Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Supplements
2.2. Animals and Diets
2.3. Experimental Protocol
2.4. Blood Hematological Analysis
2.5. Serum Biochemical Analysis
2.6. The Formulas for Calculation of FER, HOMA-IR, HOMA-β and QUICKI Indices
2.7. Histopathological Analyses
2.8. Statistical Analyses
3. Results
3.1. Effects of Supplementary SGs on Overall Growth Indices and Relative Organ Masses
3.2. Effects of Supplementary SGs on Lipid Metabolism
3.3. Effects of Supplementary SGs on Other Biochemical Indices
3.4. Effects of Supplementary SGs on Blood Hematological Indices
3.5. Histopathological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. Idf Diabetes Atlas Ninth edition 2019. Available online: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf (accessed on 12 October 2020).
- National Institute of Diabetes and Digestive and Kidney Diseases. Symptoms & Causes of Diabetes. Available online: https://www.niddk.nih.gov/health-information/diabetes/overview/symptoms-causes (accessed on 12 October 2020).
- Sharma, M.; Majumdar, P.K. Occupational lifestyle diseases: An emerging issue. Indian J. Occup. Environ. Med. 2009, 13, 109–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyode, O.F.; Adesoye, A.A. Adverse Effects Associated With Newer Diabetes Therapies. J. Pharm. Pr. 2017, 30, 238–244. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metab. 2016, 65, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Ciocoiu, M.; Miron, A.; Mares, L.; Tutunaru, D.; Pohaci, C.; Groza, M.; Badescu, M. The effects of Sambucus nigra polyphenols on oxidative stress and metabolic disorders in experimental diabetes mellitus. J. Physiol. Biochem. 2009, 65, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Raman, B.V.; Krishna, A.N.V.; Rao, B.N.; Saradhi, M.P.; Rao, M.V.B. Plants with antidiabetic activities and their medicinal values. Int. Res. J. Pharm. 2012, 3, 11–15. [Google Scholar]
- U.S. Food and Drug Administration. GRAS Notices. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&sort=GRN_No&order=DESC&startrow=1&type=basic&search=stevia (accessed on 12 October 2020).
- Abou-Arab, E.A.; Abu-Salem, F.M. Evaluation of bioactive compounds of stevia rebaudiana leaves and callus. J. Food Dairy Sci. 2010, 1, 209–224. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A. Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree. Food Chem. 2016, 196, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-N.; Wong, K.-L.; Liu, J.-C.; Chen, Y.-J.; Cheng, J.-T.; Chan, P. Inhibitory Effect of Stevioside on Calcium Influx to Produce Antihypertension. Planta Medica 2001, 67, 796–799. [Google Scholar] [CrossRef]
- Wang, T.; Guo, M.; Song, X.; Zhang, Z.; Jiang, H.; Wang, W.; Fu, Y.; Cao, Y.; Zhu, L.; Zhang, N. Stevioside Plays an Anti-inflammatory Role by Regulating the NF-κB and MAPK Pathways in S. aureus-infected Mouse Mammary Glands. Inflamm. 2014, 37, 1837–1846. [Google Scholar] [CrossRef]
- Cocco, F.; Cagetti, M.G.; Livesu, R.; Camoni, N.; Pinna, R.; Lingström, P.; Campus, G. Effect of a Daily Dose of Snacks Containing Maltitol or Stevia rebaudiana as Sweeteners in High Caries Risk Schoolchildren. A Double-blind RCT Study. Oral Health Prev. Dent. 2019, 17, 515–522. [Google Scholar] [CrossRef]
- Mejia, E.; Pearlman, M. Natural Alternative Sweeteners and Diabetes Management. Curr. Diabetes Rep. 2019, 19, 142. [Google Scholar] [CrossRef]
- Saravanan, R.; Ramachandran, V. Modulating efficacy of Rebaudioside A, a diterpenoid on antioxidant and circulatory lipids in experimental diabetic rats. Environ. Toxicol. Pharmacol. 2013, 36, 472–483. [Google Scholar] [CrossRef]
- Kurek, J.; Krejpcio, Z. The functional and health-promoting properties of Stevia rebaudiana Bertoni and its glycosides with special focus on the antidiabetic potential—A review. J. Funct. Foods 2019, 61, 103465. [Google Scholar] [CrossRef]
