Effect of Food with Low Enrichment of N-3 Fatty Acids in a Two-Month Diet on the Fatty Acid Content in the Plasma and Erythrocytes and on Cardiovascular Risk Markers in Healthy Young Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Omega-3 Meat and Eggs
2.2. Dietary Study
2.3. Anthropometric and Body Composition Data
2.4. Biochemical and Hematological Parameters
2.5. Determining the Overall FA Profile in the Blood Plasma and in the Erythrocytes
3. Results and Discussions
3.1. Physical Parameters and Basic Biochemical, Hematological, and Immunological Blood Analysis
3.2. Detailed Profile of Fatty Acids in Blood Plasma and Membrane Erythrocytes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zibaeenezhad, M.J.; Ghavipisheh, M.; Attar, A.; Aslani, A. Comparison of the effect of omega-3 supplements and fresh fish on lipid profile: A randomized, open-labeled trial. Nutr. Diabetes 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensink, R.P. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis. Available online: https://apps.who.int/iris/bitstream/handle/10665/246104/9789241565349-eng.pdf (accessed on 20 June 2020).
- Burdge, G.C.; Jones, A.E.; Wootton, S.A. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br. J. Nutr. 2002, 88, 355–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdge, G.C.; Wootton, S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002, 88, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from alpha-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julibert, A.; Bibiloni, M.D.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Carbiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Silva Figueiredo, P.; Inada, A.C.; Marcelino, G.; Cardozo, C.M.L.; Freitas, K.D.; Guimaraes, R.D.A.; de Castro, A.P.; do Nascimento, V.A.; Hiane, P.A. Fatty acids consumption: The role metabolic aspects involved in obesity and its associated disorders. Nutrients 2017, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2016, 39, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, F.; Poli, A. Clinical pharmacology of n-3 polyunsaturated fatty acids: Non-lipidic metabolic and hemodynamic effects in human patients. Atheroscler. Suppl. 2013, 14, 230–236. [Google Scholar] [CrossRef]
- Gao, L.G.; Cao, J.; Mao, Q.X.; Lu, X.C.; Zhou, X.L.; Fan, L. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet aggregation in humans: A meta-analysis of randomized controlled trials. Atherosclerosis 2013, 226, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.; Afonso, C.; Bandarra, N.M. Dietary dha and health: Cognitive function ageing. Nutr. Res. Rev. 2016, 29, 281–294. [Google Scholar] [CrossRef]
- Statement on the Benefits of Fish/Seafood Consumption Compared to the Risks of Methylmercury in Fish/Seafood. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2015.3982 (accessed on 20 June 2020).
- Mozaffarian, D.; Wu, J.H. (n-3) fatty acids and cardiovascular health: Are effects of epa and dha shared or complementary? J. Nutr. Biochem. 2012, 142, 614S–625S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Sati, A.; Bhatt, P. Krill oil: The most powerful omega 3 known on earth. Int. J. Pharm. Sci. Res. 2018, 9, 2693–2699. [Google Scholar] [CrossRef]
- Rezanka, T.; Petrankova, M.; Cepak, V.; Pribyl, P.; Sigler, K.; Cajthaml, T. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. 2010, 55, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wan, F.; Yu, W.; Liu, J.; Zhang, Z.; Kou, X. Edible oil production from microalgae: A review. Eur. J. Lipid Sci. Technol. 2018, 120, 1700428. [Google Scholar] [CrossRef]
