) | 12 (22.6%) | 13 (24.5%) | 13 (24.5%) |
BMI (kg/m2) | ||||||||||||
Low | 22 (29.3%) | 16 (21.3%) | 20 (26.7%) | 18 (24.1%) | 24 (32.0%) | 14 (18.7%) | 12 (22.6%) | 14 (26.4%) | 12 (22.6%) | 14 (26.4%) | 13 (24.5%) | 13 (24.5%) |
High | 13 (17.3%) | 24 (32,1%) * | 23 (30.6%) | 14 (18.6%) | 13 (17.3%) | 24 (32.0%) * | 10 (18.9%) | 17 (32.1%) | 17 (32.1%) | 10 (18.9%) | 13 (24.5%) | 14 (26.5%) |
Total protein intake (g∙day−1) | ||||||||||||
Low | 16 (21.3%) | 22 (29.3%) | 24 (32.0%) | 14 (18.6%) | 18 (24.0%) | 20 (26.7%) | 14 (26.4%) | 12 (22.6%) | 17 (32.1%) | 9 (17.0%) | 10 (18.8%) | 16 (30.2%) |
High | 19 (25.3%) | 18 (24.1%) | 19 (25.3%) | 18 (24.1%) | 19 (25.3%) | 18 (24.0%) | 8 (15.1%) | 19 (35.9%) | 12 (22.6%) | 15 (28.3%) | 16 (30.2%) | 11 (20.8%) |
Body weight-adjusted protein intake (g kg−1∙day−1) | ||||||||||||
Low | 14 (18.7%) | 15 (20.0%) | 23 (30.7%) | 6 (8.0%) | 10 (13.4%) | 19 (25.3%) | 8 (15.1%) | 18 (34.0%) | 11 (20.7%) | 15 (28.3%) | 15 (28.2%) | 11 (20.8%) |
High | 21 (28.0%) | 25 (33.3%) | 20 (26.7%) | 26 (34.6%) * | 27 (36.0%) | 19 (25.3%) * | 14 (26.4%) | 13 (24.5%) | 18 (34.0%) | 9 (17.0%) | 11 (20.8%) | 16 (30.2%) |
Relative protein intake (%) | ||||||||||||
Low | 17 (22.6%) | 21 (28.0%) | 24 (32.0%) | 14 (18.6%) | 20 (26.6%) | 18 (24.1%) | 13 (24.5%) | 13 (24.5%) | 17 (32.1%) | 9 (17.0%) | 13 (24.5%) | 13 (24.5%) |
High | 18 (24.1%) | 19 (25.3%) | 19 (25.3%) | 18 (24.1%) | 17 (22.7%) | 20 (26.6%) | 9 (17.0%) | 18 (34.0%) | 12 (22.6%) | 15 (28.3%) | 13 (24.5%) | 14 (26.5%) |
Animal protein intake, (g∙day−1) | ||||||||||||
Low | 18 (24.1%) | 21 (28.0%) | 22 (29.3%) | 17 (22.7%) | 20 (26.7%) | 19 (25.3%) | 12 (22.6%) | 14 (26.4%) | 16 (30.2%) | 10 (18.9%) | 10 (18.9%) | 16 (30.2%) |
High | 17 (22.6%) | 19 (25.3%) | 21 (28.0%) | 15 (20.0%) | 17 (22.7%) | 19 (25.3%) | 10 (18.9%) | 17 (32.1%) | 13 (24.5%) | 14 (26.4%) | 16 (30.2%) | 11 (20.7%) |
Relative animal protein intake (%) | ||||||||||||
Low | 16 (21.3%) | 22 (29.3%) | 19 (25.3%) | 19 (25.3%) | 17 (22.7%) | 21 (27.9%) | 12 (22.6%) | 15 (28.3%) | 15 (28.3%) | 12 (22.6%) | 14 (26.4%) | 13 (24.6%) |
High | 19 (25.3%) | 18 (24.1%) | 24 (32.1%) | 13 (17.3%) | 20 (26.7%) | 17 (22.7%) | 10 (18.9%) | 16 (30.2%) | 14 (26.5%) | 12 (22.6%) | 12 (22.6%) | 14 (26.4%) |
Plant-based protein intake (g day−1) | ||||||||||||
Low | 15 (20.0%) | 21 (28.0%) | 23 (30.7%) | 13 (17.3%) | 15 (20.0%) | 21 (28.0%) | 14 (26.4%) | 14 (26.4%) | 18 (34.0%) | 10 (18.8%) | 12 (22.6%) | 16 (30.2%) |
High | 20 (26.7%) | 19 (25.3%) | 20 (26.7%) | 19 (25.3%) | 22 (29.3%) | 17 (22.7%) | 8 (15.1%) | 17 (32.1%) | 11 (20.8%) | 14 (26.4%) | 14 (26.4%) | 11 (20.8%) |
Plant-based protein (%) | ||||||||||||
Low | 20 (26.7%) | 18 (24.1%) | 25 (33.3%) | 13 (17.3%) | 18 (24.0%) | 20 (26.7%) | 9 (17.0%) | 17 (32.1%) | 13 (24.5%) | 13 (24.5%) | 13 (24.5%) | 13 (24.5%) |