- Ray, J.; Kumar, S.; Laor, D.; Shereen, N.; Nwamaghinna, F.; Thomson, A.; Perez, J.P.; Soni, L.; McFarlane, S.I. Effects of Stevia Rebaudiana on Glucose Homeostasis, Blood Pressure and Inflammation: A Critical Review of Past and Current Research Evidence. Int. J. Clin. Res. Trials 2021, 5. [Google Scholar] [CrossRef] [PubMed]
- Bergmeyer, H.U.; Hørder, M.; Rej, R. International Federation of Clinical Chemistry (IFCC) Scientific Committee, Analytical Section: Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 3. IFCC method for alanine aminotransferase (L-alanine: 2-oxoglutarate aminotransferase, EC 2.6.1.2). J. Clin. Chem. Clin. Biochem. 1986, 24, 481–495. [Google Scholar] [PubMed]
- ECCLS. Determination of the catalytic activity concentration in serum of L-alanine aminotransferase (EC 2.6.1.2, ALAT). Klin. Chem. Mitt. 1989, 33, 204–211. [Google Scholar]
- Bergmeyer, H.U.; Hørder, M.; Rej, R. Approved recommendation (1985) on IFCC methods for the measurement of catalytic concentration of enzymes. Part 2. IFCC method for aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1). J. Clin. Chem. Clin. Biochem. 1986, 24, 497–508. [Google Scholar]
- ECCLS. Determination of the catalytic activity concentration in serum of L-aspartate aminotransferase (EC 2.6.1.1, ASAT). Klin. Chem. Mitt. 1989, 33, 198–204. [Google Scholar]
- Richterich, R.; Colombo, J.P. Klinische Chemie, 4th ed.; Karger Publishers: Basel, Switzerland, 1978; pp. 319–324. [Google Scholar]
- Talke, H.; Schubert, G.E. Enzymatische Harnstoffbestimmung in Blut und Serum im optischen Test nachWarburg. J. Mol. Med. 1965, 43, 174–175. [Google Scholar] [CrossRef]
- Tiffany, T.O.; Jansen, J.M.; Burtis, C.A.; Overton, J.B.; Scott, C.D. Enzymatic Kinetic Rate and End-Point Analyses of Substrate, by Use of a GeMSAEC Fast Analyzer. Clin. Chem. 1972, 18, 829–840. [Google Scholar] [CrossRef]
- Sampson, E.J.; Baird, M.A.; Burtis, C.A.; Smith, E.M.; Witte, D.L.; Bayse, D.D. A coupled-enzyme equilibrium method for measuring urea in serum: Optimization and evaluation of the AACC study group on urea candidate reference method. Clin. Chem. 1980, 26, 816–826. [Google Scholar] [CrossRef]
- Jaffé, M. Ueber den Niederschlag welchen Pikrinsäure in normalen Harn erzeugt und über eine neue reaction des Kreatinins. Z. Physiol. Chem. 1886, 10, 391–400. [Google Scholar]
- Fabiny, D.L.; Ertingshausen, G. Automated Reaction-Rate Method for Determination of Serum Creatinine with the CentrifiChem. Clin. Chem. 1971, 17, 696–700. [Google Scholar] [CrossRef]
- Rartels, H.; Böhmer, M. Eine mikromethode 7air kreatininbestimmung. Clin. Chim. Acta 1971, 32, 81–85. [Google Scholar] [CrossRef]
- Kunst, A.; Draeger, B.; Ziegenhorn, J. Bergmeyer. Methods of Enzymatic Analysis, 3rd ed.; Metabolites 1: Carbohydrates; Akademie-Verlag: Berlin, German, 1984; pp. 163–172. [Google Scholar]
- Wu, A. Tietz Clinical Guide to Laboratory Tests-4th Edition. Available online: https://www.elsevier.com/books/tietz-clinical-guide-to-laboratory-tests/wu/978-0-7216-7975-4 (accessed on 12 October 2020).
- Weichselbaum, T.E. An accurate and rapid method for the determination of proteins in small amounts of blood serum and plasma. Am. J. Clin. Pathol. 1946, 10, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Siedel, J.; Schmuck, R.; Staepels, J.; Town, M.H. Long term stable, liquid ready-to-use monoreagent for the enzymatic assay of serum or plasma triglycerides (GPO-PAP method). AACC meeting abstract 34. Clin. Chem. 1993, 39, 1127. [Google Scholar]
- UA2 Uric Acid ver.2|Roche Diagnostics test principle. Available online: http://labogids.sintmaria.be/sites/default/files/files/ua2_2017-07_v11.pdf (accessed on 12 October 2020).
