The Impact of the Food Labeling and Other Factors on Consumer Preferences Using Discrete Choice Modeling—The Example of Traditional Pork Sausage
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Multinomial Logit Model (MNL)
3.2. Random Parameter Logit Model (RPL)
3.3. Latent Class Model (LC)
4. Results
4.1. Importance of Different Product Attributes and Willingness to Pay among Mangalica Sausage Consumers
4.2. Consumer Segments of the Mangalica Sausage
4.3. Changes in Consumer Willingness to Pay for a Traditional Mangalica Product
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Novemsky, N.; Dhar, R.; Schwarz, N.; Simonson, I. Preference Fluency in Choice. J. Mark. Res. 2007, 44, 347–356. [Google Scholar] [CrossRef]
- Kumar, N.; Kapoor, S. Do labels influence purchase decisions of food products? Study of young consumers of an emerging market. Br. Food J. 2017, 119, 218–229. [Google Scholar] [CrossRef]
- Szakály, Z.; Horvát, A.; Soós, M.; Pető, K.; Szente, V. A minőségre és származásra utaló jelölések szerepe a fogyasztói döntéshozatalban. Élelmiszertáplálkozás Mark. 2014, 10, 3–10. [Google Scholar]
- Szakály, Z.; Soós, M.; Szabó, S.; Szente, V. Role of labels referring to quality and country of origin in food consumers’ decisions. Acta Aliment. 2016, 45, 323–330. [Google Scholar] [CrossRef] [Green Version]
- The United Nations. The Division for Sustainable Development Goals (DSDG). Available online: https://sustainabledevelopment.un.org/ (accessed on 29 March 2020).
- Guerrero, L.; Claret, A.; Verbeke, W.; Enderli, G.; Zakowska-Biemans, S.; Vanhonacker, F.; Issanchou, S.; Sajdakowska, M.; Granli, B.S.; Scalvedi, L.; et al. Perception of traditional food products in six European regions using free word association. Food Qual. Prefer. 2010, 21, 225–233. [Google Scholar] [CrossRef]
- Kühne, B.; Vanhonacker, F.; Gellynck, X.; Verbeke, W. Innovation in traditional food products in Europe: Do sector innovation activities match consumers’ acceptance? Food Qual. Prefer. 2010, 21, 629–638. [Google Scholar] [CrossRef]
- Pieniak, Z.; Verbeke, W.; Vanhonacker, F.; Guerrero, L.; Hersleth, M. Association between traditional food consumption and motives for food choice in six European countries. Appetite 2009, 53, 101–108. [Google Scholar] [CrossRef]
- Chrysochou, P.; Krystallis, A.; Giraud, G. Quality assurance labels as drivers of customer loyalty in the case of traditional food products. Food Qual. Prefer. 2012, 25, 156–162. [Google Scholar] [CrossRef]
- Török, Á. Spanyolul tanul a magyar mangalica! Gazdálkodás 2011, 55, 412–420. [Google Scholar]
- Balogh, P.; Szabó, P.; Pocsai, K. Introduction of different mangalica breeds’s prolificacy and rearing performances. Res. Pig Breed. 2013, 7, 34–37. [Google Scholar]
- National Association of Mangalica Breeders. Introduction. Available online: http://www.moe.org.hu/en/association/introduction/ (accessed on 5 May 2020).
- National Association of Mangalica Breeders. Available online: https://magyarmezogazdasag.hu/cimkek/mangalicatenyesztok-orszagos-egyesulete-moe (accessed on 18 March 2020).
