Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence
Abstract
:1. Introduction
2. Risk Factors and Diabetes
2.1. Nutrition Transition and Diabetes in the Middle Eastern and North African (MENA) Region
2.2. Obesity and Diabetes
3. Dietary Management of Diabetes
3.1. Significance and Barriers
3.2. The Metabolic Effects of Dietary Components in Diabetes
3.2.1. Carbohydrates
3.2.2. Dietary Fiber
3.2.3. Proteins
3.2.4. Fats
3.2.5. Food Groups
4. Improving Dietetic Care for Diabetes in the MENA Region
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019; Available online: https://www.diabetesatlas.org (accessed on 15 November 2020).
- Apicella, M.; Campopiano, M.C.; Mantuano, M.; Mazoni, L.; Coppelli, A.; Del Prato, S. COVID-19 in people with diabetes: Understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020. [CrossRef]
- World Health Organization. Prevalence of Raised Fasting Blood Glucose. 2014. Available online: http://www.who.int/gho/ncd/risk_factors/blood_glucose/en/ (accessed on 10 November 2020).
- Sherif, S.; Sumpio, B.E. Economic development and diabetes prevalence in MENA countries: Egypt and Saudi Arabia comparison. World J. Diabetes 2015, 6, 304. [Google Scholar] [CrossRef] [PubMed]
- Al-Rubeaan, K.; Siddiqui, K.; Saeb, A.T.; Nazir, N.; Al-Naqeb, D.; Al-Qasim, S. ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes in Arab ethnicity: A meta-analysis. Gene 2013, 520, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Abuyassin, B.; Laher, I. Diabetes epidemic sweeping the Arab world. World J. Diabetes 2016, 7, 165. [Google Scholar] [CrossRef] [PubMed]
- Mousa, H.S.; Yousef, S.; Riccardo, F.; Zeidan, W.; Sabatinelli, G. Hyperglycaemia, hypertension and their risk factors among Palestine refugees served by UNRWA. East. Mediterr. Health J. 2010, 16, 609–614. [Google Scholar] [CrossRef]
- Al-Hamdan, R.; Avery, A.; Salter, A.; Al-Disi, D.; Al-Daghri, N.M.; McCullough, F. Identification of education models to improve health outcomes in arab women with pre-diabetes. Nutrients 2019, 11, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabelli, M.; Russo, D.; Brunetti, A. The Role of Diet on Insulin Sensitivity. Nutrients 2020, 12, 3042. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Nutrition transition and the global diabetes epidemic. Curr. Diabetes Rep. 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Mabry, R.M.; Reeves, M.M.; Eakin, E.G.; Owen, N. Evidence of physical activity participation among men and women in the countries of the Gulf cooperation council: A review. Obes. Rev. 2010, 11, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.; Laher, I. Type II Diabetes Mellitus in Arabic-Speaking Countries. Int. J. Endocrinol. 2012, 2012, 902873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Sibai, A.M.; Nasreddine, L.; Mokdad, A.H.; Adra, N.; Tabet, M.; Hwalla, N. Nutrition transition and cardiovascular disease risk factors in Middle East and North Africa countries: Reviewing the evidence. Ann. Nutr. Metab. 2010, 57, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. Ser. A 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean diet nutrients to turn the tide against insulin resistance and related diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, M.; Chiefari, E.; Montalcini, T.; Accattato, F.; Costanzo, F.S.; Pujia, A.; Foti, D.; Brunetti, A.; Gulletta, E. Early effects of a hypocaloric, Mediterranean diet on laboratory parameters in obese individuals. Mediat. Inflamm. 2014, 2014, 750860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musaiger, A.R.O. Change in dietary habits, lifestyle and trend in diseases in the GCC countries. Bahrain Med. Bull. 1998, 20, 87–90. [Google Scholar]
