Rheological Characteristics of Soluble Fibres during Chemically Simulated Digestion and their Suitability for Gastroparesis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Equipment
2.2. Chemicals and Reagents
2.3. Experimental Procedure
2.4. Rheological Method
2.5. Data Acquisition and Analysis
3. Results
3.1. Rheological Plots
3.2. Rheological Yield Points
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wieckert, M.O.; Pfeiffer, A.F.H. Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.K.; Koh-Banerjee, P.; Hu, F.B.; Franz, M.; Sampson, L.; Gronbaeck, M.; Rimm, E.B. Intakes of whole grains, bran, and germ and the risk of coronary heart disease in men. Am. J. Clin. Nutr. 2004, 80, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Dahm, C.C.; Keogh, R.H.; Spencer, E.A.; Greenwood, D.C.; Key, T.J.; Fentiman, I.S.; Shipley, M.J.; Brunner, E.J.; Cade, J.E.; Burley, V.J.; et al. Dietary Fiber and colorectal cancer risk: A Nested case–control Study Using Food Diaries. J. Natl. Cancer Inst. 2010, 102, 614–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, N.; Norat, T.; Ferrari, P.; Jenab, M.; Bueno-de-Mesquita, B.; Skeie, G.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tonneland, A.; et al. Dietary Fibre Intake and Risks of Cancers of the Colon and Rectum in the European Prospective Investigation into Cancer and Nutrition (EPIC). PLoS ONE 2012, 7, e39361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; Australian Government Department of Health: Canberra, Australia, 2017. Available online: https://www.nhmrc.gov.au/about-us/publications/nutrient-reference-values-australia-and-new-zealand-including-recommended-dietary-intakes/ (accessed on 1 March 2020).
- Howarth, N.C.; Saltzman, E.; Roberts, S.B. Dietary Fiber and Weight Regulation. Nutr. Rev. 2001, 59, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors. Nutrients 2018, 10, 599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera-Bastos, P.; Fontes-Villalba, M.; O’Keefe, J.H.; Lindeberg, S.; Cordain, L. The western diet and lifestyle and diseases of civilization. Res. Rep. Clin. Cardiol. 2011, 2, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [Green Version]
- Chater, P.I.; Wilcox, M.D.; Pearson, P.J.; Brownlee, I.A. The impact of dietary fibres on the physiological processes governing small intestinal digestive processes. Bioact. Carbohydr. Diet. Fibre. 2015, 6, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Morozov, S.; Isakov, V.; Konovalova, M. Fiber-enriched diet helps to control symptoms and improves esophageal motility in patients with non-erosive gastroesophageal reflux disease. World J. Gastroenterol. 2018, 24, 2291–2299. [Google Scholar] [CrossRef]
- Tamargo, A.; Cueva, C.; Alvarez, M.D.; Herranz, B.; Moreno-Arribas, M.V.; Laguna, L. Physical effects of dietary fibre on simulated luminal flow, studied by in vitro dynamic gastrointestinal digestion and fermentation. Food Funct. 2019, 10, 3452–3465. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.S.; Byrne, C.S.; Morrison, D.J.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut 2019, 68, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W.; McKeown, N.M. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Salhy, M.; Ystad, S.O.; Mazzawi, T.; Gundersen, D. Dietary fiber in irritable bowel syndrome (Review). Int. J. Mol. Med. 2017, 40, 607–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikeman, C.L.; Murphy, M.R.; Fahey, G.C. Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J. Nutr. 2006, 136, 913–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef] [Green Version]