- Juutilainen, P.; Seppälä, K.; Lampinen, H. Evaluation of the Konelab 20i Clinical Chemistry Analyzer, Laboratory Medicine 2000. In Proceedings of the XXVII Nordic Congress of Clinical Chemistry, Bergen, Norway, 4–8 June 2000. [Google Scholar]
- Klima, H.; Schuehlmann, C.; Sobczak, G.; Pelloli, J.; Loehr, B. Development of new LDL-Cholesterol Generation 3 assay on Roche Clinical Chemistry Analyzers. Subdivision 4, Translating Atherosclerosis Research into Novel Therapies for Humans. In Proceedings of the 7th International Symposium on Atherosclerosis, Amsterdam, The Netherlands, 23–26 May 2015; Abstract no. 192. Available online: https://pace-cme.org/legacy/blog/bestanden/baab4635696982945382500-ISA2015-All-abstracts-000329.pdf (accessed on 12 October 2020).
- Loehr, B.; Busse Grawitz, A.; Müller, M.; Teupser, D.; Masel, S.; Langstraat, J.; Gorp, I.V.; Mooy, A.; Oskamp, J.; Krause, S.; et al. Multicenter Evaluation of new LDL-Cholesterol Generation 3 assay on Roche Clinical Chemistry Analyzers. Subdivision 3, Translating Atherosclerosis Research into Novel Therapies for Humans. In Proceedings of the 7th International Symposium on Atherosclerosis, Amsterdam, The Netherlands, 23–26 May 2015; Abstract no. 185. Available online: https://pace-cme.org/legacy/blog/bestanden/3767e635696975258663750-ISA2015-abstracts-1-250-000325.pdf (accessed on 12 October 2020).
- Miida, T.; Nishimura, K.; Okamura, T.; Hirayama, S.; Ohmura, H.; Yoshida, H.; Miyashita, Y.; Ai, M.; Tanaka, A.; Sumino, H.; et al. Validation of homogeneous assays for HDL-cholesterol using fresh samples from healthy and diseased subjects. Atheroscler. 2014, 233, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, Y.; Soya, H.; Fujinaka, M. Evaluation of New Homogeneous Assay Kit to Determine HDL-C with a High Reactivity with Cholesterol in Various Types of HDL. AACC Meeting 2009, Poster Abstract B-103. Clin. Chem. 2009, 55, A83. [Google Scholar]
- Shackelford, C.; Long, G.; Wolf, J.; Okerberg, C.; Herbert, R. Qualitative and Quantitative Analysis of Nonneoplastic Lesions in Toxicology Studies. Toxicol. Pathol. 2002, 30, 93–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson-Corley, K.N.; Olivier, A.K.; Meyerholz, D.K. Principles for Valid Histopathologic Scoring in Research. Veter- Pathol. 2013, 50, 1007–1015. [Google Scholar] [CrossRef] [Green Version]
- De Medeiros, T.D.; Pereira, A.T.; Da Silva, F.S.; Bortolin‡, R.H.; Taveira, K.V.M.; Abreu, B.J.D.G.A.; De Rezende, A.A.; Farias, N.B.D.S.; Filho, J.M.B.; Medeiros, K.C.D.P. Ethanol extract of Cissampelos sympodialis ameliorates lung tissue damage in streptozotocin-induced diabetic rats. Braz. J. Pharm. Sci. 2020, 56. [Google Scholar] [CrossRef]
- Montano, M.E.; Molpeceres, V.; Mauriz, J.L.; Garzo, E.; Cruz, I.B.M.; González, P.; Barrio, J.P. Effect of melatonin supplementation on food and water intake in streptozotocin-diabetic and non-diabetic male Wistar rats. Nutrición Hospitalaria 2011, 25, 931–938. [Google Scholar]
