Correcting for Intra-Individual Variability in Sodium Excretion in Spot Urine Samples Does Not Improve the Ability to Predict 24 h Urinary Sodium Excretion
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Distribution of Repeated Spot and 24 h Urinary Na Concentrations
3.2. Prediction Equations to Estimate 24 h Na from Spot Na
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; WHO Press, World Health Organization: Geneva, Switzerland, 2013; Available online: http://africahealthforum.afro.who.int/IMG/pdf/global_action_plan_for_the_prevention_and_control_of_ncds_2013-2020.pdf (accessed on 28 February 2020).
- He, F.J.; Burnier, M.; MacGregor, G.A. Nutrition in cardiovascular disease: Salt in hypertension and heart failure. Eur. Heart J. 2011, 32, 3073–3080. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, M.E.; Mugavero, K.; Bowman, B.A.; Frieden, T.R. Dietary sodium and cardiovascular disease risk—Measurement matters. New Engl. J. Med. 2016, 375, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, S. Preventing vascular events due to elevated blood pressure. Am. Heart Assoc. 2006, 113, 2166–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogswell, M.E.; Maalouf, J.; Elliott, P.; Loria, C.M.; Patel, S.; Bowman, B.A. Use of urine biomarkers to assess sodium intake: Challenges and opportunities. Annu. Rev. Nutr. 2015, 35, 349–387. [Google Scholar] [CrossRef] [Green Version]
- Cobb, L.K.; Anderson, C.A.; Elliott, P.; Hu, F.B.; Liu, K.; Neaton, J.D.; Whelton, P.K.; Woodward, M.; Appel, L.J. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: A science advisory from the American Heart Association. Circulation 2014, 129, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.R.; Appel, L.J.; Whelton, P.K. Lower levels of sodium intake and reduced cardiovascular risk. Circulation 2014, 129, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Brown, I.J.; Dyer, A.R.; Chan, Q.; Cogswell, M.E.; Ueshima, H.; Stamler, J.; Elliott, P.; Group, I.C.-O.R. Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: The INTERSALT study. Am. J. Epidemiol. 2013, 177, 1180–1192. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, T.; Itoh, K.; Uezono, K.; Sasaki, H. A simple method for estimating 24-h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin. Exp. Pharmacol. Physiol. 1993, 20, 7–14. [Google Scholar] [CrossRef]
- Tanaka, T.; Okamura, T.; Miura, K.; Kadowaki, T.; Ueshima, H.; Nakagawa, H.; Hashimoto, T. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J. Hum. Hypertens. 2002, 16, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mente, A.; O’Donnell, M.J.; Dagenais, G.; Wielgosz, A.; Lear, S.A.; McQueen, M.J.; Jiang, Y.; Xingyu, W.; Jian, B.; Calik, K.B.T. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. J. Hypertens. 2014, 32, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Mente, A.; O’Donnell, M.; Rangarajan, S.; McQueen, M.; Dagenais, G.; Wielgosz, A.; Lear, S.; Ah, S.T.L.; Wei, L.; Diaz, R. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: A community-level prospective epidemiological cohort study. Lancet 2018, 392, 496–506. [Google Scholar] [CrossRef]