- Parrish, C.R.; McCray, S. Gastroparesis & nutrition: The art. Pract. Gastroenterol. 2011, 35, 26–41. [Google Scholar]
- Müller, M.; Canfora, E.E.; Blaak, E.E. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients 2018, 10, 275. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Ke, M.Y.; Li, W.H.; Zhang, S.Q.; Fang, X.C. The impact of soluble dietary fibre on gastric emptying, postprandial blood glucose and insulin in patients with type 2 diabetes. Asia. Pac. J. Clin. Nutr. 2014, 23, 210–218. [Google Scholar] [CrossRef]
- Benini, L.; Castellani, G.; Brighenti, F.; Heaton, K.W.; Brentegani, M.T.; Casiraghi, M.C.; Sembenini, C.; Pellegrini, N.; Fioretta, A.; Minniti, G.; et al. Gastric emptying of a solid meal is accelerated by the removal of dietary fibre naturally present in food. Gut 1995, 36, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Waseem, S.; Moshiree, B.; Draganov, P.V. Gastroparesis: Current diagnostic challenges and management considerations. World J. Gastroenterol. 2009, 15, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Ménard, O.; Famelart, M.H.; Deglaire, A.; Le Gouar, Y.; Guerin, S.; Malbert, C.H.; Dupont, D. Gastric Emptying and Dynamic In Vitro Digestion of Drinkable Yogurts: Effect of Viscosity and Composition. Nutrients 2018, 10, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fass, R.; McCallum, R.W.; Parkman, H.P. Treatment Challenges in the Management of Gastroparesis-Related GERD. Gastroenterol. Hepatol. 2009, 10, 4–16. [Google Scholar]
- Poutanen, K.S.; Fiszman, S.; Marsaux, C.F.M.; Pentikainen, S.P.; Steinert, R.E.; Mela, D.J. Recommendations for characterization and reporting of dietary fibers in nutrition research. Am. J. Clin. Nutr. 2018, 108, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Augusto, P.E.D.; Cristianini, M.; Ibarz, A. Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp. J. Food Eng. 2012, 108, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Repin, N.; Cui, S.W.; Goff, H.W. Rheological behavior of dietary fibre in simulated small intestinal conditions. Food Hyd. 2018, 76, 216–225. [Google Scholar] [CrossRef]
- Yoon, S.J.; Chu, D.C.; Raj Juneja, L. Chemical and physical properties, safety and application of partially hydrolized guar gum as dietary fiber. J. Clin. Biochem. Nutr. 2008, 42, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Babiker, R.; Merghani, T.H.; Elmusharaf, K.; Badi, R.M.; Lang, F.; Saeed, A.M. Effects of Gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: Two-arm randomized, placebo controlled, double-blind trial. Nutr. J. 2012, 11, 111. [Google Scholar] [CrossRef]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [Green Version]
- Logan, K.; Wright, A.J.; Goff, H.D. Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food Funct. 2015, 6, 63–71. [Google Scholar] [CrossRef]
- Fabek, H. Effect of In Vitro Human Digestion on the Viscosity of Hydrocolloids in Solution: A Dietary Fibre Study. Master’s Thesis, The University of Guelph, Guelph, ON, Canada, 2011. Available online: https://atrium.lib.uoguelph.ca/xmlui/handle/10214/3094/ (accessed on 1 April 2020).