High | 15 (20.0%) | 22 (29.3%) | 18 (24.1%) | 19 (25.3%) | 19 (25.3%) | 18 (24.0%) | 13 (24.5%) | 14 (26.4%) | 16 (30.2%) | 11 (20.8%) | 13 (24.5%) | 14 (26.5%) |
Isoleucine intake (mg) | ||||||||||||
Low | 16 (21.4%) | 21 (28.0%) | 22 (29.3%) | 15 (20.0%) | 17 (22.7%) | 20 (26.6%) | 13 (24.5%) | 13 (24.5%) | 17 (32.1%) | 9 (17.0%) | 9 (17.0%) | 17 (32.1%) |
High | 19 (25.3%) | 19 (25.3%) | 21 (28.0%) | 17 (22.7%) | 20 (26.6%) | 18 (24.1%) | 9 (17.0%) | 18 (34.0%) | 12 (22.6%) | 15 (28.3%) | 17 (32.1%) | 10 (18.8%) * |
Leucine intake (mg) | ||||||||||||
Low | 16 (21.4%) | 21 (28.0%) | 23 (30.7%) | 14 (18.6%) | 16 (21.3%) | 21 (28.0%) | 11 (20.8%) | 15 (28.3%) | 16 (30.2%) | 10 (18.9%) | 9 (17.0%) | 17 (32.1%) |
High | 19 (25.3%) | 19 (25.3%) | 20 (26.7%) | 18 (24.0%) | 21 (28.0%) | 17 (22.7%) | 11 (20.8%) | 16 (30.1%) | 13 (24.5%) | 14 (26.4%) | 17 (32.1%) | 10 (18.8%) * |
Valine (mg) | ||||||||||||
Low | 16 (21.4%) | 19 (25.3%) | 22 (29.3%) | 13 (17.3%) | 15 (20.0%) | 20 (26.6%) | 13 (24.5%) | 14 (26.4%) | 17 (32.1%) | 10 (18.9%) | 9 (17.0%) | 18 (33.9%) |
High | 19 (25.3%) | 21 (28.0%) | 21 (28.0%) | 19 (25.4%) | 22 (29.3%) | 18 (24.1%) | 9 (17.0%) | 17 (32.1%) | 12 (22.6%) | 14 (26.4%) | 17 (32.1%) | 9 (17.0%) * |
Brazilians | ||||
IHG/BMI | 5 × STS | |||
Variable | Unadjusted OR | 95% CI | Unadjusted OR | 95% CI |
Body weight-adjusted protein intake | ||||
High | 4.95 | 1.71–14.54 | 0.37 | 0.14–0.97 * |
Low | Reference | Reference | ||
Italians | ||||
5×STS | ||||
Variable | Unadjusted OR | 95% CI | ||
Isoleucine intake | ||||
High | 0.31 | 0.10–0.96 * | ||
Low | Reference | |||
Leucine intake | ||||
High | 0.31 | 0.10–0.96 * | ||
Low | Reference | |||
Valine intake | ||||
High | 0.26 | 0.09–0.83 * | ||
Low | Reference |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho-Junior, H.J.; Calvani, R.; Picca, A.; Gonçalves, I.O.; Landi, F.; Bernabei, R.; Cesari, M.; Uchida, M.C.; Marzetti, E. Association between Dietary Habits and Physical Function in Brazilian and Italian Older Women. Nutrients 2020, 12, 1635. https://doi.org/10.3390/nu12061635
Coelho-Junior HJ, Calvani R, Picca A, Gonçalves IO, Landi F, Bernabei R, Cesari M, Uchida MC, Marzetti E. Association between Dietary Habits and Physical Function in Brazilian and Italian Older Women. Nutrients. 2020; 12(6):1635. https://doi.org/10.3390/nu12061635
Chicago/Turabian StyleCoelho-Junior, Hélio J., Riccardo Calvani, Anna Picca, Ivan O. Gonçalves, Francesco Landi, Roberto Bernabei, Matteo Cesari, Marco C. Uchida, and Emanuele Marzetti. 2020. "Association between Dietary Habits and Physical Function in Brazilian and Italian Older Women" Nutrients 12, no. 6: 1635. https://doi.org/10.3390/nu12061635
APA StyleCoelho-Junior, H. J., Calvani, R., Picca, A., Gonçalves, I. O., Landi, F., Bernabei, R., Cesari, M., Uchida, M. C., & Marzetti, E. (2020). Association between Dietary Habits and Physical Function in Brazilian and Italian Older Women. Nutrients, 12(6), 1635. https://doi.org/10.3390/nu12061635