- Jonasdottir, S.H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Avallone, R.; Vitale, G.; Bertolotti, M. Omega-3 fatty acids and neurodegenerative diseases: New evidence in clinical trials. Int. J. Mol. Sci. 2019, 20, 4256. [Google Scholar] [CrossRef] [Green Version]
- Givens, D.I. Manipulation of lipids in animal-derived foods: Can it contribute to public health nutrition? Eur. J. Lipid Sci. Technol. 2015, 117, 1306–1316. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Hahn, A. Bioavailability of long-chain omega-3 fatty acids. Prostag. Leukotr. Ess. 2013, 89, 1–8. [Google Scholar] [CrossRef]
- Prasad, P.; Anjali, P.; Sreedhar, R.V. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Crit. Rev. Food Sci. Nutr. 2020, 1–13. [Google Scholar] [CrossRef]
- Bowen, K.J.; Richter, C.K.; Skulas-Ray, A.C.; Mozaffarian, D.; Kris-Etherton, P.M. Projected long-chain n-3 fatty acid intake post-replacement of vegetables oils with stearidonic acid-modified varieties: Results from a national health and nutrition examination survey 2003–2008 analysis. Lipids 2018, 53, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Cortinas, L.; Villaverde, C.; Galobart, J.; Baucells, M.D.; Codony, R.; Barroeta, A.C. Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poult. Sci. 2004, 83, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Zuidhof, M.J.; Betti, M.; Korver, D.R.; Hernandez, F.I.L.; Schneider, B.L.; Carney, V.L.; Renema, R.A. Omega-3-enriched broiler meat: 1. Optimization of a production system. Poult. Sci. 2009, 88, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int. 2012, 48, 961–969. [Google Scholar] [CrossRef]
- Meluzzi, A.; Sirri, F.; Tallarico, N.; Franchini, A. Effect of different vegetable lipid sources on the fatty acid composition of egg yolk and on hen performance. Arch. Geflugelkd. 2001, 65, 207–213. [Google Scholar]
- Benavides, A.H.J. Evaluation of the type housing and inclusion of flaxseed supplement “linum usitatisium l.” For the production egg enrichment with omega-3 fatty acids. Rev. Colomb. Investig. Agroind. 2018, 5, 52–73. [Google Scholar] [CrossRef]
- Keegan, J.D.; Fusconi, G.; Morlacchini, M.; Moran, C.A. Whole-life or fattening period only broiler feeding strategies achieve similar levels of omega-3 fatty acid enrichment using the dha-rich protist, aurantiochytrium limacinum. Animals 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Rutz, F.; Fusconi, G. Docosahexaenoic acid enrichment of layer hen tissues and eggs through dietary supplementation with heterotrophically grown aurantiochytrium limacinum. J. Appl. Poult. Res. 2020, 29, 152–161. [Google Scholar] [CrossRef]
- Turner, T.D.; Mapiye, C.; Aalhus, J.L.; Beaulieu, A.D.; Patience, J.F.; Zijlstra, R.T.; Dugan, M.E.R. Flaxseed fed pork: N-3 fatty acid enrichment and contribution to dietary recommendations. Meat Sci. 2014, 96, 541–547. [Google Scholar] [CrossRef]
- Vahmani, P.; Mapiye, C.; Prieto, N.; Rolland, D.C.; McAllister, T.A.; Aalhus, J.L.; Dugan, M.E.R. The scope for manipulating the polyunsaturated fatty acid content of beef: A review. J. Anim. Sci. Biotechnol. 2015, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Zajic, T.; Mraz, J.; Kozák, P.; Adámková, V.; Pickova, J. Meat of common carp with increased omega 3 fatty acids content as a tool for prevention and rehabilitation of cardiovascular diseases. Interni Med. Pro Praxi 2012, 14, 437–440. [Google Scholar]
- Czech Statistical Office. Food Cousumption. Available online: https://www.czso.cz/csu/czso/spotreba-potravin-2018 (accessed on 20 June 2020).