- MacLean, P.S.; Blundell, J.E.; Mennella, J.A.; Batterham, R.L. Biological control of appetite: A daunting complexity. Obes. 2017, 25, S8–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Lim, S.-M.; Kim, M.-S.; Yoo, S.-H.; Kim, Y. Phyllodulcin, a Natural Sweetener, Regulates Obesity-Related Metabolic Changes and Fat Browning-Related Genes of Subcutaneous White Adipose Tissue in High-Fat Diet-Induced Obese Mice. Nutrients 2017, 9, 1049. [Google Scholar] [CrossRef] [PubMed]
- Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017, 23, 804–814. [Google Scholar] [CrossRef]
- Pandey, K.B.; Mishra, N.; Rizvi, S.I. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin. Biochem. 2010, 43, 508–511. [Google Scholar] [CrossRef]
- Holvoet, P.; Rull, A.; García-Heredia, A.; López-Sanromà, S.; Geeraert, B.; Joven, J.; Camps, J. Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: A transcriptomic and metabolomic study. Food Chem. Toxicol. 2015, 77, 22–33. [Google Scholar] [CrossRef]
- Mueller, M.; Beck, V.; Jungbauer, A. PPARαActivation by Culinary Herbs and Spices. Planta Medica 2010, 77, 497–504. [Google Scholar] [CrossRef]
- Park, J.-E.; Cha, Y.-S. Stevia rebaudiana Bertoni extract supplementation improves lipid and carnitine profiles in C57BL/6J mice fed a high-fat diet. J. Sci. Food Agric. 2010, 90, 1099–1105. [Google Scholar] [CrossRef]
- Rotimi, S.O.; Rotimi, O.A.; Adelani, I.B.; Onuzulu, C.; Obi, P.; Okungbaye, R. Stevioside modulates oxidative damage in the liver and kidney of high fat/low streptozocin diabetic rats. Heliyon 2018, 4, e00640. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-H.; Chen, S.-C.; Chan, P.; Chu, Y.-L.; Yang, H.-Y.; Cheng, J.-T. Mechanism of the Hypoglycemic Effect of Stevioside, a Glycoside ofStevia rebaudiana. Planta Medica 2005, 71, 108–113. [Google Scholar] [CrossRef]
- Saravanan, R.; Babu, K.V.; Ramachandran, V. Effect of Rebaudioside A, a diterpenoid on glucose homeostasis in STZ-induced diabetic rats. J. Physiol. Biochem. 2012, 68, 421–431. [Google Scholar] [CrossRef]
- Ritu, M.; Nandini, J. Nutritional composition ofStevia rebaudiana, a sweet herb, and its hypoglycaemic and hypolipidaemic effect on patients with non-insulin dependent diabetes mellitus. J. Sci. Food Agric. 2016, 96, 4231–4234. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, S.; Jeppesen, P.B.; Holst, J.J.; Hermansen, K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 2004, 53, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.K.; Kujur, R.S.; Singh, V.; Ram, M.; Yadava, H.N.; Singh, K.K.; Kumari, S. Antidiabetic activity and phytochemical screening of crude extract of Stevia rebaudiana in alloxan-induced diabetic rats. Pharmacogn. Res. 2010, 2, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeppesen, P.B.; Gregersen, S.; Poulsen, C.; Hermansen, K. Stevioside acts directly on pancreatic β cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate—sensitivie K+-channel activity. Metabolism 2000, 49, 208–214. [Google Scholar] [CrossRef]
- Philippaert, K.; Pironet, A.; Mesuere, M.; Sones, W.; Vermeiren, L.; Kerselaers, S.; Pinto, S.; Segal, A.; Antoine, N.; Gysemans, C.; et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat. Commun. 2017, 8, 14733. [Google Scholar] [CrossRef]