- Tan, M.; He, F.J.; MacGregor, G.A. Salt and cardiovascular disease in PURE: A large sample size cannot make up for erroneous estimations. J. Renin Angiotensin Aldosterone Syst. 2018, 19, 1470320318810015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messerli, F.H.; Hofstetter, L.; Bangalore, S. Salt and heart disease: A second round of “bad science”? Lancet 2018, 392, 456–458. [Google Scholar] [CrossRef]
- Charlton, K.; Ware, L.J.; Chidumwa, G.; Cockeran, M.; Schutte, A.E.; Naidoo, N.; Kowal, P. Prediction of 24-hour sodium excretion from spot urine samples in South African adults: A comparison of four equations. J. Hum. Hypertens. 2020, 34, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanepoel, B.; Schutte, A.E.; Cockeran, M.; Steyn, K.; Wentzel-Viljoen, E. Monitoring the South African population’s salt intake: Spot urine v. 24-h urine. Public Health Nutr. 2018, 21, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Willett, W.; Tinker, L.F.; Subar, A.F.; Spiegelman, D.; Rhodes, D.; Potischman, N.; Neuhouser, M.L. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake. Am. J. Epidemiol. 2015, 181, 473–487. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, B.K.; White, E.; Saracci, R. Monographs in epidemiology. In Principles of Exposure Measurement in Epidemiology; Oxford University Press: Oxford, UK, 1992; Volume 1. [Google Scholar]
- Dyer, A.R.; Shipley, M.; Elliott, P.; Group, I.C.R. Urinary electrolyte excretion in 24 hours and blood pressure in the INTERSALT study: I. Estimates of Reliability. Am. J. Epidemiol. 1994, 139, 927–939. [Google Scholar] [CrossRef]
- Subar, A.F.; Dodd, K.W.; Guenther, P.M.; Kipnis, V.; Midthune, D.; McDowell, M.; Tooze, J.A.; Freedman, L.S.; Krebs-Smith, S.M. The food propensity questionnaire: Concept, development, and validation for use as a covariate in a model to estimate usual food intake. J. Am. Diet. Assoc. 2006, 106, 1556–1563. [Google Scholar] [CrossRef]
- Freedman, L.S.; Midthune, D.; Carroll, R.J.; Krebs-Smith, S.; Subar, A.F.; Troiano, R.P.; Dodd, K.; Schatzkin, A.; Ferrari, P.; Kipnis, V. Adjustments to improve the estimation of usual dietary intake distributions in the population. J. Nutr. 2004, 134, 1836–1843. [Google Scholar] [CrossRef] [Green Version]
- Kipnis, V.; Midthune, D.; Buckman, D.W.; Dodd, K.W.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Tooze, J.A.; Carroll, R.J.; Freedman, L.S. Modeling data with excess zeros and measurement error: Application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 2009, 65, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Mackerras, D.E.; Singh, G.R.; Eastman, C.J. Iodine status of Aboriginal teenagers in the Darwin region before mandatory iodine fortification of bread. Med. J. Aust. 2011, 194, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Andersson, M. Assessment of iodine nutrition in populations: Past, present, and future. Nutr. Rev. 2012, 70, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Looker, A.C.; Dallman, P.R.; Carroll, M.D.; Gunter, E.W.; Johnson, C.L. Prevalence of iron deficiency in the United States. JAMA 1997, 277, 973–976. [Google Scholar] [CrossRef] [PubMed]
- Charlton, K.E.; Batterham, M.J.; Buchanan, L.M.; Mackerras, D. Intraindividual variation in urinary iodine concentrations: Effect of adjustment on population distribution using two and three repeated spot urine collections. BMJ Open 2014, 4, e003799. [Google Scholar] [CrossRef] [Green Version]
