Assessment of Changes over Time of Lipid Profile, C-Reactive Protein Level and Body Mass Index in Teenagers and Young Adults on Different Diets Belonging to Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Variables
2.2. Statistics
3. Results
4. Discussion
Advantages, Limitations and Future Challenges of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Autism Spectrum Disorder (ASD). What Is ASD? Available online: https://www.cdc.gov/ncbddd/autism/facts.html (accessed on 25 March 2020).
- Narzisi, A.; Muratori, F.; Calderoni, S.; Fabbro, F.; Urgesi, C. Neuropsychological profile in high functioning autism spectrum disorders. J. Autism Dev. Disord. 2013, 43, 1895–1909. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S. Editorial Perspective: Neurodiversity—A Revolutionary Concept for Autism and Psychiatry. J. Child Psychol. Psychiatry Allied Discip. 2017, 58, 744–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almandil, N.B.; Alkuroud, D.N.; AbdulAzeez, S.; Alsulaiman, A.; Elaissari, A.; Borgio, J.F. Environmental and Genetic Factors in Autism Spectrum Disorders: Special Emphasis on Data from Arabian Studies. Int. J. Environ. Res. Public Health 2019, 16, 658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, G.; Steer, C.; Golding, J. Social and Demographic Factors That Influence the Diagnosis of Autistic Spectrum Disorders. Soc. Psychiatry Psychiatr. Epidemiol. 2011, 46, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Błażewicz, A.; Makarewicz, A.; Korona-Głowniak, I.; Dolliver, W.; Kocjan, R. Iodine in autism spectrum disorders. J. Trace Elem. Med. Biol. 2016, 34, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, M.; Gina, D. Nutritional Intake and Therapies in Autism-A Spectrum of What We Know: Part 1. ICAN Infant Child Adolesc. Nutr. 2010, 2, 62–69. [Google Scholar] [CrossRef]
- Rodriguez, R.L.; Albeck, J.G.; Taha, A.Y.; Ori-McKenney, K.M.; Recanzone, G.H.; Stradleigh, T.W.; Hernandez, B.C.; Tang, F.V.; Chiang, E.I.; Cruz-Orengo, L. Impact of diet-derived signaling molecules on human cognition: Exploring the food-brain axis. NPJ Sci. Food 2017, 1, 2. [Google Scholar] [CrossRef]
- Wasilewska, J.; Klukowski, M. Gastrointestinal symptoms and autism spectrum disorder: Links and risks—A possible new overlap syndrome. Pediatric Health Med. Ther. 2015, 6, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Mazahery, H.; Camargo, C.A.; Conlon, C.; Beck, K.L.; Kruger, M.C.; von Hurst, P.R. Vitamin D and Autism Spectrum Disorder: A Literature Review. Nutrients 2016, 8, 236. [Google Scholar] [CrossRef]
- Gunes, S.; Ekinci, O.; Celik, T. Iron deficiency parameters in autism spectrum disorder: Clinical correlates and associated factors. Ital. J. Pediatr. 2017, 43, 86. [Google Scholar] [CrossRef]