- Rose, H.G.; Oklander, M. Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res. 1965, 6, 428–431. [Google Scholar] [PubMed]
- McEwen, B.J.; Morel-Kopp, M.C.; Chen, W.; Tofler, G.H.; Ward, C.M. Effects of omega-3 polyunsaturated fatty acids on platelet function in healthy subjects and subjects with cardiovascular disease. Semin. Thromb. Hemost. 2013, 39, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Cottin, S.C.; Alsaleh, A.; Sanders, T.A.B.; Hall, W.L. Lack of effect of supplementation with epa or dha on plateletmonocyte aggregates and vascular function in healthy men. Nutr. Metab. Carbiovasc. Dis. 2016, 26, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Austria, J.A.; Richard, M.N.; Chahine, M.N.; Edel, A.L.; Malcolmson, L.J.; Dupasquier, C.M.C.; Pierce, G.N. Bioavailability of alpha-linolenic acid in subjects after ingestion of three different forms of flaxseed. J. Am. Coll. Nutr. 2008, 27, 214–221. [Google Scholar] [CrossRef]
- Finnegan, Y.E.; Howarth, D.; Minihane, A.M.; Kew, S.; Miller, G.J.; Calder, P.C.; Williams, C.M. Plant and marine derived (n-3) polyunsaturated fatty acids do not affect blood coagulation and fibrinolytic factors in moderately hyperlipidemic humans. J. Nutr. 2003, 133, 2210–2213. [Google Scholar] [CrossRef] [Green Version]
- Sijben, J.W.C.; Calder, P.C. Differential immunomodulation with long-chain n-3 pufa in health and chronic disease. Proc. Nutr. Soc. 2007, 66, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Risé, P.; Eligini, S.; Ghezzi, S.; Colli, S.; Galli, C. Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostag. Leukotr. Ess. 2007, 76, 363–369. [Google Scholar] [CrossRef]
- Poppitt, S.D.; Kilmartin, P.; Butler, P.; Keogh, G.F. Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary mufa, pufa or saturated fatty acid intake in a controlled cross-over intervention trial. Lipids Health Dis. 2005, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Serra-Majem, L.; Nissensohn, M.; Overby, N.C.; Fekete, K. Dietary methods and biomarkers of omega 3 fatty acids: A systematic review. Br. J. Nutr. 2012, 107, S64–S76. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S. The omega-6:Omega-3 ratio: A critical appraisal and possible successor. Prostag. Leukotr. Ess. 2018, 132, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Alfaddagh, A.; Elajami, T.K.; Saleh, M.; Mohebali, D.; Bistrian, B.R.; Welty, F.K. An omega-3 fatty acid plasma index ≥ 4% prevents progression of coronary artery plaque in patients with coronary artery disease on statin treatment. Atherosclerosis 2019, 285, 153–162. [Google Scholar] [CrossRef] [PubMed]