- WHO/PAHO Regional Expert Group for Cardiovascular Disease Prevention through Population-wide Dietary Salt Reduction. Protocol for Population Level Sodium Determination in 24-hour Urine Samples; WHO Press, World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.paho.org/hq/dmdocuments/2013/24h-urine-Protocol-eng.pdf (accessed on 28 February 2020).
- Trieu, K.; Neal, B.; Hawkes, C.; Dunford, E.; Campbell, N.; Rodriguez-Fernandez, R.; Legetic, B.; McLaren, L.; Barberio, A.; Webster, J. Salt reduction initiatives around the world–a systematic review of progress towards the global target. PLoS ONE 2015, 10, e0130247. [Google Scholar] [CrossRef] [Green Version]
- Kowal, P.; Chatterji, S.; Naidoo, N.; Biritwum, R.; Fan, W.; Lopez Ridaura, R.; Maximova, T.; Arokiasamy, P.; Phaswana-Mafuya, N.; Williams, S.; et al. Data Resource Profile: The World Health Organization Study on global AGEing and adult health (SAGE). Int. J. Epidemiol. 2012, 41, 1639–1649. [Google Scholar] [CrossRef]
- Fekete, A. Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach and Investigations of Validation Demands. Int. J. Disaster Risk Sci. 2019, 10, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Charlton, K.; Ware, L.J.; Menyanu, E.; Biritwum, R.B.; Naidoo, N.; Pieterse, C.; Madurai, S.L.; Baumgartner, J.; Asare, G.A.; Thiele, E. Leveraging ongoing research to evaluate the health impacts of South Africa’s salt reduction strategy: A prospective nested cohort within the WHO-SAGE multicountry, longitudinal study. BMJ Open 2016, 6, e013316. [Google Scholar] [CrossRef] [Green Version]
- Cogswell, M.E.; Wang, C.-Y.; Chen, T.-C.; Pfeiffer, C.M.; Elliott, P.; Gillespie, C.D.; Carriquiry, A.L.; Sempos, C.T.; Liu, K.; Perrine, C.G. Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y. Am. J. Clin. Nutr. 2013, 98, 1502–1513. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, P.; Land, M.; Riddell, L.; Shaw, J.; Webster, J.; Chalmers, J.; Smith, W.; Flood, V.; Woodward, M.; Neal, B. Correlation between 24-hour and spot/void urine samples for the purpose of population salt intake assessment. In Proceedings of the 20th International Congress of Nutrition, Granada, Spain, 15–20 September 2013; p. 1477. [Google Scholar]
- Nicar, M.J.; Hsu, M.C.; Johnson, T.; Pak, C.Y. The preservation of urine samples for determination of renal stone risk factors. Lab. Med. 1987, 18, 382–384. [Google Scholar] [CrossRef]
- Stolarz-Skrzypek, K.; Kuznetsova, T.; Thijs, L.; Tikhonoff, V.; Seidlerová, J.; Richart, T.; Jin, Y.; Olszanecka, A.; Malyutina, S.; Casiglia, E. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA 2011, 305, 1777–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, L.J.; Charlton, K.; Schutte, A.E.; Cockeran, M.; Naidoo, N.; Kowal, P. Associations between dietary salt, potassium and blood pressure in South African adults: WHO SAGE Wave 2 Salt & Tobacco. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 784–791. [Google Scholar] [PubMed]
- Uechi, K.; Asakura, K.; Ri, Y.; Masayasu, S.; Sasaki, S. Advantage of multiple spot urine collections for estimating daily sodium excretion: Comparison with two 24-h urine collections as reference. J. Hypertens. 2016, 34, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, T.; Ueshima, H.; Miyagawa, N.; Ohgami, N.; Yamashita, H.; Ohkubo, T.; Murakami, Y.; Shiga, T.; Miura, K. Six random specimens of daytime casual urine on different days are sufficient to estimate daily sodium/potassium ratio in comparison to 7-day 24-h urine collections. Hypertens. Res. 2014, 37, 765–771. [Google Scholar] [CrossRef]