- Baker, P.; Friel, S. Processed foods and the nutrition transition: Evidence from Asia. Obes. Rev. 2014, 15, 564–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naja, F.; Hwalla, N.; Hachem, F.; Abbas, N.; Chokor, F.A.Z.; Kharroubi, S.; Chamieh, M.C.; Jomaa, L.; Nasreddine, L. Erosion of the Mediterranean diet among adolescents: Evidence from an Eastern Mediterranean Country. Br. J. Nutr. 2021, 125, 346–356. [Google Scholar] [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Hosseini, S.; Hosseinpour-Niazi, S. Hydrogenated Vegetable Oils and Trans Fatty Acids: Profile and Application to Diabetes. In Bioactive Food as Dietary Interventions for Diabetes; Academic Press: Cambridge, MA, USA, 2019; pp. 19–32. [Google Scholar]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Singh, G.; Yakoob, M.Y.; Abdollahi, M.; Al-Hooti, S.; et al. The impact of dietary habits and metabolic risk factors on cardiovascular and diabetes mortality in countries of the Middle East and North Africa in 2010: A comparative risk assessment analysis. BMJ Open 2015, 5, e006385. [Google Scholar] [CrossRef] [Green Version]
- Bonaccio, M.B.R.M.; Bes-Rastrollo, M.; De Gaetano, G.; Iacoviello, L. Challenges to the Mediterranean diet at a time of economic crisis. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Dernini, S. The erosion and the renaissance of the Mediterranean diet: A sustainable cultural resource. Quad. Mediterr. 2011, 16, 75–82. [Google Scholar]
- Zaghloul, H.; Elshakh, H.; Elzafarany, A.; Chagoury, O.; McGowan, B.; Taheri, S. A systematic review of randomized controlled trials of dietary interventions for weight loss in adults in the Middle East and North Africa region. Clin. Obes. 2021, 11, e12434. [Google Scholar] [CrossRef] [PubMed]
- Naja, F.; Hwalla, N.; Itani, L.; Salem, M.; Azar, S.T.; Zeidan, M.N.; Nasreddine, L. Dietary patterns and odds of Type 2 diabetes in Beirut, Lebanon: A case-control study. Nutr. Metab. 2012, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Bouguerra, R.; Alberti, H.; Salem, L.B.; Rayana, C.B.; Atti, J.E.; Gaigi, S.; Slama, C.B.; Zouari, B.; Alberti, K. The global diabetes pandemic: The Tunisian experience. Eur. J. Clin. Nutr. 2007, 61, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahan, D. Prevalence and correlates of adult overweight in the Muslim world: Analysis of 46 countries. Clin. Obes. 2015, 5, 87–98. [Google Scholar] [CrossRef] [PubMed]
- AL-Shahrani, A.M.; Al-Khaldi, Y.M. Obesity among diabetic and hypertensive patients in Aseer region, Saudi Arabia. Saudi J. Obes. 2013, 1, 14. [Google Scholar] [CrossRef]
- Ghassibe-Sabbagh, M.; Deeb, M.; Salloum, A.K.; Mouzaya, F.; Haber, M.; Al-Sarraj, Y.; Chami, Y.; Akle, Y.; Hirbli, K.; Nemr, R.; et al. Multivariate epidemiologic analysis of type 2 diabetes mellitus risks in the Lebanese population. Diabetol. Metab. Syndr. 2014, 6, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bener, A.; Zirie, M.; Janahi, I.M.; Al-Hamaq, A.O.; Musallam, M.; Wareham, N.J. Prevalence of diagnosed and undiagnosed diabetes mellitus and its risk factors in a population-based study of Qatar. Diabetes Res. Clin. Pract. 2009, 84, 99–106. [Google Scholar] [CrossRef]
- Alarouj, M.; Bennakhi, A.; Alnesef, Y.; Sharifi, M.; Elkum, N. Diabetes and associated cardiovascular risk factors in the State of Kuwait: The first national survey. Int. J. Clin. Pract. 2013, 67, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Musaiger, A.O.; Al-Mannai, M.A. Social and lifestyle factors associated with diabetes in the adult Bahraini population. J. Biosoc. Sci. 2002, 34, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Medical Research Council. Diabetes: Facts and Stats. Available online: https://www.mrc.ac.uk/documents/pdf/diabetes-uk-facts-and-stats-june-2015/ (accessed on 15 November 2020).