- Poutanen, K.S.; Dussort, P.; Erkner, A.; Fiszman, S.; Karnik, K.; Kristensen, M.; Marsaux, C.F.M.; Miquel-Kergoat, S.; Pentikainen, S.P.; Putz, P.; et al. A review of the characteristics of dietary fibers relevant to appetite and energy intake outcomes in human intervention trials. Am. J. Clin. Nutr. 2017, 106, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.E.; Hartman, C.W.; Fincher, J.H. Dialysis of Ephedrine and Pentobarbital from Whole Human Saliva and Simulated Saliva. J. Pharm. Sci. 1971, 60, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camilleri, M.; Parkman, H.P.; Shafi, M.A.; Abell, T.L.; Gerson, L. Clinical guideline: Management of gastroparesis. Am. J. Gastroenterol. 2013, 108, 18–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa-Canovas, G.V.; Kokini, J.L.; Ma, L.; Ibarz, A. The Rheology of Semiliquid Foods. Adv. Food Nutr. Res. 1996, 39, 1–69. [Google Scholar] [CrossRef] [PubMed]
- Kravchuk, O.; Stokes, J.R. Review of algorithms for estimating the gap error correction in narrow gap parallel plate rheology. J. Rheol. 2013, 57, 365. [Google Scholar] [CrossRef]
- De Souza Mendes, P.R.; Alicke, A.A.; Thompson, R.L. Parallel-plate Geometry Correction for Transient Rheometric Experiments. Appl. Rheol. 2014, 24, 52721. [Google Scholar] [CrossRef]
- Doraiswamy, D.; Mujumdar, A.N.; Tsao, I.; Beris, A.N.; Danforth, S.C.; Metzner, A.B. The Cox–Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stress. J. Rheol. 1991, 35, 647–685. [Google Scholar] [CrossRef]
- Li, S.-P.; Zhao, G.; Chen, H.-Y. The Relationship between Steady Shear Viscosity and Complex Viscosity. J. Disp. Sci. Technol. 2005, 26, 415–419. [Google Scholar] [CrossRef]
- Cox, W.P.; Merz, E.H. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 1958, 28, 619–622. [Google Scholar] [CrossRef]
- Li, X.; Fang, Y.; Zhang, H.; Nishinari, K.; Al-Assaf, S.; Phillips, G.O. Rheological properties of gum arabic solution: From Newtonianism to thixotropy. Food Hydrocoll. 2011, 25, 293–298. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. Disintegration of solid foods in human stomach. J. Food Sci. 2008, 73, R67–R80. [Google Scholar] [CrossRef] [PubMed]
- Olausson, E.A.; Alpsten, M.; Larsson, A.; Mattson, H.; Andersson, H.; Attvall, S. Small particle size of a solid meal increases gastric emptying and late postprandial glycaemic response in diabetic subjects with gastroparesis. Diabetes Res. Clin. Pract. 2008, 80, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Olausson, E.A.; Störsrud, S.; Grundin, H.; Isaksson, M.; Attvall, S.; Simren, M. A small particle size diet reduces upper gastrointestinal symptoms in patients with diabetic gastroparesis: A randomized controlled trial. Am. J. Gastroenterol. 2014, 109, 375–385. [Google Scholar] [CrossRef]