- Prata, C.; Zambonin, L.; Rizzo, B.; Maraldi, T.; Angeloni, C.; Sega, F.V.D.; Fiorentini, D.; Hrelia, S. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts. Oxidative Med. Cell. Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wingard, R.E.; Brown, J.P.; Enderlin, F.E.; Dale, J.A.; Hale, R.L.; Seitz, C.T. Intestinal degradation and absorption of the glycosidic sweeteners stevioside and rebaudioside A. Cell. Mol. Life Sci. 1980, 36, 519–520. [Google Scholar] [CrossRef]
- Atteh, J.; Onagbesan, O.; Tona, K.; Buyse, J.; Decuypere, E.; Geuns, J. Potential use of stevia rebaudiana in animal feeds. Arch. Zootec. 2011, 60, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Geuns, J.M.C.; Buyse, J.; Vankeirsbilck, A.; Temme, E.H.M. Metabolism of stevioside by healthy subjects. Exp. Biol. Med. 2007, 232, 164–173. [Google Scholar]
- Koyama, E.; Sakai, N.; Ohori, Y.; Kitazawa, K.; Izawa, O.; Kakegawa, K.; Fujino, A.; Ui, M. Absorption and metabolism of glycosidic sweeteners of stevia mixture and their aglycone, steviol, in rats and humans. Food Chem. Toxicol. 2003, 41, 875–883. [Google Scholar] [CrossRef]
- Myint, K.Z.; Chen, J.; Zhou, Z.; Xia, Y.; Lin, J.; Zhang, J. Structural dependence of antidiabetic effect of steviol glycosides and their metabolites on streptozotocin-induced diabetic mice. J. Sci. Food Agric. 2020, 100, 3841–3849. [Google Scholar] [CrossRef] [PubMed]
- Anker, C.C.B.; Rafiq, S.; Jeppesen, P.B. Effect of Steviol Glycosides on Human Health with Emphasis on Type 2 Diabetic Biomarkers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 1965. [Google Scholar] [CrossRef] [Green Version]
- Dyrskog, S.E.; Jeppesen, P.B.; Chen, J.; Christensen, L.P.; Hermansen, K. The Diterpene Glycoside, Rebaudioside A, Does not Improve Glycemic Control or Affect Blood Pressure After Eight Weeks Treatment in the Goto-Kakizaki Rat. Rev. Diabet. Stud. 2005, 2, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, U.; Ahmad, R.S.; Arshad, M.S.; Mushtaq, Z.; Hussain, S.M.; Hameed, A. Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats. Lipids Heal. Dis. 2018, 17, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivanna, N.; Naika, M.; Khanum, F.; Kaul, V.K. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. J. Diabetes Its Complicat. 2013, 27, 103–113. [Google Scholar] [CrossRef]
- Ranjbar, T.; Nekooeian, A.A.; Tanideh, N.; Koohi-Hosseinabadi, O.; Masoumi, S.J.; Amanat, S.; Azarpira, N.; Monabati, A. A comparison of the effects of Stevia extract and metformin on metabolic syndrome indices in rats fed with a high-fat, high-sucrose diet. J. Food Biochem. 2020, 44, e13242. [Google Scholar] [CrossRef]
- Casas-Grajales, S.; Ramos-Tovar, E.; Chávez-Estrada, E.; Alvarez-Suarez, D.; Hernández-Aquino, E.; Reyes-Gordillo, K.; Cerda-García-Rojas, C.M.; Camacho, J.; Tsutsumi, V.; Lakshman, M.R.; et al. Antioxidant and immunomodulatory activity induced by stevioside in liver damage: In vivo, in vitro and in silico assays. Life Sci. 2019, 224, 187–196. [Google Scholar] [CrossRef]