- Masuo, K.; Rakugi, H.; Ogihara, T.; Esler, M.D.; Lambert, G.W. CardioKvascular and renal complications of type 2 diabetes in obesity: Role of sympathetic nerve activity and insulin resistance. Curr. Diabetes Rev. 2010, 6, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J.; Van Gaal, L.F. Combating the dual burden: Therapeutic targeting of common pathways in obesity and type 2 diabetes. Lancet Diabetes Endocrinol. 2014, 2, 911–922. [Google Scholar] [CrossRef]
- Sattar, N.; Gill, J.M. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014, 12, 123. [Google Scholar] [CrossRef] [Green Version]
- Apovian, C.M.; Okemah, J.; O’Neil, P.M. Body weight considerations in the management of type 2 diabetes. Adv. Ther. 2019, 36, 44–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefan, N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 2020, 8, 616–627. [Google Scholar] [CrossRef]
- Rashad, N.M.; Emad, G. Association of new obesity indices; Visceral adiposity index and body adiposity index, with metabolic syndrome parameters in obese patients with or without type 2 diabetes mellitus. Egypt. J. Intern. Med. 2019, 31, 620. [Google Scholar]
- Lfotouh, A.; Soliman, L.A.; Mansour, E.; Farghaly, M.; El Dawaiaty, A.A. Central obesity among adults in Egypt: Prevalence and associated morbidity. EMHJ-East. Mediterr. Health J. 2008, 14, 57–68. [Google Scholar]
- Zindah, M.; Belbeisi, A.; Walke, H.; Mokdad, A.H. Obesity and diabetes in Jordan: Findings from the behavioural risk factor surveillance system. Prev. Chronic Dis. 2004, 5, A17. [Google Scholar]
- Bozorgmanesh, M.; Hadaegh, F.; Zabetian, A.; Azizi, F. Impact of hip circumference and height on incident diabetes: Results from 6-year follow-up in the Tehran Lipid and Glucose Study. Diabet. Med. 2011, 28, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.A.; Al-Jazairi, M.I. Predictors of incident diabetes mellitus in Basrah, Iraq. Ann. Nutr. Metab. 2007, 51, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Al-Moosa, S.; Allin, S.; Jemiai, N.; Al-Lawati, J.; Mossialos, E. Diabetes and urbanization in the Omani population: An analysis of national survey data. Popul. Health Metr. 2006, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Al Khudairy, L.; Rees, K.; Kumar, S.; Al-Daghri, N.; Al Attas, O.; Al Okail, M.; Stranges, S. Abstract P263: Central obesity and the emerging epidemic of type 2 diabetes in Saudi Arabia. Circulation 2015, 131 (Suppl. 1), AP263. [Google Scholar]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Chakraborti, C.K. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J. Diabetes 2015, 6, 1296. [Google Scholar] [CrossRef] [PubMed]
- Drolet, R.; Bélanger, C.; Fortier, M.; Huot, C.; Mailloux, J.; Légaré, D.; Tchernof, A. Fat depot-specific impact of visceral obesity on adipocyte adiponectin release in women. Obesity 2009, 17, 424–430. [Google Scholar] [CrossRef]
- Meyer, L.K.; Ciaraldi, T.P.; Henry, R.R.; Wittgrove, A.C.; Phillips, S.A. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2013, 2, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New insight into adiponectin role in obesity and obesity-related diseases. Biomed. Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef] [PubMed]
- Ramya, K.; Ayyappa, K.A.; Ghosh, S.; Mohan, V.; Radha, V. Genetic association of ADIPOQ gene variants with type 2 diabetes, obesity and serum adiponectin levels in south Indian population. Gene 2013, 532, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Al-Goblan, A.S.; Al-Alfi, M.A.; Khan, M.Z. Mechanism linking diabetes mellitus and obesity. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 587. [Google Scholar] [CrossRef] [Green Version]
- Johnston, L.W.; Harris, S.B.; Retnakaran, R.; Giacca, A.; Liu, Z.; Bazinet, R.P.; Hanley, A.J. Association of NEFA composition with insulin sensitivity and beta cell function in the Prospective Metabolism and Islet Cell Evaluation (PROMISE) cohort. Diabetologia 2018, 61, 821–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpe, F.; Dickmann, J.R.; Frayn, K.N. Fatty acids, obesity, and insulin resistance: Time for a reevaluation. Diabetes 2011, 60, 2441–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel, R.H.; Kahn, S.E.; Ferrannini, E.; Goldfine, A.B.; Nathan, D.M.; Schwartz, M.W.; Smith, R.J.; Smith, S.R. Obesity and type 2 diabetes: What can be unified and what needs to be individualized? J. Clin. Endocrinol. Metab. 2011, 96, 1654–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Liu, X.; Mu, J.; Xu, Q.; Meng, Q.; Zhang, L.; Feng, L.; Shi, C.; Zhang, P.; Wang, H. White adipose tissue browning: A novel and effective therapeutic strategy and approach for type 2 diabetes. Diabetes Updates 2018. [CrossRef]