- Abrahamsson, H. Treatment options for patients with severe gastroparesis. Gut 2007, 56, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications-A Review. J. Food Sci. Technol. 2014, 51, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Texture profile analysis of yogurt as influenced by partially hydrolyzed guar gum and process variables. J. Food Sci. Technol. 2017, 54, 3810–3817. [Google Scholar] [CrossRef]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carb. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, J.; Ramaswamy, H.S.; Ngadi, M.O. Rheological Characteristics of Arabic Gum in Combination with Guar and Xanthan Gum Using Response Surface Methodology: Effect of Temperature and Concentration. Int. J. Food Prop. 2005, 8, 179–192. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Fang, Y.; Al-Assaf, S.; Phillips, G.O.; Nishinari, K. Gum Arabic, 1st ed.; Royal Society of Chemistry Publishing: Cambridge, UK, 2011; pp. 229–238. [Google Scholar]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Tech. 2012, 49, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindman, B.; Medronho, B.; Alves, L.; Costa, C.; Edlund, H.; Norgren, M. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys. Chem. Chem. Phys. PCCP 2017, 19, 23704–23718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grein, A.; da Silva, B.C.; Wendel, C.F.; Tischer, C.A.; Sierakowski, M.R.; Moura, A.B.D.; Iacomini, M.; Gorin, P.A.J.; Simas-Tosin, F.F.; Riegel-Vidotti, I.C. Structural characterization and emulsifying properties of polysaccharides of Acacia mearnsii de Wild gum. Carb. Polym. 2013, 92, 312–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, R.C. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Warwicker, J.O.; Wright, A.C. Function of sheets of cellulose chains in swelling reactions on cellulose. J. Appl. Polym. Sci. 1967, 11, 659–671. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Coimbra, M.A.; Lopes da Silva, J.A. Temperature dependence of the formation and melting of pectin–Ca2+ networks: A rheological study. Food Hydrocoll. 2003, 17, 801–807. [Google Scholar] [CrossRef]
- Dea, I.M.C. Industrial Gums, 3rd ed.; Academic Press: Cambridge, MA, USA, 1993; pp. 21–52. [Google Scholar]
- Guo, M.Q.; Hu, X.; Wang, C.; Ai, L. Solubility of Polysaccharides, 1st ed.; Intech Open: London, UK, 2017; pp. 7–21. [Google Scholar]
- Kara, S.; Arda, E.; Kavzak, B.; Pekcan, O. Phase transitions of κ-carrageenan gels in various types of salts. J. Appl. Polym. Sci. 2006, 102, 3008–3016. [Google Scholar] [CrossRef]
- Cooper, P.D.; Barclay, T.G.; Ginic-Markovic, M.; Petrovsky, N. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions. Glycobiology 2013, 23, 1164–1174. [Google Scholar] [CrossRef]
- Cooper, P.D.; Barclay, T.G.; Ginic-Markovic, M.; Gerson, A.R.; Petrovsky, N. Inulin isoforms differ by repeated additions of one crystal unit cell. Carb. Polym. 2014, 103, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Petroski, N. Immunopotentiators in Modern Vaccines, 2nd ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 199–210. [Google Scholar]
- Fedewa, A.; Rao, S.S. Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr. Gastroenterol. Rep. 2014, 16, 370. [Google Scholar] [CrossRef] [Green Version]
- Coudray, C.; Tressol, J.C.; Gueux, E.; Rayssiguier, Y. Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur. J. Nutr. 2003, 42, 91–98. [Google Scholar] [CrossRef]