- Simon, H.A. A Behavioral Model of Rational Choice. Q. J. Econ. 1955, 69, 99–118. [Google Scholar] [CrossRef]
- Simon, H.A. Rationality in Psychology and Economics. J. Bus. 1986, 59, S209–S224. [Google Scholar] [CrossRef] [Green Version]
- Kroneberg, C.; Kalter, F. Rational Choice Theory and Empirical Research: Methodological and Theoretical Contributions in Europe. Annu. Rev. Sociol. 2012, 38, 73–92. [Google Scholar] [CrossRef]
- McFadden, D. Economic Choices. Am. Econ. Rev. 2001, 91, 351–378. [Google Scholar] [CrossRef]
- Hess, S.; Daly, A. Handbook of Choice Modelling; Edward Elgar Publishing: Cheltenham, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Georgescu, I. Fuzzy choice functions. In Fuzzy Choice Functions; Springer: Berlin, Germany, 2007; pp. 75–106. [Google Scholar]
- Kroes, E.P.; Sheldon, R.J. Stated preference methods: An introduction. J. Transp. Econ. Policy 1988, 22, 11–25. [Google Scholar]
- Mark, T.L.; Swait, J. Using stated preference and revealed preference modeling to evaluate prescribing decisions. Health Econ. 2004, 13, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Hensher, D.A.; Barnard, P.O.; Truong, T.P. The role of stated preference methods in studies of travel choice. J. Transp. Econ. Policy 1988, 45–58. [Google Scholar]
- McCluskey, J.J.; Huffman, W.E. Using Stated Preference Techniques and Experimental Auction Methods: A Review of Advantages and Disadvantages for Each Method in Examining Consumer Preferences for New Technology. Int. Rev. Environ. Resour. Econ. 2017, 10, 269–297. [Google Scholar] [CrossRef]
- Hensher, D.A.; Bradley, M. Using stated response choice data to enrich revealed preference discrete choice models. Mark. Lett. 1993, 4, 139–151. [Google Scholar] [CrossRef]
- Train, K.; Wilson, W.W. Estimation on stated-preference experiments constructed from revealed-preference choices. Transp. Res. Part B Methodol. 2008, 42, 191–203. [Google Scholar] [CrossRef]
- Costanigro, M.; Onozaka, Y. A Belief-Preference Model of Choice for Experience and Credence Goods. J. Agric. Econ. 2019, 71, 70–95. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Loureiro, M.L.; McCluskey, J.J. Assessing consumer response to protected geographical identification labeling. Agribusiness 2000, 16, 309–320. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Ceschi, S.; Canavari, M.; Castellini, A. Consumer’s Preference and Willingness to Pay for Apple Attributes: A Choice Experiment in Large Retail Outlets in Bologna (Italy). J. Int. Food Agribus. Mark. 2017, 30, 305–322. [Google Scholar] [CrossRef]
- Denver, S.; Jensen, J.D. Consumer preferences for organically and locally produced apples. Food Qual. Prefer. 2014, 31, 129–134. [Google Scholar] [CrossRef]
- Lockshin, L.; Jarvis, W.; d’Hauteville, F.; Perrouty, J.-P. Using simulations from discrete choice experiments to measure consumer sensitivity to brand, region, price, and awards in wine choice. Food Qual. Prefer. 2006, 17, 166–178. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Caputo, V.; Nayga, R.M.; Meullenet, J.-F.; Ricke, S.C. Consumers’ willingness to pay for organic chicken breast: Evidence from choice experiment. Food Qual. Prefer. 2011, 22, 603–613. [Google Scholar] [CrossRef]
- Wang, J.; Ge, J.; Ma, Y. Urban Chinese Consumers’ Willingness to Pay for Pork with Certified Labels: A Discrete Choice Experiment. Sustainability 2018, 10, 603. [Google Scholar] [CrossRef] [Green Version]