- Czech, M.P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol. Metab. 2020, 34, 27–42. [Google Scholar] [CrossRef]
- Franz, M.J.; MacLeod, J.; Evert, A.; Brown, C.; Gradwell, E.; Handu, D.; Reppert, A.; Robinson, M. Academy of Nutrition and Dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: Systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. J. Acad. Nutr. Diet. 2017, 117, 1659–1679. [Google Scholar] [CrossRef]
- MacLeod, J.; Franz, M.J.; Handu, D.; Gradwell, E.; Brown, C.; Evert, A.; Reppert, A.; Robinson, M. Academy of Nutrition and Dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: Nutrition intervention evidence reviews and recommendations. J. Acad. Nutr. Diet. 2017, 117, 1637–1658. [Google Scholar] [CrossRef]
- Raynor, H.A.; Davidson, P.G.; Burns, H.; Nadelson, M.D.H.; Mesznik, S.; Uhley, V.; Moloney, L. Medical nutrition therapy and weight loss questions for the evidence analysis library prevention of type 2 diabetes project: Systematic reviews. J. Acad. Nutr. Diet. 2017, 117, 1578–1611. [Google Scholar] [CrossRef]
- Al-Shoorkir, A.; Khor, G.L.; Chan, Y.M.; Loke, S.C.; Al-Maskari, M. Effectiveness of medical nutrition treatment delivered by di-etitians on glycaemic outcomes and lipid profiles of Arab, Omani patients with type 2 diabetes. Diabet. Med. 2012, 29, 236–244. [Google Scholar]
- Andrews, R.; Cooper, A.; Montgomery, A.; Norcross, A.; Peters, T.; Sharp, D.; Jackson, N.; Fitzsimons, K.; Bright, J.; Coulman, K.; et al. Diet or diet plus physical activity versus usual care in patients with newly diagnosed type 2 diabetes: The Early ACTID randomized controlled trial. Lancet 2011, 378, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Asaad, G.; Soria-Contreras, D.C.; Bell, R.C.; Chan, C.B. Effectiveness of a lifestyle intervention in patients with type 2 diabetes: The Physical Activity and Nutrition for Diabetes in Alberta (PANDA) trial. Healthcare 2016, 4, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutton, G.R.; Lewis, C.E. The Look AHEAD Trial: Implications for lifestyle intervention in type 2 diabetes mellitus. Prog. Cardiovasc. Dis. 2015, 58, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvadó, J.; Bulló, M.; Babio, N.; Martínez-González, M.Á.; Ibarrola-Jurado, N.; Basora, J. PREDIMED Study Investigators. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [Google Scholar]
- Taheri, S.; Zaghloul, H.; Chagoury, O.; Elhadad, S.; Ahmed, S.H.; El Khatib, N.; Abou-Samra, A.B. Effect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): An open-label, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 477–489. [Google Scholar] [CrossRef]
- Benaji, B.; Mounib, N.; Roky, R.; Aadil, N.; Houti, I.E.; Moussamih, S.; El Ghomari, H. Diabetes and Ramadan: Review of the literature. Diabetes Res. Clin. Pract. 2006, 73, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Aydin, N.; Kul, S.; Karadağ, G.; Tabur, S.; Araz, M. Effect of Ramadan fasting on glycaemic parameters & body mass index in type II diabetic patients: A meta-analysis. Indian J. Med. Res. 2019, 150, 546–556. [Google Scholar]
- Bener, A.; Al-Hamaq, A.O.; Öztürk, M.; Çatan, F.; Haris, P.I.; Rajput, K.U.; Ömer, A. Effect of ramadan fasting on glycemic control and other essential variables in diabetic patients. Ann. Afr. Med. 2018, 17, 196. [Google Scholar] [CrossRef] [PubMed]
- Salti IBenard, E.; Detournay, B.; Bianchi-Biscay, M.; Le Brigand, C.; Voinet, C.; Jabbar, A. A Population-Based Study of Diabetes and Its Characteristics during the Fasting Month of Ramadan in 13 Countries Results of the Epidemiology of Diabetes and Ramadan 1422/2001 (EPIDIAR) study. Diabetes Care 2004, 27, 2306–2311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norouzy, A.; Mohajeri, S.M.R.; Shakeri, S.; Yari, F.; Sabery, M.; Philippou, E.; Nematy, M. Effect of Ramadan fasting on glycemic control in patients with Type 2 diabetes. J. Endocrinol. Investig. 2012, 35, 766. [Google Scholar]
- Ismail, A.; Helmy Meglaa, M.; Badrah, M.; Farghaly, M. Study of the metabolic effects of Ramadan fasting on patients with type 2 diabetes. Relation to glycemic control, hypoglycemic events and diabetic complications. Clin. Diabetol. 2021. [Google Scholar] [CrossRef]