- Fischer, M.H.; Yu, N.; Gray, G.R.; Ralph, J.; Anderson, L.; Marlett, J.A. The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carb. Res. 2004, 339, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Anttila, H.; Sontag-Strohm, T.; Salovaara, H. Viscosity of beta-glucan in oat products. Agric. Food Sci. 2004, 13, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Zarzycki, P.; Sobota, A. Effect of pH on Apparent Viscosity of Wholemeal Oat Flour Water Dispersions. Int. J. Food Prop. 2014, 18, 303–315. [Google Scholar] [CrossRef]
- Chaplin, M.F. Fibre and water binding. Proc. Nutr. Soc. 2003, 62, 223–227. [Google Scholar] [CrossRef]
- Mizrahi, S. Chemical Deterioration and Physical Instability of Food and Beverages, 1st ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 324–348. [Google Scholar]
- Faintuch, J.; Faintuch, S. Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications, 1st ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
Product (Name) Qty (per 100 g) | Commercial Supplier (Name) | Total Dietary Fibre (%) | Energy (kJ) | Carbohydrates, Sugars (g) | Protein (g) | Total Fat, Saturated Fat (g) | Essential Nutrients (mg) * |
---|---|---|---|---|---|---|---|
Guar gum | Ceres Organics | 77.3 | 743.0 | 0.5, 0.5 | 4.7 | 0.3, 0.0 | 13.0 |
Iota-carrageenan | The Melbourne Food Ingredient Depot | 76.0 | 1298.0 | 76.0, 0.0 | 0.0 | 0.0, 0.0 | 640.0 |
Xanthan gum | Myprotein | 62.0 | 832.0 | 78.0, 0.0 | 3.3 | 0.0, 0.0 | 0.0 |
Psyllium husk | SF Health Foods | 80.0 | 802.0 | 0.0, 0.0 | 3.0 | 3.0, 0.0 | 79.0 |
Citrus pectin | Lotus Pantry | 55.0 | 1005.0 | 30.0, 30.0 | 0.0 | 0.0, 0.0 | 1000.0 |
Beta-glucan | Blooms Health Products | 44.0 | 1251.0 | 22.0, 0.0 | 20.0 | 5.0, 1.0 | 1088.0 |
Apple-fibre pectin | Myprotein | 40.0 | 1850.0 | 90.0, 40.0 | 0.0 | 0.0, 0.0 | 0.0 |
Inulin | Myprotein | 89.0 | 848.0 | 8.0, 8.0 | 0.0 | 0.0, 0.0 | 0.0 |
Gum Arabic | New Directions Australia | 80.0 | 1339.0 | 80.0, 0.0 | 0.0 | 0.0, 0.0 | 0.0 |
Partially hydrolysed guar gum (PHGG) | Healthy Origins | 80.0 | 1691.0 | 93.0, 13.0 | 0.0 | 0.0, 0.0 | 0.0 |
Dietary Fibre (Name) | Measurement Concentration (mg/mL) | Sample State at Measured Concentration | Rheological Behaviour at Concentration | Shear Stress Increment (Pa/s) | Initial Applied Shear Stress (Pa) | Final Applied Shear Stress (Pa) | Measurement Time Period (s) |
---|---|---|---|---|---|---|---|
Guar gum | 50.0 | Colloidal gel | Pseudoplastic | 30.0 | 400.0 | 1200.0 | 26.6 |
Iota-carrageenan | 50.0 | Colloidal gel | Pseudoplastic | 25.0 | 400.0 | 1300.0 | 36.0 |
Xanthan gum | 50.0 | Hydrocolloid paste | Pseudoplastic | 20.0 | 50.0 | 400.0 | 17.5 |
Psyllium husk | 50.0 | Hydrocolloid paste | Pseudoplastic | 4.0 | 1.0 | 180.0 | 44.8 |
Citrus pectin | 200.0 | Hydrocolloid paste | Pseudoplastic | 100.0 | 1500.0 | 3900.0 | 24.0 |
Beta-glucan | 200.0 | Hydrocolloid paste | Pseudoplastic | 20.0 | 100.0 | 900.0 | 40.0 |
Apple-fibre pectin | 200.0 | Hydrocolloid paste | Pseudoplastic | 1.0 | 1.0 | 100.0 | 99.0 |
Inulin | 1000.0 | Hydrocolloid paste | Pseudoplastic | 8.0 | 20.0 | 240.0 | 27.5 |
Gum Arabic | 1000.0 | Hydrocolloid paste | Dilatant | 0.4 | 10.0 | 50.0 | 100.0 |
Partially hydrolysed guar gum (PHGG) | 1000.0 | Hydrocolloid paste | Dilatant | 0.4 | 10.0 | 40.0 | 75.0 |
Dietary Fibre (Name) | Sample Concentration (mg/mL) a | Rheological Condition (pH; time point) b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Distilled Water (pH 7; 30 min) | Simulated Digestion (pH 4; 30 min) | Simulated Digestion (pH 2; 30 min) | Simulated Digestion (pH 4; 60 min) | Simulated Digestion (pH 2; 60 min) | |||||||