- Raymond, L.J.; Deth, R.C.; Ralston, N.V. Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. Autism Res. Treat. 2014, 2014, 164938. [Google Scholar] [CrossRef] [Green Version]
- Skalny, A.; Skalnaya, M.; Bjorklund, G.; Gritsenko, V.; Aaseth Jan Tinkov, A. Selenium and Autism Spectrum Disorder. In Selenium; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Frye, R.; De La Torre, R.; Taylor, H.; Slattery, J.; Melnyk, S.; Chowdhury, N.; James, S.J. Redox Metabolism Abnormalities in Autistic Children Associated with Mitochondrial Disease. Transl. Psychiatry 2013, 18, e273. [Google Scholar] [CrossRef]
- Mierau, S.B.; Neumeyer, A.M. Metabolic Interventions in Autism Spectrum Disorder. Neurobiol. Dis. 2019, 132, 104544. [Google Scholar] [CrossRef]
- Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front. Nutr. 2018, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, S.; Nasser, J. Nutritional Status of Individuals with Autism Spectrum Disorders: Do We Know Enough? Adv. Nutr. 2015, 6, 397–407. [Google Scholar] [CrossRef]
- Matson, J.L.; Williams, L.W. Differential Diagnosis and Comorbidity: Distinguishing Autism from Other Mental Health Issues. Neuropsychiatry 2013, 3, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Geraghty, M.E.; Bates-Wall, J.; Ratliff-Schaub, K.; Lane, A.E. Nutritional Interventions and Therapies in Autism-A Spectrum of What We Know: Part 2. ICAN Infant Child Adolesc. Nutr. 2010, 2, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Onaolapo, O.J.; Onaolapo, A.Y. Nutrition in autism spectrum disorders: A review of evidences for an emerging central role in aetiology, expression, and management. AIMS Med. Sci. 2018, 5, 122–144. [Google Scholar] [CrossRef]
- Marti, L.F. Dietary interventions in children with autism spectrum disorders—An updated review of the research evidence. Curr. Clin. Pharmacol. 2014, 9, 335–349. [Google Scholar] [CrossRef]
- Kawicka, A.; Regulska-Ilow, B. How nutrition status, diet and dietary supplements can affect autism. A review. Rocz. Panstw. Zakl. Hig. 2013, 64, 1–12. [Google Scholar]
- Curtis, L.T.; Patel, K. Nutritional and environmental approaches to preventing and treating autism and attention deficit hyperactivity disorder (ADHD): A review. J. Altern. Complement. Med. 2008, 14, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Meguid, N.; Anwar, M.; Zaki, S.; Kandeel, W.; Ahmed, N.; Tewfik, I. Dietary Patterns of Children with Autism Spectrum Disorder: A Study Based in Egypt. OA Maced. J. Med. Sci. 2015, 3, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aneja, A.; Tierney, E. Autism: The role of cholesterol in treatment. Int. Rev. Psychiatry 2008, 20, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Neggers, Y.H.; Shin, C.S.; Kim, E.; Kim, E.M. Alterations in Lipid Profile of Autistic Boys: A Case Control Study. Nutr. Res. 2010, 30, 255–260. [Google Scholar] [CrossRef]