- Beshyah, S.; Badi, A.; El-Ghul, A.; Gabroun, A.; Dougman, K.; Eledrisi, M. The year in “Ramadan Fasting and Health” 2018: A narrative review. Ibnosina J. Med. Biomed. Sci. 2019, 11, 151. [Google Scholar] [CrossRef]
- Afandi, B.O.; Beshyah, S.A.; Hassanein, M.M.; Jabbar, A.; Khalil, A.B. The individualization of care for people with diabetes during Ramadan fasting: A narrative review. Ibnosina J. Med. Biomed. Sci. 2020, 12, 98. [Google Scholar]
- Alameddine, M.; Nasreddine, L.; Hwalla, N.; Mourad, Y.; Shoaib, H.; Mousa, D.; Naja, F. Factors associated with consulting a dietitian for diabetes management: A cross-sectional study. BMC Health Serv. Res. 2013, 13, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsairafi, Z.K.; Taylor, K.M.G.; Smith, F.J.; Alattar, A.T. Patients’ management of type 2 diabetes in Middle Eastern countries: Review of studies. Patient Prefer. Adherence 2016, 10, 1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siopis, G.; Colagiuri, S.; Allman-Farinelli, M. Dietitians’ experiences and perspectives regarding access to and delivery of dietetic services for people with type 2 diabetes mellitus. Heliyon 2020, 6, e03344. [Google Scholar] [CrossRef] [PubMed]
- Trento, M.; Basile, M.; Borgo, E. A randomised controlled clinical trial of nurse-, dietitian- and pedagogist-led Group Care for the management of Type 2 diabetes. J. Endocrinol. Investig. 2008, 31, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, C.M.; Dwyer, J.T.; Jacques, P.F. Diabetes self-care behaviours and clinical outcomes among Taiwanese patients with type 2 diabetes. Asia Pac. J. Clin. Nutr. 2015, 24, 438–443. [Google Scholar]
- Barakatun, M.; Ruzita, A.; Norimah, A. Medical nutrition therapy administered by a dietitian yields favourable diabetes outcomes in individual with type 2 diabetes mellitus. Med. J. Malays. 2012, 68, 18–23. [Google Scholar]
- Liu, H.; Zhang, M.; Wu, X. Effectiveness of a public dietitian-led diabetes nutrition intervention on glycemic control in a community setting in China. Asia Pac. J. Clin. Nutr. 2015, 24, 525–532. [Google Scholar]
- Bekele, H.; Asefa, A.; Getachew, B.; Belete, A.M. Barriers and Strategies to Lifestyle and Dietary Pattern Interventions for Prevention and Management of TYPE-2 Diabetes in Africa, Systematic Review. J. Diabetes Res. 2020, 2020, 7948712. [Google Scholar] [CrossRef]
- Al-Kaabi, J.; Al-Maskari, F.; Saadi, H.; Afandi, B.; Parkar, H.; Nagelkerke, N. Assessment of dietary practice among diabetic patients in the United Arab Emirates. Rev. Diabet. Stud. RDS 2008, 5, 110. [Google Scholar] [CrossRef] [Green Version]
- Wilbur, K.; Al Ameri, M. An inventory of diabetes care in Qatar. Pract. Diabetes Int. 2011, 28, 35–36. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Krauss, R.M.; Taubes, G.; Willett, W. Dietary fat and cardiometabolic health: Evidence, controversies, and consensus for guidance. BMJ 2018, 361, k2139. [Google Scholar] [CrossRef] [Green Version]
- Ajala, O.; English, P.; Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef] [Green Version]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary patterns and type 2 diabetes: A systematic literature review and meta-analysis of prospective studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Chaimani, A.; Hoffmann, G.; Schwedhelm, C.; Boeing, H. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur. J. Epidemiol. 2018, 33, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Hoffmann, G.; Schwingshackl, L.; Schlesinger, S. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. Eur. J. Epidemiol. 2019, 34, 837–852. [Google Scholar]
- De Carvalho, G.B.; Dias-Vasconcelos, N.L.; Santos, R.K.F.; Brandao-Lima, P.N.; da Silva, D.G.; Pires, L.V. Effect of different dietary patterns on glycemic control in individuals with type 2 diabetes mellitus: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Abbasnezhad, A.; Falahi, E.; Gonzalez, M.J.; Kavehi, P.; Fouladvand, F.; Choghakhori, R. Effect of different dietary approaches compared with a regular diet on systolic and diastolic blood pressure in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2020, 163, 108108. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.; Threlkeld, R.J. Nutritional Recommendations for Individuals with Diabetes. [Updated 13 October 2019]. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kaltsas, G., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279012/ (accessed on 15 November 2020).