- Iwahori, T.; Ueshima, H.; Torii, S.; Saito, Y.; Fujiyoshi, A.; Ohkubo, T.; Miura, K. Four to seven random casual urine specimens are sufficient to estimate 24-h urinary sodium/potassium ratio in individuals with high blood pressure. J. Hum. Hypertens. 2016, 30, 328–334. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Fu, J.-J.; Jiang, Y.-Y.; Bai, Y.-M.; Zhang, Z.-H.; Hu, X.-H.; Lian, H.-W.; Guo, M.; Yang, Z.-X. Validation of spot urine in predicting 24-h sodium excretion at the individual level. Am. J. Clin. Nutr. 2017, 105, 1291–1296. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Li, W.; Wang, Y.; Chen, H.; Bo, J.; Wang, X.; Liu, L. Validation and assessment of three methods to estimate 24-h urinary sodium excretion from spot urine samples in Chinese adults. PLoS ONE 2016, 11, e0149655. [Google Scholar] [CrossRef]
- Huang, L.; Crino, M.; Wu, J.H.; Woodward, M.; Barzi, F.; Land, M.-A.; McLean, R.; Webster, J.; Enkhtungalag, B.; Neal, B. Mean population salt intake estimated from 24-h urine samples and spot urine samples: A systematic review and meta-analysis. Int. J. Epidemiol. 2016, 45, 239–250. [Google Scholar] [CrossRef]
- Thi Minh Nguyen, T.; Miura, K.; Tanaka-Mizuno, S.; Tanaka, T.; Nakamura, Y.; Fujiyoshi, A.; Kadota, A.; Tamaki, J.; Takebayashi, T.; Okamura, T.; et al. Association of blood pressure with estimates of 24-h urinary sodium and potassium excretion from repeated single-spot urine samples. Hypertens. Res. 2019, 42, 411–418. [Google Scholar] [CrossRef]
- Rakova, N.; Jüttner, K.; Dahlmann, A.; Schröder, A.; Linz, P.; Kopp, C.; Rauh, M.; Goller, U.; Beck, L.; Agureev, A.; et al. Long-Term Space Flight Simulation Reveals Infradian Rhythmicity in Human Na+ Balance. Cell Metab. 2013, 17, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Birukov, A.; Rakova, N.; Lerchl, K.; Olde Engberink, R.H.; Johannes, B.; Wabel, P.; Moissl, U.; Rauh, M.; Luft, F.C.; Titze, J. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion. Am. J. Clin. Nutr. 2016, 104, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.R.; He, F.J.; Tan, M.; Cappuccio, F.P.; Neal, B.; Woodward, M.; Cogswell, M.E.; McLean, R.; Arcand, J.; MacGregor, G. The International Consortium for Quality Research on Dietary Sodium/Salt (TRUE) position statement on the use of 24-hour, spot, and short duration (<24 hours) timed urine collections to assess dietary sodium intake. J. Clin. Hypertens. 2019, 21, 700–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogswell, M.E.; Elliott, P.; Wang, C.-Y.; Rhodes, D.G.; Pfeiffer, C.M.; Loria, C.M. Assessing U.S. Sodium Intake through Dietary Data and Urine Biomarkers. Adv. Nutr. 2013, 4, 560–562. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Subjects (n = 43) | Subjects with 3-Days Valid Measurements (n = 23) |
---|---|---|
Sex, n (%) | ||
Women | 31 (72.1) | 16 (69.6) |
Men | 12 (27.9) | 7 (30.4) |
Age (years) | 62 (19) | 58 (18) |
BMI (Kg/m2) | 30.1 (9.3) | 33.8 (9.6) |
Normal weight (18.5–24.9 kg/m2), n (%) | 8 (18.6) | 1 (4.3) |
Overweight (25–30 kg/m2), n (%) | 12 (27.9) | 6 (26.1) |
Obese (≥30 kg/m2), n (%) | 23 (53.5) | 16 (69.6) |
Systolic BP (mm Hg) | 140 (40) | 133 (41) |