- Dziobek, I.; Gold, S.M.; Wolf, O.T.; Convit, A. Hypercholesterolemia in Asperger Syndrome: Independence from Lifestyle, Obsessive-Compulsive Behavior, and Social Anxiety. Psychiatry Res. 2007, 149, 321–324. [Google Scholar] [CrossRef]
- Steeb, H.; Ramsey, J.M.; Guest, P.C. Serum Proteomic Analysis Identifies Sex-Specific Differences in Lipid Metabolism and Inflammation Profiles in Adults Diagnosed with Asperger Syndrome. Mol. Autism 2014, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Gibney, S.M.; Drexhage, H.A. Evidence for a dysregulated immune system in the etiology of psychiatric disorders. Neuroimmune Pharmacol. 2013, 8, 900–920. [Google Scholar] [CrossRef]
- Müller, N.; Schwarz, M.J. Immunology of Schizophrenia. Neuroimmunomodulation 2007, 21, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Sławińska, A. Asperger’s Syndrome in Adults—Similarities with Other Disorders, Comorbid Disorders and Associated Problems. Psychiatr. Psychol. Klin. 2014, 14, 304–307. [Google Scholar] [CrossRef]
- Brigida, A.L.; Schultz, S.; Cascone, M.; Antonucci, N.; Sinisalco, D. Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. Int. J. Mol. Sci. 2017, 18, 1428. [Google Scholar] [CrossRef] [Green Version]
- Siniscalco, D.; Schultz, S.; Brigida, A.L.; Antonucci, N. Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders. Pharmaceuticals 2018, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.S.; Sourander, A.; Hinkka-Yli-Salomäki, S.; McKeague, I.W.; Sundvall, J.; Surcel, H.-M. Increased Maternal C-Reactive Protein and Autism in a National Birth Cohort. Mol. Psychiatry 2014, 19, 259–264. [Google Scholar] [CrossRef]
- Wei, H.; Zou, H.; Sheikh, A.M.; Malik, M.; Dobkin, C.; Brown, W.T. IL-6 Is Increased in the Cerebellum of Autistic Brain and Alters Neural Cell Adhesion, Migration and Synaptic Formation. J. Neuroinflamm. 2011, 19, 52. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, J.H.; Jarskog, F.L.; Vadlamudi, S.; Lauder, J.M. Prenatal Infection and Risk for Schizophrenia: IL-1β, IL-6, and TNFα Inhibit Cortical Neuron Dendrite Development. Neuropsychopharmacology 2004, 29, 1221–1229. [Google Scholar] [CrossRef]
- Goines, P.E.; Croen, L.A. Increased Midgestational IFN-γ, IL-4 and IL-5 in Women Bearing a Child with Autism: A Case-Control Study. Mol. Autism 2011, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, M.W.; Larsen, N.; Grove, J.; Nørgaard-Pedersen, B.; Thorsen, P.; Mortensen, E.L.; Hougaard, D. Amniotic Fluid Chemokines and Autism Spectrum Disorders: An Exploratory Study Utilizing a Danish Historic Birth Cohort. Brain Behav. Immun. 2012, 26, 170–176. [Google Scholar] [CrossRef]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The Effects of Acute Psychological Stress on Circulating and Stimulated Inflammatory Markers: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2017, 64, 208–219. [Google Scholar] [CrossRef]
- Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depress. Anxiety 2013, 30, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Parekh, A.; Smeeth, D.; Milner, Y.; Thure, S. The Role of Lipid Biomarkers in Major Depression. Healthcare 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, H.; Rocha, S.; Rego, C. Leukocyte Count versus C-Reactive Protein Levels in Obese Portuguese Patients Aged 6-12 Years Old. Open Biochem. J. 2010, 4, 72–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, C.A.; Freitas, T.H.; Meas, M.; De Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral Cytokine and Chemokine Alterations in Depression: A Meta-Analysis of 82 Studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.A.; Quig, D.W.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Nutritional and Metabolic Status of Children with Autism vs. Neurotypical Children, and the Association with Autism Severity. Nutr. Metab. 2011, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.; Radysh, I.V.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism. J. Trace Elem. Med. Biol. 2017, 43, 9–14. [Google Scholar] [CrossRef]
- Cekic, H.; Sanlier, N. Current nutritional approaches in managing autism spectrum disorder: A review. Nutr. Neurosci. 2019, 22, 145–155. [Google Scholar] [CrossRef]
- Adams, J.B.; Audhya, T.; Geis, T.; Gehn, E.; Fimbres, V.; Pollard, E.L.; Mitchell, J.; Ingram, J.; Hellmers, R.; Laake, D.; et al. Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder—A Randomized, Controlled 12-Month Trial. Nutrients 2018, 10, 369. [Google Scholar] [CrossRef] [Green Version]
2015–2017 TESTS | |||||||||
---|---|---|---|---|---|---|---|---|---|
Diet | n | Mean | Median | Min | Max | IQR | ATT | ATA | |
Age ** | LFD | 14 (ASD) | 16.6 | 16.0 (p = 0.092) | 15.0 | 20.0 | 2.0 | ||
BMI | 23.9 | 24.0 * (p = 0.044) | 20.0 | 28.0 | 3.0 | 7.1% | |||
CRP | 8.6 | 6.9 * (p < 0.001) | 1.2 | 24.6 | 9.9 | 42.9% | |||
TG | 100.9 | 99.4 * (p = 0.003) | 68.3 | 129.2 | 17.3 | 64.3% | |||
TC | 176.9 | 175.2 (p = 0.154) | 125.8 | 202.3 | 32.9 | 50.0% | |||
HDL-C | 52.2 | 50.5 * (p = 0.029) | 36.4 | 76.8 | 14.6 | 28.6% | |||
non-HDL-C | 124.7 | 123.2 (p = 0.078) | 82.2 | 161.0 | 41.4 | 50.0% | 7.1% | ||
TC/HDL | 3.5 | 3.4 * (p = 0.017) | 2.2 | 5.0 | 1.2 | 28.6% | |||
Age | GF–CF | 10 (ASD) | 17.8 | 18.0 (p = 0.092) | 15.0 | 20.0 | 3.0 | ||
BMI | 24.1 | 24.5 * (p = 0.031) | 20.0 | 27.0 | 2.0 | ||||
CRP | 5.9 | 5.6 * (p = 0.002) | 1.5 | 11.8 | 6.9 | 20.0% | |||