- van Zyl, K.; Vermeulen, H.; Kirsten, J.F. Determining South African consumers’ willingness to pay for certified Karoo lamb: An application of an experimental auction. Agrekon 2013, 52, 1–20. [Google Scholar] [CrossRef] [Green Version]
- AND International. Value of Production of Agricultural Products and Foodstuffs, Wines, Aromatised Wines and Spirits Protected by a Geographical Indication (GI); AND International: Paris, France, 2012. [Google Scholar]
- Ardeshiri, A.; Rose, J.M. How Australian consumers value intrinsic and extrinsic attributes of beef products. Food Qual. Prefer. 2018, 65, 146–163. [Google Scholar] [CrossRef]
- Gao, Z.; Schroeder, T.C.; Yu, X. Consumer Willingness to Pay for Cue Attribute: The Value Beyond Its Own. J. Int. Food Agribus. Mark. 2010, 22, 108–124. [Google Scholar] [CrossRef]
- Loureiro, M.L.; Umberger, W.J. Estimating consumer willingness to pay for country-of-origin labeling. J. Agric. Resour. Econ. 2003, 28, 287–301. [Google Scholar]
- Revoredo-Giha, C.; Lamprinopoulou, C.; Leat, P.; Kupiec-Teahan, B.; Toma, L.; Cacciolatti, L. How Differentiated Is Scottish Beef? An Analysis of Supermarket Data. J. Food Prod. Mark. 2011, 17, 183–210. [Google Scholar] [CrossRef]
- Arnoult, M.; Lobb, A.; Tiffin, R. Willingness to Pay for Imported and Seasonal Foods: A UK Survey. J. Int. Food Agribus. Mark. 2010, 22, 234–251. [Google Scholar] [CrossRef]
- Bernabeu, R.; Rabadan, A.; El Orche, N.E.; Diaz, M. Influence of quality labels on the formation of preferences of lamb meat consumers. A Spanish case study. Meat Sci 2018, 135, 129–133. [Google Scholar] [CrossRef]
- Gracia, A. Consumers’ preferences for a local food product: A real choice experiment. Empir. Econ. 2013, 47, 111–128. [Google Scholar] [CrossRef]
- Gracia, A.; de Magistris, T.; Nayga, R.M. Importance of Social Influence in Consumers’ Willingness to Pay for Local Food: Are There Gender Differences? Agribusiness 2012, 28, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Imami, D.; Chan-Halbrendt, C.; Zhang, Q.; Zhllima, E. Conjoint analysis of consumer preferences for lamb meat in central and southwest urban Albania. Int. Food Agribus. Manag. Rev. 2011, 14, 111–126. [Google Scholar]
- Arfini, F.; Mancini, M.C. The effect of information and co-branding strategies on consumers willingness to pay (WTP) for Protected Designation of Origin (PDO) products: The case of pre-sliced Parma Ham. Prog. Nutr. 2015, 17, 15–22. [Google Scholar]
- Mesías, F.; Gaspar, P.; Escribano, M.; Pulido, F. The role of protected designation of origin in consumer preference for Iberian dry-cured ham in Spain. Ital. J. Food Sci. 2010, 22, 367. [Google Scholar]
- Resano, H.; Sanjuán, A.I.; Albisu, L.M. Consumers’ response to the EU Quality policy allowing for heterogeneous preferences. Food Policy 2012, 37, 355–365. [Google Scholar] [CrossRef]
- Garavaglia, C.; Mariani, P. How Much Do Consumers Value Protected Designation of Origin Certifications? Estimates of willingness to Pay for PDO Dry-Cured Ham in Italy. Agribusiness 2017, 33, 403–423. [Google Scholar] [CrossRef]
- Balcombe, K.; Bradley, D.; Fraser, I.; Hussein, M. Consumer preferences regarding country of origin for multiple meat products. Food Policy 2016, 64, 49–62. [Google Scholar] [CrossRef]