τy (Pa) ± (%RSD) | Gc (Pa) ± (%RSD) | τy (Pa) ± (%RSD) | Gc (Pa) ± (%RSD) | τy (Pa) ± (%RSD) | Gc (Pa) ± (%RSD) | τy (Pa) ± (%RSD) | Gc (Pa) ± (%RSD) | τy (Pa) ± (%RSD) | Gc (Pa) ± (%RSD) | ||
Guar gum | 50.0 | 994.51 (4.56) | 1573.43 (5.46) | 1011.12 (6.01) | 796.77 (4.31) | 946.93 (2.14) | 810.08 (9.31) | 1057.50 (3.02) | 872.16 (7.47) | 975.59 (5.91) | 807.69 (7.28) |
Iota-carrageenan | 50.0 | 700.08 (4.30) | 819.82 (2.18) | 758.00 (0.95) | 2050.50 (7.79) | 1232.03 (4.16) | 782.68 (8.07) | 921.82 (1.85) | 1480.77 (9.95) | 1068.17 (7.18) | 528.68 (5.28) |
Xanthan gum | 50.0 | 156.89 (7.16) | 114.16 (7.48) | 160.99 (6.63) | 125.16 (9.63) | 180.37 (3.94) | 129.33 (4.41) | 174.83 (1.47) | 139.27 (11.63) | 183.16 (9.40) | 128.65 (11.64) |
Psyllium husk | 50.0 | 56.31 (6.78) | 134.31 (3.12) | 51.38 (9.49) | 117.06 (4.04) | 80.85 (4.19) | 119.94 (0.88) | 62.70 (9.90) | 116.84 (3.11) | 104.49 (10.24) | 123.44 (1.66) |
Citrus pectin | 200.0 | 3049.43 (5.36) | 2043.93 (6.72) | 2848.50 (8.41) | 2234.63 (1.99) | 2996.10 (9.38) | 2036.47 (6.30) | 2725.07 (12.81) | 1578.80 (1.97) | 2911.83 (3.50) | 1743.17 (8.00) |
Beta-glucan | 200.0 | 544.58 (6.08) | 2938.67 (1.22) | 454.57 (3.41) | 2653.37 (2.88) | 419.02 (7.57) | 2427.70 (9.47) | 614.19 (3.88) | 2952.63 (1.11) | 545.38 (5.28) | 2784.37 (6.67) |
Apple-fibre pectin | 200.0 | 23.27 (8.49) | 343.67 (11.80) | 19.29 (2.53) | 226.21 (11.16) | 22.99 (4.88) | 295.24 (5.07) | 39.27 (6.56) | 451.10 (9.76) | 36.51 (2.13) | 385.13 (10.23) |
Inulin | 1000.0 | 47.36 (4.64) | 98.01 (9.52) | 103.87 (7.40) | 151.04 (9.14) | 105.15 (6.37) | 143.09 (8.68) | 123.48 (0.94) | 222.70 (1.07) | 126.41 (4.22) | 197.24 (1.03) |
Gum Arabic | 1000.0 | 31.76 (7.94) | 794.02 (6.41) | 36.09 (5.39) | 805.88 (2.53) | 33.83 (4.36) | 815.66 (4.55) | 35.66 (8.82) | 784.39 (8.11) | 31.15 (8.08) | 893.63 (5.75) |
Partially hydrolysed guar gum (PHGG) | 1000.0 | 20.01 (7.52) | 1460.33 (3.79) | 21.99 (9.00) | 1504.47 (4.17) | 20.55 (8.78) | 1699.07 (2.86) | 23.51 (4.28) | 1522.40 (3.29) | 21.22 (2.30) | 1904.53 (10.41) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suresh, H.; Ho, V.; Zhou, J. Rheological Characteristics of Soluble Fibres during Chemically Simulated Digestion and their Suitability for Gastroparesis Patients. Nutrients 2020, 12, 2479. https://doi.org/10.3390/nu12082479
Suresh H, Ho V, Zhou J. Rheological Characteristics of Soluble Fibres during Chemically Simulated Digestion and their Suitability for Gastroparesis Patients. Nutrients. 2020; 12(8):2479. https://doi.org/10.3390/nu12082479
Chicago/Turabian StyleSuresh, Harsha, Vincent Ho, and Jerry Zhou. 2020. "Rheological Characteristics of Soluble Fibres during Chemically Simulated Digestion and their Suitability for Gastroparesis Patients" Nutrients 12, no. 8: 2479. https://doi.org/10.3390/nu12082479
APA StyleSuresh, H., Ho, V., & Zhou, J. (2020). Rheological Characteristics of Soluble Fibres during Chemically Simulated Digestion and their Suitability for Gastroparesis Patients. Nutrients, 12(8), 2479. https://doi.org/10.3390/nu12082479