PUFA | Chicken Thigh Muscle (mg FA/100 g of Meat) | Egg (mg FA/100 g of Whole Egg) | ||
---|---|---|---|---|
Control Chicken | Omega-3 Chicken | Control Egg | Omega-3 Egg | |
ALA (C18:3n3) | 210 | 810 | 40 | 80 |
EPA (C20:5n3) | 7.3 | 22.3 | 0.0 | 10 |
DHA (C22:6n3) | 12.6 | 31.5 | 70 | 100 |
LC-PUFA | 19.9 | 53.8 | 70 | 110 |
Ʃ n-3 PUFA | 250 | 900 | 110 | 190 |
Ʃ n-6 PUFA | 2040 | 2280 | 860 | 1070 |
N-3 PUFA (mg/day) | Control Group | Omega-3 Group | ||||
---|---|---|---|---|---|---|
Meat | Egg | Total | Meat | Egg | Total | |
ALA | 144 | 13 | 157 | 555 | 26.1 | 581 |
EPA | 5.0 | 0.0 | 5.0 | 15.3 | 3.3 | 19 |
DHA | 8.6 | 22.8 | 31 | 21.6 | 32.6 | 54 |
LC-PUFA | 13.6 | 22.8 | 36 | 37 | 36 | 73 |
Parameter | Start | Final | Start/Final | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Controls | Intervention | Controls | Intervention | Controls | Intervention | |||||||
Mean | SD | Mean | SD | p | Mean | SD | Mean | SD | p | p | p | |
Height, cm | 182 | 6.14 | 181 | 4.96 | 0.79 | 182 | 6.17 | 181 | 4.96 | 0.82 | 0.98 | 1.0 |
Weight, kg | 74.6 | 5.60 | 71.3 | 6.81 | 0.15 | 74.9 | 6.18 | 71.8 | 6.27 | 0.18 | 0.89 | 0.82 |
Fat, % | 12.5 | 3.87 | 11.2 | 4.06 | 0.38 | 12.8 | 2.91 | 12.0 | 2.74 | 0.46 | 0.80 | 0.50 |
Fat, kg | 9.39 | 3.13 | 8.15 | 3.33 | 0.30 | 9.62 | 2.36 | 8.71 | 2.34 | 0.29 | 0.82 | 0.59 |
Non-fat, kg | 65.3 | 5.19 | 63.2 | 4.84 | 0.25 | 65.3 | 5.62 | 63.1 | 5.23 | 0.27 | 0.98 | 0.99 |
Muscle, kg | 62.0 | 4.96 | 60.0 | 4.62 | 0.25 | 62.1 | 5.37 | 60.0 | 4.99 | 0.27 | 0.98 | 1.0 |
Water, % | 63.4 | 2.98 | 65.2 | 4.83 | 0.24 | 63.2 | 2.33 | 63.8 | 2.45 | 0.55 | 0.83 | 0.29 |
BMI, kg/m2 | 22.6 | 1.42 | 21.7 | 1.57 | 0.10 | 22.7 | 1.29 | 21.9 | 1.25 | 0.08 | 0.85 | 0.74 |
Test | Start | Final | Start/Final | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Controls | Intervention | Controls | Intervention | Controls | Intervention | |||||||
Mean | SD | Mean | SD | p | Mean | SD | Mean | SD | p | p | p | |
Biochemical | ||||||||||||
S-chol | 3.92 | 0.64 | 4.14 | 0.57 | 0.33 | 3.99 | 0.72 | 4.09 | 0.67 | 0.7 | 0.78 | 0.83 |
S-HDLC | 1.39 | 0.16 | 1.36 | 0.22 | 0.76 | 1.79 | 1.57 | 1.33 | 0.27 | 0.25 | 0.32 | 0.67 |
S-LDLC | 2.11 | 0.55 | 2.36 | 0.56 | 0.22 | 2.19 | 0.48 | 2.27 | 0.72 | 0.72 | 0.67 | 0.69 |
S-TAG | 0.95 | 0.33 | 0.92 | 0.25 | 0.77 | 0.9 | 0.29 | 1.1 | 0.55 | 0.24 | 0.71 | 0.24 |
Hematological | ||||||||||||