- Shan, L.C.; De Brún, A.; Henchion, M.; Li, C.; Murrin, C.; Wall, P.G.; Monahan, F.J. Consumer evaluations of processed meat products reformulated to be healthier–A conjoint analysis study. Meat Sci. 2017, 131, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Di Vita, G.; Blanc, S.; Mancuso, T.; Massaglia, S.; La Via, G.; D’Amico, M. Harmful Compounds and Willingness to Buy for Reduced-Additives Salami. An Outlook on Italian Consumers. Int. J. Environ. Res. Public Health 2019, 16, 2605. [Google Scholar] [CrossRef] [Green Version]
- Ngapo, T. Consumer preferences for pork chops in five Canadian provinces. Meat Sci. 2017, 129, 102–110. [Google Scholar] [CrossRef]
- Špička, J.; Náglová, Z.; Mezera, J. Consumers Behaviour in the Czech Pork Meat Retail Market. In Proceedings of the INPROFORUM 2017, České Budějovice, Czech Republic, November 2017. [Google Scholar]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Xazela, N.M.; Hugo, A.; Marume, U.; Muchenje, V. Perceptions of rural consumers on the aspects of meat quality and health implications associated with meat consumption. Sustainability 2017, 9, 830. [Google Scholar] [CrossRef] [Green Version]
- Merlino, V.M.; Borra, D.; Verduna, T.; Massaglia, S. Household behavior with respect to meat consumption: Differences between households with and without children. Vet. Sci. 2017, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Kallas, Z.; Čandek-Potokar, M.; Tomažin, U.; Pugliese, C.; Aquilani, C.; Gil, J.M. Measuring consumers’ preferences for traditional and innovative pork products. Agric. Conspec. Sci. 2017, 82, 137–141. [Google Scholar]
- Kallas, Z.; Varela, E.; Čandek-Potokar, M.; Pugliese, C.; Cerjak, M.; Tomažin, U.; Karolyi, D.; Aquilani, C.; Vitale, M.; Gil, J.M. Can innovations in traditional pork products help thriving EU untapped pig breeds? A non-hypothetical discrete choice experiment with hedonic evaluation. Meat Sci. 2019, 154, 75–85. [Google Scholar] [CrossRef]
- Candek-Potokar, M.; Giusto, A.; Conti, C.; Cosola, C.; Fontanesi, L. Improving sustainability of local pig breeds using quality labels–case review and trademark development in project TREASURE. Arch. Zootec. 2018, 235–238. [Google Scholar]
- Balogh, P.; Békési, D.; Gorton, M.; Popp, J.; Lengyel, P. Consumer willingness to pay for traditional food products. Food Policy 2016, 61, 176–184. [Google Scholar] [CrossRef] [Green Version]
- AMC. Kampány Indult a Mangalicahús Népszerűsítéséért. Available online: https://www.amc.hu/belpiaci-hirek/kampany-indult-a-mangalicahus-nepszerusiteseert/576/ (accessed on 17 March 2020).
- Ngene, C. 1.2 User Manual & Reference Guide; ChoiceMetrics Pty Ltd.: Sydney, Australia, 2018. [Google Scholar]
- Hungarian Central Statistical Office. National Data—Summary Tables. Available online: http://www.ksh.hu/stadat (accessed on 24 May 2020).
- Hungarian Central Statistical Office. National Data—Dissemination Database. Available online: http://statinfo.ksh.hu/Statinfo/themeSelector.jsp?lang=hu (accessed on 24 May 2020).
- Hess, S.; Palma, D. Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application. J. Choice Model. 2019, 32, 100170. [Google Scholar] [CrossRef]
- Hess, S.; Palma, D. Apollo Version 0.0.6, User Manual. Available online: www.ApolloChoiceModelling.com (accessed on 20 February 2020).
- McFadden, D.; Zarembka, P. Frontiers in econometrics. Cond. Logit Anal. Qual. Choice Behav. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1973; pp. 105–142. [Google Scholar]
- Fiebig, D.G.; Keane, M.P.; Louviere, J.; Wasi, N. The Generalized Multinomial Logit Model: Accounting for Scale and Coefficient Heterogeneity. Mark. Sci. 2010, 29, 393–421. [Google Scholar] [CrossRef]