TG | 104.9 | 100.1 (p = 0.088) | 54.9 | 171.3 | 41.4 | 20.0% | 20.0% | ||
TC | 185.6 | 184.7 * (p = 0.047) | 158.9 | 216.2 | 31.6 | 40.0% | 10.0% | ||
HDL-C | 49.8 | 49.5 * (p = 0.167) | 36.5 | 66.5 | 5.7 | 30.0% | |||
non-HDL-C | 135.7 | 129.5 * (p = 0.008) | 103.3 | 175.8 | 48.3 | 40.0% | 30.0% | ||
TC/HDL | 3.9 | 3.6 * (p = 0.007) | 2.6 | 5.5 | 1.6 | 30.0% | |||
Age | RD | 35 (ASD) | 17.3 | 17.0 (p = 0.419) | 15.0 | 21.0 | 3.0 | ||
BMI | 25.1 | 25.0 * (p < 0.001) | 20.0 | 31.0 | 3.0 | 14.3% | |||
CRP | 10.9 | 9.5 * (p < 0.001) | 1.5 | 32.4 | 14.3 | 48.6% | |||
TG | 140.8 | 147.5 * (p < 0.001) | 65.5 | 205.3 | 70.6 | 48.6% | 22.9% | ||
TC | 198.2 | 199.7 * (p < 0.001) | 148.7 | 260.7 | 35.5 | 57.1% | 14.3% | ||
HDL-C | 49.6 | 46.9 * (p < 0.001) | 35.6 | 66.9 | 12.4 | 37.1% | |||
non-HDL-C | 148.6 | 146.0 * (p < 0.001) | 95.5 | 213.8 | 38.1 | 45.7% | 14.3% | ||
TC/HDL | 4.1 | 4.1 * (p < 0.001) | 2.8 | 6.4 | 1.4 | 54.3% | |||
Age | RD | 37 (CG) | 17.6 | 18.0 | 15.0 | 20.0 | 3.0 | ||
BMI | 22.4 | 22.0 | 20.0 | 25.0 | 5.0 | ||||
CRP | 2.0 | 1.5 | 0.0 | 9.1 | 2.4 | ||||
TG | 83.9 | 81.7 | 45.6 | 124.3 | 27.0 | ||||
TC | 170.6 | 167.8 | 128.7 | 199.8 | 15.3 | ||||
HDL-C | 58.7 | 56.8 | 46.3 | 87.6 | 16.1 | ||||
non-HDL-C | 111.9 | 111.9 | 80.0 | 129.8 | 15.4 | ||||
TC/HDL | 3.0 | 2.9 | 2.2 | 3.7 | 0.6 | ||||
2017–2020 TESTS | |||||||||
Diet | n | Mean | Median | Min | Max | IQR | ATT | ATA | |
Age | LFD | 14 (ASD) | 19.6 | 19.0 (p = 0.792) | 18.0 | 23.0 | 2.0 | ||
BMI | 24.4 | 24.5 * (p = 0.029) | 22.1 | 26.0 | 1.0 | 7.1% | |||
CRP | 10.5 | 8.7 * (p < 0.001) | 1.5 | 32.8 | 10.0 | 50.0% | |||
TG | 118.2 | 117.3 (p = 0.128) | 80.7 | 168.2 | 47.2 | 7.1% | 21.4% | ||
TC | 196.2 | 189.7 * (p < 0.001) | 168.9 | 256.8 | 18.9 | 21.4% | 14.3% | ||
HDL-C | 49.5 | 48.8 * (p = 0.021) | 39.8 | 60.5 | 9.2 | 14.3% | |||
non-HDL-C | 146.7 | 138.3 * (p < 0.001) | 116.3 | 211.8 | 24.1 | 21.4% | 64.3% | ||
TC/HDL | 4.0 | 3.9 * (p < 0.001) | 2.9 | 5.7 | 1.1 | 50.0% | |||
Age | GF–CF | 10 (ASD) | 20.8 | 21.0 (p = 0.075) | 18.0 | 23.0 | 3.0 | ||
BMI | 23.7 | 24.5 (p = 0.215) | 20.0 | 26.0 | 3.0 | ||||
CRP | 6.1 | 4.5 (p = 0.057) | 0.5 | 12.5 | 8.4 | 40.0% | |||
TG | 99.5 | 90.5 (p = 0.464) | 71.3 | 184.8 | 19.7 | 10.0% | 10.0% | ||
TC | 192.7 | 197.3 * (p < 0.001) | 160.8 | 211.0 | 9.8 | 10.0% | 20.0% | ||
HDL-C | 45.0 | 44.7 * (p < 0.001) | 36.6 | 60.2 | 8.9 | 60.0% | |||
non-HDL-C | 147.7 | 152.0 * (p < 0.001) | 115.6 | 164.5 | 13.1 | 10.0% | 70.0% | ||
TC/HDL | 4.4 | 4.4 * (p < 0.001) | 2.9 | 5.5 | 0.9 | 80.0% | |||
Age | RD | 33 (ASD) | 19.5 | 20.0 (p = 0.510) | 17.0 | 23.0 | 3.0 | ||
BMI | 25.9 | 25.0 (p < 0.001) | 21.0 | 38.0 | 4.0 | 6.1% | |||
CRP | 9.8 | 9.5 (p < 0.001) | 2.4 | 28.2 | 8.4 | 45.5% | |||
TG | 110.0 | 101.3 (p = 0.241) | 67.2 | 165.4 | 41.4 | 12.1% | 12.1% | ||