Diastolic BP (mm Hg) | 88 (27) | 88 (26) |
Characteristics | Day 1 (n = 23) | Day 2 (n = 23) | Day 3 (n = 23) |
---|---|---|---|
Spot Na (mmoL/L) | 89.0 (59.0) | 90.0 (52.0) | 80.0 (70.0) |
Spot K (mmoL/L) | 26.7 (14.4) | 32.0 (35.5) | 22.0 (23.4) |
Spot Cr (mmoL/L) | 9.7 (8.5) | 9.6 (6.8) | 7.3 (5.3) |
24 h urine volume (ml) | 1100.0 (580.0) | 1100.0 (995.0) | 1200.0 (700.0) |
24 h Na (mmoL/day) | 107.0 (88.0) | 95.0 (45.0) | 80.0 (84.0) |
24 h K (mmoL/day) | 33.9 (22.5) | 27.3 (24.1) | 27.5 (21.8) |
24 h Cr (mmoL/day) | 9.9 (8.3) | 8.3 (8.4) | 9.9 (9.1) |
Raw Data for Day 1 | Average of Days 1 and 2 | Day 1 Corrected Using 2 Replicates | Average of Days 1, 2, and 3 | Day 1 Corrected Using 3 Replicates | |
---|---|---|---|---|---|
Spot Na (mmoL/L) | |||||
Minimum | 14.00 | 23.50 | 21.71 | 35.00 | 27.79 |
p5 a | 44.00 | 36.00 | 51.33 | 39.00 | 55.99 |
p10 | 45.00 | 54.50 | 52.21 | 49.00 | 56.76 |
p25 | 60.00 | 71.50 | 64.81 | 66.33 | 67.69 |
p50 | 89.00 | 92.00 | 87.16 | 85.33 | 86.14 |
p75 | 119.00 | 107.50 | 108.43 | 112.67 | 102.89 |
p90 | 163.00 | 136.00 | 137.36 | 150.67 | 124.73 |
p95 | 186.00 | 152.00 | 151.68 | 162.33 | 135.21 |
IQR | 59.00 | 36.00 | 43.62 | 46.33 | 35.21 |
Maximum | 193.00 | 186.50 | 155.95 | 179.00 | 138.30 |
Mean | 93.30 | 93.35 | 88.36 | 92.86 | 86.19 |
SD | 45.66 | 35.57 | 33.04 | 36.11 | 26.59 |
24 h Na (mmoL/day) | |||||
Minimum | 32.00 | 38.00 | 37.15 | 38.67 | 42.60 |
p5 | 49.00 | 42.50 | 53.84 | 41.67 | 58.70 |
p10 | 56.00 | 46.00 | 60.48 | 48.00 | 64.90 |
p25 | 66.00 | 71.00 | 69.78 | 68.67 | 73.44 |
p50 | 107.00 | 107.00 | 106.29 | 110.67 | 105.64 |
p75 | 154.00 | 130.50 | 145.95 | 141.33 | 138.93 |
p90 | 201.00 | 195.50 | 184.05 | 172.33 | 169.76 |
p95 | 220.00 | 202.50 | 199.11 | 213.00 | 181.69 |
IQR | 88.00 | 59.50 | 76.17 | 72.67 | 65.49 |
Maximum | 232.00 | 227.00 | 208.54 | 227.00 | 189.10 |
Mean | 115.00 | 107.87 | 111.71 | 109.22 | 109.12 |
SD | 56.33 | 50.77 | 48.09 | 50.54 | 40.92 |
Statistics | Measured 24 h Urinary Sodium Excretion | INTERSALT Spot 1 | INTERSALT Mean Day 1 and 2 | INTERSALT Adjusted Day 1 and 2 | INTERSALT Mean Day 1, 2, and 3 | INTERSALT Adjusted Day 1, 2, and 3 |
---|---|---|---|---|---|---|
Minimum | 32.00 | 4.48 | 12.06 | 11.00 | 14.21 | 12.27 |
p5 | 49.00 | 21.09 | 39.03 | 42.41 | 48.53 | 45.41 |
p10 | 56.00 | 90.52 | 102.67 | 105.63 | 109.21 | 106.67 |
p25 | 66.00 | 132.82 | 119.21 | 122.35 | 120.76 | 122.20 |
p50 | 107.00 | 140.74 | 132.96 | 141.44 | 133.02 | 141.39 |
p75 | 154.00 | 167.67 | 164.70 | 164.97 | 172.34 | 165.93 |
p90 | 201.00 | 212.32 | 209.14 | 208.46 | 198.68 | 204.26 |
p95 | 220.00 | 215.77 | 209.20 | 213.71 | 207.71 | 206.18 |
IQR | 88.00 | 34.85 | 45.48 | 42.62 | 51.57 | 43.74 |
Maximum | 232.00 | 220.26 | 215.19 | 214.36 | 228.70 | 213.41 |
Mean | 115.00 | 140.87 | 140.17 | 142.80 | 140.58 | 142.15 |
SD | 56.33 | 51.30 | 49.01 | 48.10 | 47.86 | 47.01 |
p-value * | 0.0208 | 0.0150 | 0.0150 | 0.0177 | 0.0163 | |
Spearman r | 0.3083 | 0.2856 | 0.2727 | 0.2885 | 0.2579 | |
p-value | 0.1524 | 0.1865 | 0.2080 | 0.1818 | 0.2348 |
Statistics | Measured 24 h Urinary Sodium Excretion | Tanaka Spot 1 | Tanaka Mean Day 1 and 2 | Tanaka Adjusted Day 1 and 2 | Tanaka Mean Day 1, 2, and 3 | Tanaka Adjusted Day 1, 2, and 3 |
---|---|---|---|---|---|---|
Minimum | 32.00 | 124.32 | 176.45 | 182.74 | 227.93 | 204.29 |