AgRisto | 85.4 | 3.51 | 85.4 | 3.1 | 1.0 | 81.3 | 8.93 | 83.1 | 4.66 | 0.48 | 0.1 | 0.1 |
AgADP | 80.1 | 7.48 | 79.2 | 3.98 | 0.68 | 77.7 | 4.9 | 78.5 | 6.92 | 0.71 | 0.3 | 0.71 |
AgCollag | 82.6 | 2.56 | 81.5 | 3.47 | 0.32 | 78.3 | 5.76 | 80.5 | 4.96 | 0.27 | 0.01 | 0.51 |
AgEpi | 80.2 | 3.74 | 77 | 13.7 | 0.39 | 78.3 | 4.86 | 78.2 | 11.3 | 0.98 | 0.25 | 0.78 |
AgAra | 83.4 | 2.72 | 82.9 | 3.89 | 0.66 | 80.3 | 2.88 | 82 | 4.67 | 0.21 | 0.0 | 0.59 |
QuickTest | 14.2 | 0.71 | 14.1 | 0.81 | 0.75 | 14.3 | 0.57 | 14.2 | 0.82 | 0.71 | 0.65 | 0.73 |
Quickcontr | 12.9 | 0.0 | 12.9 | 0.0 | 1.0 | 13.2 | 0.0 | 13.2 | 0.0 | 1.0 | 0.0 | 0.0 |
INR | 1.14 | 0.08 | 1.13 | 0.09 | 0.75 | 1.11 | 0.06 | 1.1 | 0.08 | 0.71 | 0.27 | 0.36 |
APTTtest | 37.4 | 2.33 | 36.9 | 2.87 | 0.61 | 36.3 | 2.36 | 35.8 | 3.15 | 0.63 | 0.21 | 0.31 |
APTTcontr | 33.1 | 0.17 | 33.1 | 0.19 | 0.49 | 32.5 | 0.0 | 32.5 | 0.0 | 1.0 | 0.0 | 0.0 |
APTT/R | 1.13 | 0.07 | 1.12 | 0.09 | 0.7 | 1.12 | 0.07 | 1.1 | 0.1 | 0.64 | 0.66 | 0.65 |
Immunological | ||||||||||||
IL6 | 2.97 | 3.87 | 0.99 | 0.79 | 0.06 | 1.97 | 3.92 | 2.31 | 3.07 | 0.79 | 0.49 | 0.11 |
TNF-α | 1.47 | 0.95 | 1.26 | 1.06 | 0.55 | 1.24 | 0.77 | 1.12 | 0.55 | 0.64 | 0.46 | 0.66 |
FA-Profile | Start | Final | Start/Final | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Controls | Intervention | Controls | Intervention | Controls | Intervention | |||||||
Mean | SD | Mean | SD | p | Mean | SD | Mean | SD | p | p | p | |
C14:0 | 27 | 9.95 | 28.5 | 9.9 | 0.67 | 27.5 | 13.2 | 32.5 | 17.3 | 0.38 | 0.91 | 0.43 |
C16:0 | 566 | 135 | 569 | 74 | 0.94 | 559 | 115 | 637 | 182 | 0.17 | 0.88 | 0.18 |
C16:1n7 | 45.4 | 17.4 | 49.2 | 18 | 0.55 | 43.5 | 19.8 | 59.6 | 29.5 | 0.09 | 0.78 | 0.24 |
C18:0 | 165 | 36.2 | 169 | 26 | 0.75 | 167 | 34.8 | 175 | 29 | 0.53 | 0.87 | 0.56 |
C18:1n9c | 554 | 141 | 517 | 75 | 0.36 | 555 | 142 | 625 | 180 | 0.24 | 0.98 | 0.03 |
C18:1n7c | 44.3 | 12.7 | 44.2 | 8.9 | 0.97 | 46.1 | 12.7 | 48.7 | 9.56 | 0.52 | 0.7 | 0.17 |
C18:2n6cc | 810 | 102 | 866 | 202 | 0.34 | 835 | 168 | 863 | 107 | 0.58 | 0.62 | 0.96 |
C18:3n6 | 11.6 | 5.78 | 10.2 | 4.8 | 0.47 | 10.9 | 4.08 | 10.7 | 4.06 | 0.87 | 0.69 | 0.79 |
C18:3n3 | 18.9 | 6.09 | 14.2 | 3.5 | 0.01 | 17.2 | 7.29 | 22.1 | 6.53 | 0.06 | 0.48 | 0.00 |
C20:0 | 7.29 | 1.51 | 8.0 | 1.5 | 0.2 | 7.08 | 1.3 | 7.48 | 1.78 | 0.49 | 0.69 | 0.38 |
C20:1n9c | 7.23 | 0.93 | 6.52 | 0.8 | 0.03 | 7.21 | 1.28 | 7.49 | 1.36 | 0.55 | 0.96 | 0.02 |