TC | 198.8 | 198.7 (p < 0.001) | 156.9 | 260.8 | 54.7 | 12.1% | 30.3% | ||
HDL-C | 46.3 | 44.2 (p < 0.001) | 36.9 | 60.6 | 8.5 | 54.5% | |||
non-HDL-C | 152.5 | 153.6 (p < 0.001) | 96.7 | 216.4 | 60.7 | 15.2% | 57.6% | ||
TC/HDL | 4.4 | 4.4 (p < 0.001) | 2.6 | 6.1 | 2.1 | 60.6% | |||
Age | RD | 36 (CG) | 19.7 | 20.0 | 17.0 | 22.0 | 3.0 | ||
BMI | 23.2 | 24.0 | 20.0 | 26.0 | 2.9 | ||||
CRP | 2.9 | 2.6 | 0.1 | 8.6 | 3.8 | ||||
TG | 100.1 | 99.3 | 56.8 | 145.5 | 27.0 | ||||
TC | 164.5 | 165.7 | 130.6 | 190.9 | 12.4 | ||||
HDL-C | 53.9 | 55.9 | 45.2 | 65.5 | 9.7 | ||||
non-HDL-C | 110.6 | 111.4 | 81.1 | 141.0 | 17.0 | ||||
TC/HDL | 3.1 | 3.1 | 2.4 | 3.8 | 0.5 |
Mean | SD | Age | BMI | CRP | TG | TC | HDL-C | Non-HDL-C | TC/HDL | |
---|---|---|---|---|---|---|---|---|---|---|
Age | 17.4 * | 1.7 | 1.00 | |||||||
19.7 ** | 1.7 | 1.00 | ||||||||
BMI | 23.8 | 2.6 | 0.17 | 1.00 | ||||||
24.4 | 2.6 | 0.04 | 1.00 | |||||||
CRP | 6.6 | 7.2 | −0.07 | 0.19 | 1.00 | |||||
6.8 | 6.5 | −0.03 | 0.19 | 1.00 | ||||||
TG | 109.3 | 38.5 | 0.06 | 0.47 (p = 0.001) | 0.32 (p = 0.01) | 1.00 | ||||
106.3 | 27.6 | −0.02 | 0.21 (p = 0.05) | 0.05 | 1.00 | |||||
TC | 183.1 | 24.2 | 0.25 | 0.28 (p = 0.01) | 0.26 (p = 0.05) | 0.32 (p = 0.01) | 1.00 | |||
184.5 | 27.4 | 0.23 (p = 0.05) | 0.48 (p = 0.001) | 0.30 (p = 0.01) | 0.23 (p = 0.05) | 1.00 | ||||
HDL-C | 53.5 | 10.0 | 0.17 | −0.06 | −0.10 | −0.21 (p = 0.05) | −0.11 | 1.00 | ||
49.6 | 7.1 | −0.13 | −0.37 (p = 0.001) | −0.23 (p = 0.05) | −0.18 | −0.48 (p = 0.001) | 1.00 | |||
non-HDL-C | 129.6 | 27.1 | 0.16 | 0.29 (p = 0.01) | 0.28 (p = 0.01) | 0.34 (p = 0.001) | 0.89 (p = 0.001) | −0.47 (p = 0.001) | 1.00 | |
134.9 | 31.4 | 0.22 (p = 0.05) | 0.49 (p = 0.001) | 0.32 (p = 0.01) | 0.22 (p = 0.05) | 0.95 (p = 0.001) | −0.68 (p = 0.001) | 1.00 | ||
TC/HDL | 3.5 | 0.9 | −0.03 | 0.19 | 0.22 (p = 0.05) | 0.32 (p = 0.01) | 0.57 (p = 0.001) | −0.83 (p = 0.001) | 0.85 (p = 0.001) | 1.00 |
3.8 | 1.0 | 0.17 | 0.47 (p = 0.001) | 0.31 (p = 0.01) | 0.22 (p = 0.05) | 0.80 (p = 0.001) | −0.88 (p = 0.001) | 0.93 (p = 0.001) | 1.00 |
Diet Type | Variable | Age | BMI | CRP | TG | TC | HDL-C | Non-HDL-C | TC/HDL |
---|---|---|---|---|---|---|---|---|---|
LFD | Age | 1.00 * | |||||||
1.00 ** | |||||||||
BMI | 0.23 | 1.00 | |||||||
0.35 | 1.00 | ||||||||
CRP | 0.01 | −0.12 | 1.00 | ||||||
−0.20 | −0.28 | 1.00 | |||||||
TG | 0.13 | 0.15 | −0.32 | 1.00 | |||||
−0.26 | −0.35 | 0.26 | 1.00 | ||||||
TC | 0.10 | −0.09 | −0.25 | −0.10 | 1.00 | ||||
0.15 | −0.63 | 0.09 | 0.47 | 1.00 | |||||
HDL-C | 0.11 | 0.39 | 0.16 | −0.09 | −0.12 | 1.00 | |||
0.18 | 0.31 | 0.30 | 0.04 | −0.39 | 1.00 | ||||
non-HDL-C | 0.11 | −0.07 | −0.27 | −0.02 | 0.89 | −0.44 | 1.00 | ||
0.00 | −0.60 | 0.00 | 0.31 | 0.92 | −0.68 | 1.00 | |||