- Fosgerau, M.; Bierlaire, M. A practical test for the choice of mixing distribution in discrete choice models. Transp. Res. Part B Methodol. 2007, 41, 784–794. [Google Scholar] [CrossRef] [Green Version]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef] [Green Version]
- Train, K.; Weeks, M. Discrete Choice Models in Preference Space and Willingness-to-Pay Space. In Applications of Simulation Methods in Environmental and Resource Economics; Scarpa, R., Alberini, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Combining RP and SP data: Biases in using the nested logit ‘-contrasts with flexible mixed logit incorporating panel and scale effects. J. Transp. Geogr. 2008, 16, 126–133. [Google Scholar] [CrossRef]
- Boxall, P.C.; Adamowicz, W.L. Understanding heterogeneous preferences in random utility models: A latent class approach. Environ. Resour. Econ. 2002, 23, 421–446. [Google Scholar] [CrossRef]
- Greene, W.H.; Hensher, D.A. A latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Morey, E.; Thacher, J.; Breffle, W. Using Angler Characteristics and Attitudinal Data to Identify Environmental Preference Classes: A Latent-Class Model. Environ. Resour. Econ. 2006, 34, 91–115. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Ballco, P.; De Magistris, T. Spanish Consumer Purchase Behaviour and Stated Preferences for Yoghurts with Nutritional and Health Claims. Nutrients 2019, 11, 2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, F.; Gracia, A. Does the valuation of nutritional claims differ among consumers? Insights from Spain. Nutrients 2017, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Hess, S.; Daly, A.; Dekker, T.; Cabral, M.O.; Batley, R. A framework for capturing heterogeneity, heteroskedasticity, non-linearity, reference dependence and design artefacts in value of time research. Transp. Res. Part B Methodol. 2017, 96, 126–149. [Google Scholar] [CrossRef] [Green Version]
- Bernués, A.; Olaizola, A.; Corcoran, K. Labelling information demanded by European consumers and relationships with purchasing motives, quality and safety of meat. Meat Sci. 2003, 65, 1095–1106. [Google Scholar] [CrossRef]
- Bernués, A.; Ripoll, G.; Panea, B. Consumer segmentation based on convenience orientation and attitudes towards quality attributes of lamb meat. Food Qual. Prefer. 2012, 26, 211–220. [Google Scholar] [CrossRef]
- Cerjak, M.; Karolyi, D.; Kovačić, D. Effect of information about pig breed on consumers’ acceptability of dry sausage. J. Sens. Stud. 2011, 26, 128–134. [Google Scholar] [CrossRef]
- Lusk, J.L. Consumer preferences for and beliefs about slow growth chicken. Poult. Sci. 2018, 97, 4159–4166. [Google Scholar] [CrossRef]
- Lusk, J.L.; Schroeder, T.C.; Tonsor, G.T. Distinguishing beliefs from preferences in food choice. Eur. Rev. Agric. Econ. 2013, 41, 627–655. [Google Scholar] [CrossRef] [Green Version]
- Verbeke, W.; Guerrero, L.; Almli, V.L.; Vanhonacker, F.; Hersleth, M. European Consumers’ Definition and Perception of Traditional Foods. In Traditional Foods; Springer: Boston, MA, USA, 2016. [Google Scholar] [CrossRef]
- Vittersø, G.; Torjusen, H.; Laitala, K.; Tocco, B.; Biasini, B.; Csillag, P.; de Labarre, M.D.; Lecoeur, J.-L.; Maj, A.; Majewski, E.; et al. Short Food Supply Chains and Their Contributions to Sustainability: Participants’ Views and Perceptions from 12 European Cases. Sustainability 2019, 11, 4800. [Google Scholar] [CrossRef] [Green Version]