C20:2n6 | 12.5 | 4.03 | 12 | 2.6 | 0.64 | 10.8 | 3.03 | 10.9 | 3.12 | 0.96 | 0.2 | 0.3 |
C20:3n3 | 45.4 | 12.5 | 43.1 | 13 | 0.63 | 36.4 | 12.1 | 38.5 | 9.02 | 0.6 | 0.06 | 0.26 |
C20:4n6 | 208 | 56.5 | 195 | 38 | 0.44 | 209 | 59.9 | 197 | 40.6 | 0.53 | 0.99 | 0.87 |
C20:5n3 | 19.6 | 8.83 | 16.3 | 5.8 | 0.22 | 21.7 | 10.5 | 19.3 | 7.58 | 0.47 | 0.56 | 0.21 |
C22:0 | 17.4 | 2.54 | 17.2 | 2.9 | 0.85 | 17.8 | 2.86 | 16.8 | 4.14 | 0.45 | 0.68 | 0.76 |
C24:0 | 18.6 | 2.13 | 18.5 | 2.8 | 0.99 | 21.7 | 20.8 | 17.2 | 2.86 | 0.4 | 0.57 | 0.18 |
C22:6n3 | 40.9 | 11.7 | 40.6 | 12 | 0.93 | 42.7 | 12.6 | 44.1 | 11.7 | 0.75 | 0.69 | 0.4 |
C24:1n9 | 34.2 | 7.37 | 32.0 | 4.6 | 0.33 | 31.6 | 10.2 | 31.2 | 9.4 | 0.91 | 0.43 | 0.76 |
Σ FA | 2654 | 486 | 2656 | 377 | 0.99 | 2668 | 517 | 2863 | 496 | 0.29 | 0.94 | 0.19 |
Σ SFA | 801 | 176 | 810 | 104 | 0.87 | 800 | 155 | 885 | 229 | 0.24 | 0.98 | 0.24 |
Σ MUFA | 685 | 174 | 649 | 94.0 | 0.47 | 684 | 175 | 772 | 213 | 0.22 | 0.98 | 0.04 |
Σ PUFA | 1167 | 162 | 1197 | 218 | 0.67 | 1184 | 230 | 1206 | 141 | 0.75 | 0.82 | 0.9 |
Σ n-3 PUFA | 125 | 22.2 | 114 | 19.0 | 0.16 | 118 | 25.4 | 124 | 21 | 0.48 | 0.44 | 0.18 |
Σ n-6 PUFA | 1043 | 148 | 1083 | 214 | 0.55 | 1066 | 215 | 1082 | 126 | 0.8 | 0.73 | 0.98 |
FA-profile | Start | Final | Start/Final | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Controls | Intervention | Controls | Intervention | Controls | Intervention | |||||||
Mean | SD | Mean | SD | p | Mean | SD | Mean | SD | p | p | p | |
C14:0 | 7.54 | 1.06 | 7.6 | 1.27 | 0.89 | 6.88 | 1.26 | 6.95 | 1.31 | 0.89 | 0.13 | 0.16 |
C16:0 | 405 | 24.5 | 418 | 28.1 | 0.2 | 329 | 91.3 | 374 | 20.8 | 0.06 | 0.00 | 0.00 |
C16:1n7 | 4.71 | 0.65 | 5.65 | 1.81 | 0.07 | 4.71 | 0.73 | 5.41 | 1.21 | 0.06 | 0.97 | 0.67 |
C18:0 | 273 | 18.4 | 271 | 16 | 0.73 | 238 | 11.4 | 242 | 14.6 | 0.49 | 0.00 | 0.00 |
C18:1n9c | 230 | 20.2 | 238 | 21 | 0.28 | 206 | 17.2 | 204 | 52 | 0.89 | 0.00 | 0.02 |
C18:1n7c | 23.4 | 2.69 | 24.1 | 2.29 | 0.46 | 21.8 | 1.36 | 21.3 | 5.27 | 0.71 | 0.05 | 0.06 |
C18:2n6cc | 184 | 35.7 | 197 | 26.9 | 0.27 | 173 | 16.8 | 187 | 17.5 | 0.04 | 0.3 | 0.23 |
C18:3n3 | 2.71 | 0.81 | 2.45 | 0.92 | 0.42 | 2.25 | 0.42 | 2.66 | 0.6 | 0.04 | 0.06 | 0.46 |
C20:0 | 8.34 | 1.14 | 8.22 | 1.09 | 0.76 | 7.28 | 0.64 | 7.99 | 1.07 | 0.03 | 0.00 | 0.56 |
C20:1n9c | 4.95 | 0.93 | 4.88 | 0.65 | 0.81 | 3.7 | 1.94 | 5.36 | 1.39 | 0.01 | 0.03 | 0.22 |
C20:2n6 | 6.48 | 1.22 | 7.18 | 1.06 | 0.1 | 5.78 | 0.45 | 6.11 | 0.58 | 0.08 | 0.04 | 0.00 |