p5 | 49.00 | 207.34 | 225.89 | 231.07 | 244.95 | 236.30 |
p10 | 56.00 | 238.77 | 236.59 | 287.05 | 245.80 | 293.09 |
p25 | 66.00 | 285.11 | 283.61 | 325.21 | 276.53 | 332.74 |
p50 | 107.00 | 396.58 | 370.48 | 374.39 | 370.83 | 377.85 |
p75 | 154.00 | 482.93 | 415.18 | 438.87 | 431.25 | 419.99 |
p90 | 201.00 | 559.35 | 485.55 | 478.08 | 461.72 | 458.77 |
p95 | 220.00 | 572.75 | 500.06 | 498.03 | 477.71 | 478.86 |
IQR | 88.00 | 197.82 | 131.56 | 113.66 | 154.72 | 87.25 |
Maximum | 232.00 | 738.90 | 597.13 | 541.18 | 498.26 | 522.32 |
Mean | 115.00 | 392.03 | 364.27 | 376.83 | 364.58 | 374.55 |
SD | 56.33 | 138.88 | 97.35 | 84.72 | 83.76 | 74.80 |
p-value * | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Spearman correlation coefficient | 0.1047 | 0.3192 | 0.1808 | 0.2372 | 0.1927 | |
p-value correlation | 0.6343 | 0.1377 | 0.4090 | 0.2759 | 0.3784 |
Statistics | Measured 24 h Urinary Sodium Excretion | Kawasaki Spot 1 | Kawasaki Mean Day 1 and 2 | Kawasaki Adjusted Day 1 and 2 | Kawasaki Mean Day 1, 2, and 3 | Kawasaki Adjusted Day 1, 2, and 3 |
---|---|---|---|---|---|---|
Minimum | 32.00 | 130.04 | 203.27 | 212.56 | 281.76 | 245.04 |
p5 | 49.00 | 288.74 | 341.67 | 331.53 | 357.15 | 341.13 |
p10 | 56.00 | 349.23 | 373.04 | 403.65 | 366.99 | 422.93 |
p25 | 66.00 | 445.93 | 428.95 | 524.98 | 415.92 | 526.37 |
p50 | 107.00 | 680.59 | 615.32 | 685.76 | 620.88 | 671.39 |
p75 | 154.00 | 913.44 | 838.75 | 824.38 | 834.91 | 791.88 |
p90 | 201.00 | 1033.24 | 939.30 | 907.04 | 990.56 | 904.10 |
p95 | 220.00 | 1060.30 | 940.61 | 961.78 | 1001.26 | 953.36 |
IQR | 88.00 | 467.50 | 409.79 | 299.39 | 418.99 | 265.51 |
Maximum | 232.00 | 1360.01 | 975.35 | 1102.78 | 1013.84 | 1048.92 |
Mean | 115.00 | 693.41 | 633.74 | 660.08 | 635.66 | 654.93 |
SD | 56.33 | 290.66 | 227.94 | 210.98 | 223.79 | 198.86 |
p-value * | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Spearman correlation coefficient | 0.1650 | 0.3192 | 0.2292 | 0.2806 | 0.2085 | |
p-value correlation | 0.4518 | 01377 | 0.2927 | 0.1946 | 0.3397 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charlton, K.E.; Schutte, A.E.; Wepener, L.; Corso, B.; Kowal, P.; Ware, L.J. Correcting for Intra-Individual Variability in Sodium Excretion in Spot Urine Samples Does Not Improve the Ability to Predict 24 h Urinary Sodium Excretion. Nutrients 2020, 12, 2026. https://doi.org/10.3390/nu12072026
Charlton KE, Schutte AE, Wepener L, Corso B, Kowal P, Ware LJ. Correcting for Intra-Individual Variability in Sodium Excretion in Spot Urine Samples Does Not Improve the Ability to Predict 24 h Urinary Sodium Excretion. Nutrients. 2020; 12(7):2026. https://doi.org/10.3390/nu12072026
Chicago/Turabian StyleCharlton, Karen Elizabeth, Aletta Elisabeth Schutte, Leanda Wepener, Barbara Corso, Paul Kowal, and Lisa Jayne Ware. 2020. "Correcting for Intra-Individual Variability in Sodium Excretion in Spot Urine Samples Does Not Improve the Ability to Predict 24 h Urinary Sodium Excretion" Nutrients 12, no. 7: 2026. https://doi.org/10.3390/nu12072026
APA StyleCharlton, K. E., Schutte, A. E., Wepener, L., Corso, B., Kowal, P., & Ware, L. J. (2020). Correcting for Intra-Individual Variability in Sodium Excretion in Spot Urine Samples Does Not Improve the Ability to Predict 24 h Urinary Sodium Excretion. Nutrients, 12(7), 2026. https://doi.org/10.3390/nu12072026