- Georgoulis, M.; Kontogianni, M.D.; Yiannakouris, N. Mediterranean diet and diabetes: Prevention and treatment. Nutrients 2014, 6, 1406–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 5. Lifestyle management: Standards of medical care in diabetes—2019. Diabetes Care 2019, 42 (Suppl. 1), S46–S60. [Google Scholar]
- Sheard, N.F.; Clark, N.G.; Brand-Miller, J.C.; Franz, M.J.; Pi-Sunyer, F.X.; Mayer-Davis, E.; Kulkarni, K.; Geil, P. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: A statement by the American Diabetes Association. Diabetes Care 2004, 27, 2266–2271. [Google Scholar] [CrossRef] [Green Version]
- Merrill, J.D.; Soliman, D.; Kumar, N.; Lim, S.; Shariff, A.I.; Yancy, W.S. Low-Carbohydrate and Very-Low-Carbohydrate Diets in Patients With Diabetes. Diabetes Spectr. 2020, 33, 133–142. [Google Scholar] [CrossRef]
- Dyson, P. Low carbohydrate diets and type 2 diabetes: What is the latest evidence? Diabetes Ther. 2015, 6, 411–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wyk, H.J.; Davis, R.E.; Davies, J.S. A critical review of low-carbohydrate diets in people with type 2 diabetes. Diabet. Med. 2016, 33, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Snorgaard, O.; Poulsen, G.M.; Andersen, H.K.; Astrup, A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000354. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Bai, H.; Wang, S.; Li, Z.; Wang, Q.; Chen, L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2017, 131, 124–131. [Google Scholar] [CrossRef]
- Lewis, J.; Haubrick, K. Following a Low Carbohydrate, High Fat Diet Compared to Reduced Calorie, High Carbohydrate Diet as a Nutritional Intervention in Type Two Diabetes Mellitus Patients: A Systematic Review. J. Food Stud. 2020, 9, 1. [Google Scholar] [CrossRef]
- Churuangsuk, C.; Lean, M.E.; Combet, E. Low and reduced carbohydrate diets: Challenges and opportunities for type 2 diabetes management and prevention. Proc. Nutr. Soc. 2020. [CrossRef] [Green Version]
- Meroni, A.; Muirhead, R.P.; Atkinson, F.S.; Fogelholm, M.; Raben, A.; Brand-Miller, J.C. Is a Higher Protein-Lower Glycemic Index Diet More Nutritious Than a Conventional Diet? A PREVIEW Sub-study. Front. Nutr. 2020, 7, 299. [Google Scholar]
- Santos, F.L.; Esteves, S.S.; da Costa Pereira, A.; Yancy Jr, W.S.; Nunes, J.P. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes. Rev. 2012, 13, 1048–1066. [Google Scholar] [CrossRef]
- Wheeler, M.L.; Dunbar, S.A.; Jaacks, L.M.; Karmally, W.; Mayer-Davis, E.J.; Wylie-Rosett, J.; Yancy, W.S. Macronutrients, food groups, and eating patterns in the management of diabetes: A systematic review of the literature 2010. Diabetes Care 2012, 35, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Huntriss, R.; Campbell, M.; Bedwell, C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Nutr. 2018, 72, 311–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.H.; Choi, K.M. Impact of high-carbohydrate diet on metabolic parameters in patients with type 2 diabetes. Nutrients 2017, 9, 322. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [Green Version]
- Braun, K.; Guasch-Ferré, M.L.; Malik, V.; Alessa, H.; Willett, W.; Hu, F.B.; Voortman, T.; Bhupathiraju, S. Carbohydrate Quantity and Quality and Risk of Type 2 Diabetes: Results from Three Large Prospective US Cohorts. Curr. Dev. Nutr. 2020, 4 (Suppl. 2), 1380. [Google Scholar] [CrossRef]
- Åberg, S.; Mann, J.; Neumann, S.; Ross, A.B.; Reynolds, A.N. Whole-grain processing and glycemic control in type 2 diabetes: A randomized crossover trial. Diabetes Care 2020, 43, 1717–1723. [Google Scholar] [CrossRef]
- Silva, F.M.; Kramer, C.K.; de Almeida, J.C.; Steemburgo, T.; Gross, J.L.; Azevedo, M.J. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: A systematic review with meta-analysis of randomized controlled trials. Nutr. Rev. 2013, 71, 790–801. [Google Scholar] [CrossRef]
- Giacco, R.; Costabile, G.; Riccardi, G. Metabolic effects of dietary carbohydrates: The importance of food digestion. Food Res. Int. 2016, 88, 336–341. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Van der Sluijs, I.; Beulens, J.W.J.; van der Schouw, Y.T.; Buckland, G.; Kuijsten, A.; Schulze, M.B.; Amiano, P.; Ardanaz, E.; Balkau, B.; Boeing, H.; et al. Dietary glycemic index, glycemic load, and digestible carbohydrate intake are not associated with risk op type 2 diabetes in eight European countries. J. Nutr. 2013, 143, 93–99. [Google Scholar]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014, 37 (Suppl. 1), S120–S143. [Google Scholar] [CrossRef] [Green Version]