C20:3n3 | 27.4 | 4.99 | 29.7 | 6.28 | 0.27 | 27 | 4.09 | 28.3 | 4.53 | 0.38 | 0.78 | 0.47 |
C20:4n6 | 240 | 64.3 | 253 | 54.7 | 0.53 | 274 | 34.6 | 272 | 33.9 | 0.83 | 0.08 | 0.26 |
C20:5n3 | 9.18 | 4.45 | 8.48 | 3.35 | 0.63 | 11.4 | 3.52 | 11.1 | 3.48 | 0.79 | 0.13 | 0.04 |
C22:0 | 29.5 | 2.56 | 30.1 | 2.98 | 0.59 | 24.9 | 1.95 | 26.3 | 2 | 0.06 | 0.00 | 0.00 |
C24:0 | 75.5 | 12 | 75.4 | 8.56 | 0.98 | 69.1 | 4.4 | 69.5 | 7.41 | 0.83 | 0.06 | 0.05 |
C22:6n3 | 60 | 22.9 | 60.6 | 19.3 | 0.94 | 72.9 | 16.2 | 76.7 | 16.3 | 0.52 | 0.09 | 0.02 |
C24:1n9 | 78.4 | 9.35 | 81.1 | 11.5 | 0.49 | 77.3 | 5.14 | 79.7 | 8.9 | 0.36 | 0.68 | 0.71 |
Σ FA | 1670 | 164 | 1722 | 144 | 0.35 | 1556 | 92.7 | 1626 | 107 | 0.06 | 0.03 | 0.04 |
Σ SFA | 799 | 42.7 | 810 | 49.7 | 0.52 | 675 | 88.2 | 727 | 39.6 | 0.04 | 0.00 | 0.00 |
Σ MUFA | 341 | 22.5 | 353 | 29.8 | 0.21 | 313 | 18.9 | 316 | 59.8 | 0.89 | 0.00 | 0.03 |
Σ PUFA | 529 | 124 | 558 | 94.8 | 0.47 | 567 | 56 | 584 | 53.3 | 0.41 | 0.3 | 0.36 |
Σ n-3 PUFA | 99.3 | 29.1 | 101 | 26.6 | 0.85 | 114 | 18.7 | 119 | 20.5 | 0.46 | 0.12 | 0.05 |
Σ n-6 PUFA | 430 | 97 | 457 | 70.3 | 0.38 | 453 | 41.5 | 465 | 41.3 | 0.46 | 0.4 | 0.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaček, M.; Hrnčířová, D.; Rambousková, J.; Dlouhý, P.; Tůma, P. Effect of Food with Low Enrichment of N-3 Fatty Acids in a Two-Month Diet on the Fatty Acid Content in the Plasma and Erythrocytes and on Cardiovascular Risk Markers in Healthy Young Men. Nutrients 2020, 12, 2207. https://doi.org/10.3390/nu12082207
Jaček M, Hrnčířová D, Rambousková J, Dlouhý P, Tůma P. Effect of Food with Low Enrichment of N-3 Fatty Acids in a Two-Month Diet on the Fatty Acid Content in the Plasma and Erythrocytes and on Cardiovascular Risk Markers in Healthy Young Men. Nutrients. 2020; 12(8):2207. https://doi.org/10.3390/nu12082207
Chicago/Turabian StyleJaček, Martin, Dana Hrnčířová, Jolana Rambousková, Pavel Dlouhý, and Petr Tůma. 2020. "Effect of Food with Low Enrichment of N-3 Fatty Acids in a Two-Month Diet on the Fatty Acid Content in the Plasma and Erythrocytes and on Cardiovascular Risk Markers in Healthy Young Men" Nutrients 12, no. 8: 2207. https://doi.org/10.3390/nu12082207
APA StyleJaček, M., Hrnčířová, D., Rambousková, J., Dlouhý, P., & Tůma, P. (2020). Effect of Food with Low Enrichment of N-3 Fatty Acids in a Two-Month Diet on the Fatty Acid Content in the Plasma and Erythrocytes and on Cardiovascular Risk Markers in Healthy Young Men. Nutrients, 12(8), 2207. https://doi.org/10.3390/nu12082207