- Delicato, C.; Collison, M.; Myronyuk, I.; Symochko, T.; Boyko, N. Is Local Better? Consumer Value in Food Purchasing and the Role of Short Food Supply Chains. Stud. Agric. Econ. 2019, 121, 75–83. [Google Scholar] [CrossRef]
- Lopéz-Galán, B.; de-Magistris, T. Personal and Psychological Traits Influencing the Willingness to Pay for Food with Nutritional Claims: A Comparison between Vice and Virtue Food Products. Foods 2020, 9, 733. [Google Scholar] [CrossRef] [PubMed]
- Grashuis, J.; Magnier, A. Product differentiation by marketing and processing cooperatives: A choice experiment with cheese and cereal products. Agribusiness 2018, 34, 813–830. [Google Scholar] [CrossRef]
- Profeta, A.; Hamm, U. Do consumers prefer local animal products produced with local feed? Results from a Discrete-Choice experiment. Food Qual. Prefer. 2019, 71, 217–227. [Google Scholar] [CrossRef]
Attribute | Attribute Level | Coding |
---|---|---|
Price (HUF/kg) 1,2 | 1500 HUF | Continuous variable |
2000 HUF | ||
2500 HUF | ||
3000 HUF | ||
Mangalica meat content (from the total meat) (%) | 50% | 1 |
75% | 2 | |
100% | 3 | |
Label of origin (NAMB label of origin 3) | No | 0 |
Yes | 1 | |
Place of purchase | ‘Farmers’ market | 1 |
Butcher | 2 | |
Hyper-/supermarket | 3 |
Alternative 1 | Alternative 2 | Alternative 3 | |
---|---|---|---|
Price (HUF/kg) | 3000 | 2000 | None of these products |
Meat content (%) | 75% | 75% | |
Label of origin | Yes | No | |
Place of purchase | ‘Farmers’ market | Butcher |
Sociodemographic Factors | Sample (N = 477) | Regional Distribution * |
---|---|---|
Gender (%) | ||
Female | 56.0 | 51.7 |
Male | 44.0 | 48.3 |
Age (category) (%) | ||
Age1 (<30) | 22.0 | 21.8 |
Age2 (30–39) | 26.5 | 27.1 |
Age3 (40–49) | 22.0 | 21.0 |
Age4 (50<) | 29.5 | 30.1 |
Age (mean) | 41.54 | 41.7 |
Highest level of education (%) | ||
Elementary | 8.2 | - |
Secondary | 44.6 | - |
Higher education | 47.2 | - |
Monthly gross income (%) ** | ||
Substantially below average | 33.3 | - |
Below average | 17.6 | - |
Average | 25.8 | - |
Above average | 23.3 | - |
Residence (%) | ||
Urban | 72.3 | 68.3 |
Rural | 27.7 | 31.7 |
MNL Model | RPL Model (Direct WTP) | |||
---|---|---|---|---|
Attributes and Model Details | Coefficient | Standard Error | Coefficient | Standard Error |
ASC (alternative 2) | 0.652 *** | 0.071 | 0.673 *** | 0.061 |
ASC (opt-out) | −1.583 *** | 0.138 | −3.191 *** | 0.156 |
Price/1000 | −0.885 *** | 0.058 | −1.215 *** (2.909) *** | 0.138 |
75% meat content | 0.697 *** | 0.078 | 0.895 *** | 0.039 |
100% meat content | 0.844 *** | 0.065 | 0.862 *** | 0.044 |
Label of origin | 1.843 *** | 0.089 | 1.682 *** (0.677) *** | 0.073 |
Butcher | −0.759 *** | 0.09 | −0.657 *** | 0.064 |
Hyper-/supermarket | −1.009 *** | 0.101 | −1.058 *** (0.585) *** | 0.101 |
Observations | 3816 | |||
Pseudo R2 | 0.1608 | 0.2634 | ||
Adj R2 | 0.1589 | 0.2607 | ||
Log-likelihood | −3518.227 | −3088.236 | ||
AIC | 7052.45 | 6198.47 |
Product Attributes | Willingness to Pay |
---|---|
75% meat content | 0.787 *** |
100% meat content | 0.954 *** |
Label of origin | 2.082 *** |
Butcher | −0.858 *** |
Hyper-/supermarket | −1.139 *** |
2 Segments Model | 3 Segments Model | 4 Segments Model | |||||||
---|---|---|---|---|---|---|---|---|---|
Estimated parameters | 22 | 36 | 50 | ||||||
Log-likelihood (LL) | −3092.223 | −2993.281 | −2943.919 | ||||||
AIC | 6228.45 | 6058.56 | 5987.84 | ||||||
BIC | 6365.88 | 6283.45 | 6300.19 | ||||||