- Latha, S.; Chaudhary, S.; Ray, R.S. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats. Biomed. Pharmacother. 2017, 95, 1040–1050. [Google Scholar] [CrossRef]
- Rizwan, F.; Yesmine, S.; Banu, S.G.; Chowdhury, I.A.; Hasan, R.; Chatterjee, T.K. Renoprotective effects of stevia (Stevia rebaudiana Bertoni), amlodipine, valsartan, and losartan in gentamycin-induced nephrotoxicity in the rat model: Biochemical, hematological and histological approaches. Toxicol. Rep. 2019, 6, 683–691. [Google Scholar] [CrossRef]
- Elsaid, F.H.; Khalil, A.A.; Ibrahim, E.M.; Mansour, A.; Hussein, A.M. Effects of exercise and stevia on renal ischemia/reperfusion injury in rats. Acta Sci. Pol. Technol. Aliment. 2019, 18, 317–332. [Google Scholar] [CrossRef]
- Özbayer, C.; Kurt, H.; Kalender, S.; Ozden, H.; Gunes, H.V.; Basaran, A.; Çakmak, E.A.; Civi, K.; Kalender, Y.; Degirmenci, I. Effects of Stevia rebaudiana (Bertoni) Extract and N-Nitro-l-Arginine on Renal Function and Ultrastructure of Kidney Cells in Experimental Type 2 Diabetes. J. Med. Food 2011, 14, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018, 75, 3313–3327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opara, E.C. Oxidative stress, micronutrients, diabetes mellitus and its complications. J. R. Soc. Promot. Heal. 2002, 122, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.P.; Mahadi, F.; Roy, A.; Sharma, P. Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian J. Clin. Biochem. 2009, 24, 324–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geeraert, B.; Crombé, F.; Hulsmans, M.; Benhabilès, N.; Geuns, J.M.; Holvoet, P. Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int. J. Obes. 2009, 34, 569–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Ruiz, J.C.; Moguel-Ordoñez, Y.B.; Campos, M.R.S. Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2680–2690. [Google Scholar] [CrossRef]
- Salehi, B.; López, M.D.; Martínez-López, S.; Victoriano, M.; Sharifi-Rad, J.; Martorell, M.; Rodrigues, C.F.; Martins, N. Stevia rebaudiana Bertoni bioactive effects: From in vivo to clinical trials towards future therapeutic approaches. Phytotherapy Res. 2019, 33, 2904–2917. [Google Scholar] [CrossRef]
- Ramos-Tovar, E.; Hernández-Aquino, E.; Casas-Grajales, S.; Buendia-Montaño, L.D.; Galindo-Gómez, S.; Camacho, J.; Tsutsumi, V.; Muriel, P. Stevia Prevents Acute and Chronic Liver Injury Induced by Carbon Tetrachloride by Blocking Oxidative Stress through Nrf2 Upregulation. Oxidative Med. Cell. Longev. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, F.; Rashid, H.U.; Yesmine, S.; Monjur, F.; Chatterjee, T.K. Preliminary analysis of the effect of Stevia (Stevia rebaudiana) in patients with chronic kidney disease (stage I to stage III). Contemp. Clin. Trials Commun. 2018, 12, 17–25. [Google Scholar] [CrossRef]
Parameter | Control (C) | Experimental Groups | |||||
---|---|---|---|---|---|---|---|
Db | Db + Met | Db + S1 | Db + S2 | Db + R1 | Db + R2 | ||