- Similä, M.E.; Valsta, L.M.; Kontto, J.P.; Albanes, D.; Virtamo, J. Low-, medium-and high-glycaemic index carbohydrates and risk of type 2 diabetes in men. Br. J. Nutr. 2011, 105, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Turati, F.; Lagiou, P.; Trichopoulos, D.; Augustin, L.S.; La Vecchia, C.; Trichopoulou, A. Mediterranean diet and glycaemic load in relation to incidence of type 2 diabetes: Results from the Greek cohort of the population-based European Prospective Investigation into Cancer and Nutrition (EPIC). Diabetologia 2013, 56, 2405–2413. [Google Scholar] [CrossRef] [Green Version]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.; Augustin, L.S.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.; et al. Dietary glycemic index and load and the risk of type 2 diabetes: Assessment of causal relations. Nutrients 2019, 11, 1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhupathiraju, S.N.; Tobias, D.K.; Malik, V.S.; Pan, A.; Hruby, A.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and risk of type 2 diabetes: Results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014, 100, 218–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juvonen, K.R.; Purhonen, A.-K.; Salmenkallio-Marttila, M.; Lähteenmäki, L.; Laaksonen, D.E.; Herzig, K.-H.; Uusitupa, M.I.J.; Poutanen, K.S.; Karhunen, L.J. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J. Nutr. 2009, 139, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weickert, M.O.; Pfeiffer, A.F. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef]
- McRae, M.P. Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses. J. Chiropr. Med. 2018, 17, 44–53. [Google Scholar] [CrossRef]
- Jovanovski, E.; Khayyat, R.; Zurbau, A.; Komishon, A.; Mazhar, N.; Sievenpiper, J.L.; Vuksan, V. Should viscous fiber supplements be considered in diabetes control? Results from a systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2019, 42, 755–766. [Google Scholar]
- InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: The EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015, 58, 1394–1408. [Google Scholar]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Musaiger, A.O. Food Consumption Patterns in the Eastern Mediterranean Region; Arab Center for Nutrition: Manama, Bahrain, 2011. [Google Scholar]
- World Health Organization. Regional Data on Non-Communicable Diseases; World Health Organization: Cairo, Egypt, 2011; Available online: http://www.emro.who.int/ncd/ (accessed on 21 December 2020).
- Zaghloul, S.; Waslien, C.; Al Somaie, M.; Prakash, P. Low adherence of Kuwaiti adults to fruit and vegetable dietary guidelines. EMHJ-East. Mediterr. Health J. 2012, 18, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Langenberg, C.; Savage, D.B. An amino acid profile to predict diabetes? Nat. Med. 2011, 17, 418–420. [Google Scholar] [CrossRef]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Tai, E.S.; Tan, M.L.S.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.M.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, J.J.M.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010, 53, 757–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Tavintharan, S.; Sum, C.F.; Woon, K.; Lim, S.C.; Ong, C.N. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J. Clin. Endocrinol. Metab. 2013, 98, E1060–E1065. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Wurtz, P.; Soininen, P.; Kangas, A.J.; Ronnemaa, T.; Lehtimaki, T.; Kahonen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Li, Y.; Qi, Q.; Hruby, A.; Manson, J.E.; Willett, W.C.; Wolpin, B.M.; Hu, F.B.; Qi, L. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int. J. Epidemiol. 2016, 45, 1482–1492. [Google Scholar] [CrossRef] [Green Version]
- Jennings, A.; MacGregor, A.; Pallister, T.; Spector, T.; Cassidy, A. Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: A twin study. Int. J. Cardiol. 2016, 223, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv. Nutr. 2011, 2, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723. [Google Scholar] [CrossRef] [Green Version]