Pseudo R2 | 0.2624 | 0.286 | 0.2978 | ||||||
Class probability values | 0.40 | 0.60 | 0.28 | 0.57 | 0.15 | 0.13 | 0.54 | 0.04 | 0.29 |
Attributes and Model Details | Coefficient | Standard Error | ||||
---|---|---|---|---|---|---|
Price Sensitive | Loyal to Label | Label Neutral | Price Sensitive | Loyal to Label | Label Neutral | |
ASC (alternative 2) | 0.62 *** | 0.088 | ||||
ASC (opt-out) | −2.845 *** | 0.184 | ||||
Price/1000 | −3.663 *** | −0.55 *** | −1.915 *** | 0.247 | 0.099 | 0.129 |
75% meat content | 3.457 *** | 0.584 *** | 1.53 *** | 0.315 | 0.142 | 0.256 |
100% meat content | 3.07 *** | 0.73 *** | 2.223 *** | 0.341 | 0.112 | 0.265 |
Label of origin | 6.98 *** | 1.26 *** | 0.722 *** | 0.388 | 0.174 | 0.255 |
Butcher | −2.214 *** | −0.524 *** | −0.714 *** | 0.25 | 0.167 | 0.228 |
Hyper-/supermarket | −2.478 *** | −0.711 *** | −2.783 | 0.257 | 0.145 | 0.00 |
Female | −0.859 *** | −0.029 | 0.24 | 0.35 | ||
Age2 | 0.00 | 0.153 | 0.357 | 0.494 | ||
Age3 | 1.141 *** | 1.073 ** | 0.355 | 0.46 | ||
Age4 | 0.771 ** | 0.668 | 0.327 | 0.47 | ||
Income2 | 0.203 | 1.573 *** | 0.35 | 0.45 | ||
Income3 | −0.035 | −0.025 | 0.285 | 0.481 | ||
Income4 | −0.986 *** | −0.279 | 0.329 | 0.457 | ||
Delta | −0.558 | −2.112 *** | 0.313 | 0.539 | ||
Class probability values | 0.28 | 0.57 | 0.15 | |||
Observations | 3816 | |||||
Pseudo R2 | 0.286 | |||||
Adj R2 | 0.2774 | |||||
Log-likelihood | −2993.281 | |||||
AIC | 6058.56 |
Product Attributes | Willingness to Pay | |||
---|---|---|---|---|
Price Sensitive | Loyal to Label | Label Neutral | Full Model | |
75% mangalica meat content | 0.944 *** | 1.061 *** | 0.799 *** | 0.993 *** |
100% mangalica meat content | 0.838 *** | 1.326 *** | 1.161 *** | 1.165 *** |
Label of origin | 1.906 *** | 2.289 *** | 0.377 ** | 1.897 *** |
Butcher | −0.604 *** | −0.952 ** | −0.373 ** | −0.768 ** |
Hyper-/supermarket | −0.677 *** | −1.291 *** | −1.453 *** | −1.143 *** |
Product Attributes | WTP for MNL (HUF) | WTP for RPL (HUF) | ||
---|---|---|---|---|
2012 | 2019 | 2012 | 2019 | |
Label of origin | 0.457 | 2.082 | 0.942 | 1.682 |
75% meat content | 0.235 | 0.787 | 0.623 | 0.895 |
100% meat content | 0.445 | 0.954 | 0.736 | 0.862 |
Butcher | 0.349 | −0.858 | 0.827 | −0.657 |
Hyper-/supermarket | −0.715 | −1.139 | −1.347 | −1.058 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czine, P.; Török, Á.; Pető, K.; Horváth, P.; Balogh, P. The Impact of the Food Labeling and Other Factors on Consumer Preferences Using Discrete Choice Modeling—The Example of Traditional Pork Sausage. Nutrients 2020, 12, 1768. https://doi.org/10.3390/nu12061768
Czine P, Török Á, Pető K, Horváth P, Balogh P. The Impact of the Food Labeling and Other Factors on Consumer Preferences Using Discrete Choice Modeling—The Example of Traditional Pork Sausage. Nutrients. 2020; 12(6):1768. https://doi.org/10.3390/nu12061768
Chicago/Turabian StyleCzine, Péter, Áron Török, Károly Pető, Péter Horváth, and Péter Balogh. 2020. "The Impact of the Food Labeling and Other Factors on Consumer Preferences Using Discrete Choice Modeling—The Example of Traditional Pork Sausage" Nutrients 12, no. 6: 1768. https://doi.org/10.3390/nu12061768
APA StyleCzine, P., Török, Á., Pető, K., Horváth, P., & Balogh, P. (2020). The Impact of the Food Labeling and Other Factors on Consumer Preferences Using Discrete Choice Modeling—The Example of Traditional Pork Sausage. Nutrients, 12(6), 1768. https://doi.org/10.3390/nu12061768