Avg FI (g/day/rat) | 27.20 ± 1.61 abc | 29.94 ± 3.94 de | 31.62 ± 5.01 e | 28.57 ± 3.86 cd | 26.26 ± 4.30 ab | 27.26 ± 4.16 bc | 25.54 ± 3.23 a |
Initial b.w. (g) | 469.8 ± 43.77 a | 502.8 ± 36.27 b | 502.8 ± 37.44 ab | 503.5 ± 31.32 b | 510.2 ± 30.21 b | 503.0 ± 36.82 ab | 497.4 ± 27.80 b |
Final b.w. (g) | 543.4 ± 51.50 b | 473.4 ± 46.86 a | 488.7 ± 51.92 a | 482.8 ± 64.13 a | 487.9 ± 49.80 a | 450.9 ± 58.79 a | 476.5 ± 27.26 a |
FER | 1.71 ± 0.46 b | 0.02 ± 1.67 a | 0.33 ± 0.31 a | 0.04 ± 1.49 a | −0.14 ± 0.93 a | −0.25 ± 0.32 a | −0.04 ± 0.83 a |
Liver (% b.m.) | 3.19 ± 0.31 a | 3.50 ± 0.26 ab | 3.85 ± 0.43 c | 3.54 ± 0.37 bc | 3.49 ± 0.35 ab | 3.57 ± 0.40 bc | 3.68 ± 0.33 bc |
Lungs (% b.m.) | 0.32 ± 0.04 a | 0.41 ± 0.07 b | 0.41 ± 0.07 b | 0.42 ± 0.06 b | 0.40 ± 0.06 b | 0.45 ± 0.08 b | 0.40 ± 0.04 b |
Kidneys (% b.m.) | 0.63 ± 0.07 a | 0.95 ± 0.17 b | 0.94 ± 0.12 b | 0.94 ± 0.20 b | 0.85 ± 0.16 b | 0.98 ± 0.19 b | 0.94 ± 0.04 b |
Testes (% b.m.) | 0.76 ± 0.10 a | 0.81 ± 0.19 ab | 0.82 ± 0.15 ab | 0.85 ± 0.07 ab | 0.84 ± 0.14 ab | 0.90 ± 0.17 b | 0.91 ± 0.11 b |
Spleen (% b.m.) | 0.16 ± 0.01 a | 0.18 ± 0.03 ab | 0.19 ± 0.03 b | 0.18 ± 0.05 ab | 0.19 ± 0.03 b | 0.19 ± 0.02 ab | 0.19 ± 0.03 b |
Heart (% b.m.) | 0.26 ± 0.02 a | 0.31 ± 0.03 b | 0.30 ± 0.01 b | 0.30 ± 0.03 b | 0.30 ± 0.02 b | 0.31 ± 0.03 b | 0.31 ± 0.03 b |
Brain (% b.m.) | 0.39 ± 0.05 a | 0.43 ± 0.05 ab | 0.44 ± 0.05 b | 0.42 ± 0.04 ab | 0.45 ± 0.04 b | 0.47 ± 0.08 b | 0.43 ± 0.02 ab |
Parameter | Control (C) | Experimental Groups | |||||
---|---|---|---|---|---|---|---|
Db | Db + Met | Db + S1 | Db + S2 | Db + R1 | Db + R2 | ||
ALT (U/l) | 38.15 ± 5.37 a | 67.00 ± 23.62 c | 67.14 ± 21.12 c | 59.30 ± 18.64 bc | 48.46 ± 11.60 ab | 57.94 ± 15.75 bc | 48.20 ± 13.25 ab |
AST (U/l) | 174.7 ± 33.0 abc | 133.4 ± 19.8 a | 181.6 ± 41.9 bc | 172.2 ± 43.5 abc | 181.0 ± 65.7 c | 188.6 ± 73.7 c | 133.7 ± 25.7 ab |
AST / ALT | 4.59 ± 0.65 c | 2.22 ± 0.82 a | 2.61 ± 0.45 ab | 3.04 ± 0.78 b | 3.44 ± 0.95 b | 3.26 ± 1.06 b | 2.98 ± 1.11 ab |
UREA (mg/dL) | 31.73 ± 3.46 a | 47.37 ± 12.22 c | 39.68 ± 7.70 abc | 45.31 ± 6.31 bc | 39.13 ± 11.84 ab | 45.30 ± 9.35 bc | 40.08 ± 8.06 abc |
KREA (mg/dL) | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.28 ± 0.07 | 0.30 ± 0.00 | 0.30 ± 0.00 | 0.28 ± 0.07 |
TP (g/dl) | 6.55 ± 0.09 c | 5.61 ± 0.67 ab | 5.67 ± 0.31 ab | 5.68 ± 0.50 ab | 6.06 ± 0.35 bc | 5.43 ± 0.38 a | 5.84 ± 0.73 ab |
OxLDL (µg/mL) | 0.56 ± 0.10 a | 0.69 ± 0.13 bc | 0.59 ± 0.05 ab | 0.67 ± 0.16 bc | 0.67 ± 0.09 bc | 0.73 ± 0.17 c | 0.70 ± 0.10 bc |
URIC (mg/dL) | 1.59 ± 0.28 ab | 1.45 ± 0.28 ab | 1.71 ± 0.35 b | 1.47 ± 0.59 ab | 1.52 ± 0.50 ab | 1.59 ± 0.13 ab | 1.32 ± 0.34 a |
NO (µmol/L) | 0.97 ± 0.82 a | 3.27 ± 3.08 ab | 3.76 ± 2.99 ab | 2.48 ± 1.69 ab | 2.97 ± 1.14 ab | 4.00 ± 3.35 b | 5.06 ± 5.37 b |
GPX (nmol/min/mL) | 121.0 ± 109.7 a | 178.3 ± 51.3 b | 154.2 ± 61.5 ab | 203.0 ± 24.6 b | 197.0 ± 47.1 b | 203.2 ± 32.0 b | 173.6 ± 64.9 ab |
Parameter | Control (C) | Experimental Groups | |||||
---|---|---|---|---|---|---|---|
Db | Db + Met | Db + S1 | Db + S2 | Db + R1 | Db + R2 | ||