TC/HDL | 0.07 | −0.26 | −0.31 | 0.06 | 0.65 | −0.76 | 0.87 | 1.00 | |
−0.14 | −0.51 | −0.06 | 0.28 | 0.77 | −0.85 | 0.94 | 1.00 | ||
GF–CF | Age | 1.00 | |||||||
1.00 | |||||||||
BMI | 0.41 | 1.00 | |||||||
−0.30 | 1.00 | ||||||||
CRP | −0.02 | −0.15 | 1.00 | ||||||
0.62 | −0.41 | 1.00 | |||||||
TG | 0.21 | 0.52 | −0.15 | 1.00 | |||||
−0.44 | 0.41 | −0.02 | 1.00 | ||||||
TC1 | −0.21 | −0.04 | −0.64 | −0.22 | 1.00 | ||||
0.02 | 0.84 | −0.16 | 0.39 | 1.00 | |||||
HDL-C | −0.04 | −0.18 | 0.80 | −0.37 | −0.46 | 1.00 | |||
−0.04 | −0.19 | −0.09 | −0.41 | −0.07 | 1.00 | ||||
non-HDL-C | −0.05 | −0.12 | −0.71 | 0.07 | 0.88 | −0.69 | 1.00 | ||
0.17 | 0.73 | −0.11 | 0.30 | 0.82 | −0.55 | 1.00 | |||
TC/HDL | −0.03 | −0.15 | −0.71 | 0.16 | 0.65 | −0.89 | 0.88 | 1.00 | |
0.01 | 0.55 | −0.05 | 0.54 | 0.56 | −0.84 | 0.88 | 1.00 | ||
RD | Age | 1.00 | |||||||
1.00 | |||||||||
BMI | −0.08 | 1.00 | |||||||
−0.05 | 1.00 | ||||||||
CRP | 0.15 | −0.02 | 1.00 | ||||||
0.07 | 0.09 | 1.00 | |||||||
TG | −0.16 | 0.18 | −0.07 | 1.00 | |||||
−0.02 | 0.45 | −0.16 | 1.00 | ||||||
TC | 0.32 | 0.16 | 0.15 | 0.10 | 1.00 | ||||
0.54 | 0.54 | 0.08 | 0.37 | 1.00 | |||||
HDL-C | 0.01 | 0.09 | 0.25 | −0.10 | 0.10 | 1.00 | |||
−0.34 | −0.38 | 0.09 | −0.32 | −0.53 | 1.00 | ||||
non-HDL-C | 0.29 | 0.08 | 0.02 | 0.14 | 0.91 | −0.24 | 1.00 | ||
0.56 | 0.53 | 0.04 | 0.33 | 0.97 | −0.66 | 1.00 | |||
TC/HDL | 0.21 | 0.03 | −0.16 | 0.20 | 0.56 | −0.72 | 0.81 | 1.00 | |
0.54 | 0.54 | 0.04 | 0.34 | 0.90 | −0.79 | 0.97 | 1.00 | ||
CG | Age | 1.00 | |||||||
1.00 | |||||||||
BMI | 0.55 | 1.00 | |||||||
0.21 | 1.00 | ||||||||
CRP | −0.07 | −0.12 | 1.00 | ||||||
−0.15 | −0.12 | 1.00 | |||||||
TG | 0.52 | 0.25 | −0.07 | 0.52 | |||||
0.24 | 0.04 | −0.01 | 1.00 | ||||||
TC | 0.66 | 0.17 | 0.08 | 0.14 | 1.00 | ||||
0.10 | 0.29 | −0.26 | −0.15 | 1.00 | |||||
HDL-C | 0.37 | 0.22 | 0.09 | 0.38 | 0.49 | 1.00 | |||
−0.06 | −0.11 | −0.24 | −0.16 | 0.47 | 1.00 | ||||
non-HDL-C | 0.39 | 0.14 | 0.07 | −0.28 | 0.69 | −0.17 | 1.00 | ||
0.13 | 0.41 | −0.25 | −0.04 | 0.82 | −0.01 | 1.00 | |||
TC/HDL | −0.13 | −0.15 | −0.01 | −0.48 | 0.04 | −0.80 | 0.68 | 1.00 | |
0.06 | 0.36 | −0.03 | 0.09 | 0.28 | −0.65 | 0.72 | 1.00 |
Diet Type | Variable | First Period of Assessment (2015/2017) | Second Period of Assessment (2017/2020) | Number of Pairs (Significance of Wilcoxon’s Test) | ||
---|---|---|---|---|---|---|
Median | IQR | Median | IQR | |||
LFD | BMI | 24.0 | 3.0 | 24.5 | 1.0 | n = 12 (p = 0.239) |
CRP | 6.9 | 9.9 | 8.7 | 10.0 | n = 13 (p = 0.422) | |
TG | 99.3 | 17.3 | 117.2 | 47.2 | n = 14 (p = 0.109) | |
TC | 175.1 | 32.9 | 189.7 | 18.9 | n = 14 (p = 0.074) | |
HDL-C | 50.5 | 14.6 | 48.7 | 9.2 | n = 14 (p = 0.638) | |
non-HDL-C | 123.2 | 41.4 | 138.2 | 24.1 | n = 14 (p = 0.064) | |