RBC (T/l) | 9.10 ± 0.46 | 8.89 ± 0.41 | 8.92 ± 0.46 | 9.08 ± 0.62 | 9.12 ± 0.38 | 8.84 ± 0.49 | 9.10 ± 0.45 |
HGB (g/dl) | 15.83 ± 0.38 a | 15.83 ± 0.69 a | 16.41 ± 0.35 b | 16.25 ± 0.46 ab | 16.34 ± 0.45 b | 16.23 ± 0.46 ab | 16.55 ± 0.77 b |
HCT (%) | 46.70 ± 2.43 a | 46.30 ± 2.21 a | 47.89 ± 1.01 ab | 48.34 ± 3.35 ab | 47.83 ± 1.71 ab | 47.38 ± 2.44 ab | 49.03 ± 2.26 b |
MCV (fl) | 51.34 ± 1.42 a | 52.15 ± 2.16 ab | 53.84 ± 2.28 b | 53.21 ± 2.10 b | 52.52 ± 2.03 ab | 53.56 ± 2.56 b | 53.95 ± 1.40 b |
MCH (pg) | 17.60 ± 0.57 a | 17.82 ± 0.70 ab | 18.44 ± 0.63 bc | 18.53 ± 0.21 c | 17.96 ± 0.55 abc | 18.35 ± 0.97 bc | 18.25 ± 0.82 bc |
MCHC (g/dL) | 34.30 ± 0.60 | 34.18 ± 0.47 | 34.31 ± 0.78 | 34.27 ± 0.87 | 34.17 ± 0.90 | 33.91 ± 0.35 | 33.78 ± 0.82 |
PLT (G/l) | 914.60 ± 106.2 | 843.30 ± 122.4 | 845.67 ± 114.5 | 961.44 ± 123.6 | 867.00 ± 171.5 | 855.00 ± 162.3 | 917.63 ± 166.6 |
RDW-CV (%) | 14.16 ± 0.59 a | 15.16 ± 1.07 bc | 14.96 ± 0.94 abc | 15.59 ± 1.04 c | 15.15 ± 1.21 bc | 14.98 ± 0.90 abc | 14.43 ± 0.36 ab |
WBC (G/l) | 8.55 ± 2.20 a | 10.70 ± 1.61 b | 8.79 ± 2.58 ab | 8.44 ± 1.81 a | 9.39 ± 1.96 ab | 9.10 ± 2.51 ab | 8.75 ± 1.69 ab |
NEUT% (%) | 25.42 ± 7.37 a | 27.82 ± 7.32 ab | 34.83 ± 8.38 c | 31.31 ± 5.62 abc | 28.84 ± 4.27 abc | 34.55 ± 6.37 bc | 33.29 ± 11.20 bc |
NEUT (G/l) | 1.58 ± 0.31 a | 2.71 ± 0.61 b | 2.97 ± 0.85 b | 2.61 ± 0.59 b | 2.70 ± 0.66 b | 3.12 ± 0.98 b | 2.91 ± 1.03 b |
LYM% (%) | 64.24 ± 7.70 b | 59.99 ± 9.30 ab | 53.07 ± 10.14 a | 54.39 ± 8.22 a | 59.95 ± 6.14 ab | 52.74 ± 7.40 a | 53.68 ± 14.27 a |
LYM (G/l) | 5.43 ± 1.25 ab | 6.19 ± 1.91 b | 4.78 ± 2.10 ab | 4.61 ± 1.34 a | 5.65 ± 1.33 ab | 4.83 ± 1.69 ab | 4.70 ± 1.57 ab |
MONO% (%) | 6.62 ± 1.26 a | 8.70 ± 2.74 b | 7.29 ± 1.69 ab | 8.91 ± 2.45 b | 7.02 ± 2.06 ab | 8.48 ± 2.20 ab | 7.34 ± 2.49 ab |
MONO (G/l) | 0.52 ± 0.14 a | 0.88 ± 0.37 b | 0.62 ± 0.17 a | 0.75 ± 0.26 ab | 0.65 ± 0.22 a | 0.67 ± 0.16 ab | 0.65 ± 0.29 ab |
EOS% (%) | 3.12 ± 0.69 ab | 2.78 ± 0.93 a | 3.88 ± 1.27 b | 3.25 ± 1.46 ab | 2.93 ± 0.36 ab | 3.36 ± 1.56 ab | 2.54 ± 0.27 a |
EOS (G/l) | 0.26 ± 0.06 a | 0.28 ± 0.12 ab | 0.35 ± 0.17 ab | 0.26 ± 0.10 ab | 0.31 ± 0.13 ab | 0.30 ± 0.15 ab | 0.41 ± 0.28 b |
BAS% (%) | 0.60 ± 0.23 a | 0.71 ± 0.34 ab | 0.93 ± 0.33 b | 0.90 ± 0.36 b | 0.88 ± 0.32 ab | 0.88 ± 0.35 ab | 0.90 ± 0.32 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurek, J.M.; Król, E.; Krejpcio, Z. Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats. Nutrients 2021, 13, 112. https://doi.org/10.3390/nu13010112
Kurek JM, Król E, Krejpcio Z. Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats. Nutrients. 2021; 13(1):112. https://doi.org/10.3390/nu13010112
Chicago/Turabian StyleKurek, Jakub Michał, Ewelina Król, and Zbigniew Krejpcio. 2021. "Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats" Nutrients 13, no. 1: 112. https://doi.org/10.3390/nu13010112
APA StyleKurek, J. M., Król, E., & Krejpcio, Z. (2021). Steviol Glycosides Supplementation Affects Lipid Metabolism in High-Fat Fed STZ-Induced Diabetic Rats. Nutrients, 13(1), 112. https://doi.org/10.3390/nu13010112