TC/HDL | 3.4 | 1.2 | 3.9 | 1.1 | n = 14 (p = 0.245) | |
GF–CF | BMI | 24.5 | 2.0 | 24.5 | 3.0 | n = 5 (p = 0.686) |
CRP | 5.5 | 6.9 | 4.5 | 8.4 | n = 10 (p = 0.959) | |
TG | 100.1 | 41.4 | 90.5 | 19.7 | n = 9 (p = 0.441) | |
TC | 184.6 | 31.6 | 197.2 | 9.8 | n = 10 (p = 0.845) | |
HDL-C | 49.4 | 5.7 | 44.6 | 8.9 | n = 10 (p = 0.241) | |
non-HDL-C | 129.5 | 48.3 | 151.9 | 13.1 | n = 10 (p = 0.169) | |
TC/HDL | 3.6 | 1.6 | 4.4 | 0.9 | n = 10 (p = 0.241) | |
RD | BMI | 25.0 | 3.0 | 25.0 | 4.0 | n = 25 (p = 0.353) |
CRP | 9.5 | 14.3 | 9.5 | 8.4 | n = 31 (p = 0.717) | |
TG * | 147.5 | 70.6 | 101.3 | 41.4 | n = 32 (p = 0.001) | |
TC | 199.7 | 35.5 | 198.7 | 54.8 | n = 33 (p = 0.893) | |
HDL-C * | 46.9 | 12.4 | 44.2 | 8.6 | n = 32 (p = 0.035) | |
non-HDL-C | 146.0 | 38.1 | 153.6 | 60.8 | n = 33 (p = 0.851) | |
TC/HDL | 4.1 | 1.4 | 4.4 | 2.1 | n = 33 (p = 0.195) | |
CG | BMI | 22.0 | 5.0 | 24.0 | 2.9 | n = 30 (p = 0.067) |
CRP * | 1.5 | 2.4 | 2.6 | 3.8 | n = 30 (p = 0.049) | |
TG * | 81.7 | 27.0 | 99.2 | 27.0 | n = 36 (p < 0.001) | |
TC * | 167.8 | 15.3 | 165.6 | 12.4 | n = 35 (p = 0.044) | |
HDL-C * | 56.8 | 16.1 | 55.9 | 9.7 | n = 35 (p = 0.016) | |
non-HDL-C | 111.9 | 15.4 | 111.3 | 17.0 | n = 35 (p = 0.534) | |
TC/HDL | 2.9 | 0.6 | 3.1 | 0.5 | n = 35 (p = 0.098) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażewicz, A.; Szymańska, I.; Astel, A.; Stenzel-Bembenek, A.; Dolliver, W.R.; Makarewicz, A. Assessment of Changes over Time of Lipid Profile, C-Reactive Protein Level and Body Mass Index in Teenagers and Young Adults on Different Diets Belonging to Autism Spectrum Disorder. Nutrients 2020, 12, 2594. https://doi.org/10.3390/nu12092594
Błażewicz A, Szymańska I, Astel A, Stenzel-Bembenek A, Dolliver WR, Makarewicz A. Assessment of Changes over Time of Lipid Profile, C-Reactive Protein Level and Body Mass Index in Teenagers and Young Adults on Different Diets Belonging to Autism Spectrum Disorder. Nutrients. 2020; 12(9):2594. https://doi.org/10.3390/nu12092594
Chicago/Turabian StyleBłażewicz, Anna, Iwona Szymańska, Aleksander Astel, Agnieszka Stenzel-Bembenek, Wojciech Remington Dolliver, and Agata Makarewicz. 2020. "Assessment of Changes over Time of Lipid Profile, C-Reactive Protein Level and Body Mass Index in Teenagers and Young Adults on Different Diets Belonging to Autism Spectrum Disorder" Nutrients 12, no. 9: 2594. https://doi.org/10.3390/nu12092594
APA StyleBłażewicz, A., Szymańska, I., Astel, A., Stenzel-Bembenek, A., Dolliver, W. R., & Makarewicz, A. (2020). Assessment of Changes over Time of Lipid Profile, C-Reactive Protein Level and Body Mass Index in Teenagers and Young Adults on Different Diets Belonging to Autism Spectrum Disorder. Nutrients, 12(9), 2594. https://doi.org/10.3390/nu12092594