- Lackey, D.E.; Lynch, C.J.; Olson, K.C.; Mostaedi, R.; Ali, M.; Smith, W.H.; Karpe, F.; Humphreys, S.; Bedinger, D.H.; Dunn, T.N.; et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E1175–E1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshorbagy, A.; Jernerén, F.; Basta, M.; Basta, C.; Turner, C.; Khaled, M.; Refsum, H. Amino acid changes during transition to a vegan diet supplemented with fish in healthy humans. Eur. J. Nutr. 2017, 56, 1953–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary protein intake and risk of type 2 diabetes in US men and women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Rietman, A.; Schwarz, J.; Tomé, D.; Kok, F.J.; Mensink, M. High dietary protein intake, reducing or eliciting insulin resistance? Eur. J. Clin. Nutr. 2014, 68, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, M.; Guénard, F.; Garneau, V.; Allam-Ndoul, B.; Lemieux, S.; Pérusse, L.; Vohl, M.C. Associations between dietary protein sources, plasma BCAA and short-chain acylcarnitine levels in adults. Nutrients 2019, 11, 173. [Google Scholar] [CrossRef] [Green Version]
- Nagata, C.; Nakamura, K.; Wada, K.; Tsuji, M.; Tamai, Y.; Kawachi, T. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: The Takayama study. Am. J. Epidemiol. 2013, 178, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Ke, Q.; Chen, C.; He, F.; Ye, Y.; Bai, X.; Cai, L.; Xia, M. Association between dietary protein intake and type 2 diabetes varies by dietary pattern. Diabetol. Metab. Syndr. 2018, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Chalvon-Demersay, T.; Azzout-Marniche, D.; Arfsten, J.; Egli, L.; Gaudichon, C.; Karagounis, L.G.; Tomé, D. A systematic review of the effects of plant compared with animal protein sources on features of metabolic syndrome. J. Nutr. 2017, 147, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viguiliouk, E.; Stewart, S.E.; Jayalath, V.H.; Ng, A.P.; Mirrahimi, A.; De Souza, R.J.; Hanley, A.J.; Bazinet, R.P.; Blanco Mejia, S.; Leiter, L.A.; et al. Effect of replacing animal protein with plant protein on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2015, 7, 9804–9824. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Yang, Y.; Ma, L. Iron metabolism and type 2 diabetes mellitus: A meta-analysis and systematic review. J. Diabetes Investig. 2020, 11, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Podmore, C.; Meidtner, K.; Schulze, M.B.; Scott, R.A.; Ramond, A.; Butterworth, A.S.; Wareham, N.J. Association of multiple biomarkers of iron metabolism and type 2 diabetes: The EPIC-InterAct study. Diabetes Care 2016, 39, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, M.; Bellia, C.; Moletto, C.; Aulisa, G.; Padua, E.; Della-Morte, D.; Caprio, M.; Bellia, A. Effects of Quality and Quantity of Protein Intake for Type 2 Diabetes Mellitus Prevention and Metabolic Control. Curr. Nutr. Rep. 2020, 9, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Lucotti, P.; Setola, E.; Monti, L.D.; Galluccio, E.; Costa, S.; Sandoli, E.P.; Fermo, I.; Rabaiotti, G.; Gatti, R.; Piatti, P. Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E906–E912. [Google Scholar] [CrossRef]
- Piatti, P.; Monti, L.D.; Valsecchi, G.; Magni, F.; Setola, E.; Marchesi, F.; Galli-Kienle, M.; Pozza, G.; Alberti, K.G.M. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 2001, 24, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, A.F.; Pedersen, E.; Schwab, U.; Risérus, U.; Aas, A.M.; Uusitupa, M.; Thanopoulou, A.; Kendall, C.; Sievenpiper, J.L.; Kahleová, H.; et al. The effects of different quantities and qualities of protein intake in people with diabetes mellitus. Nutrients 2020, 12, 365. [Google Scholar] [CrossRef] [Green Version]
- Ameer, F.; Scandiuzzi, L.; Hasnain, S.; Kalbacher, H.; Zaidi, N. De novo lipogenesis in health and disease. Metabolism 2014, 63, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Markova, M.; Seebeck, N.; Loft, A.; Hornemann, S.; Gantert, T.; Pfeiffer, A.F. High-protein diet more effectively reduces hepatic fat than low-protein diet despite lower autophagy and FGF21 levels. Liver Int. 2020, 40, 2982–2997. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, F.; Krebs, M.; Dombrowski, L.; Brehm, A.; Bernroider, E.; Roth, E.; Nowotny, P.; Waldhäusl, W.; Marette, A.; Roden, M. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 2005, 54, 2674–2684. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Yu, Q.; Mai, W.; Liang, P.; Liu, X.; Wang, Y. Dietary protein intake and subsequent risk of type 2 diabetes: A dose–response meta-analysis of prospective cohort studies. Acta Diabetol. 2019, 56, 851–870. [Google Scholar] [CrossRef]
- Binder, E.; Bermúdez-Silva, F.J.; André, C.; Elie, M.; Romero-Zerbo, S.Y.; Leste-Lasserre, T.; Duchampt, A.; Clark, S.; Aubert, A.; Mezzullo, M.; et al. Leucine supplementation protects from insulin resistance by regulating adiposity levels. PLoS ONE 2013, 8, e74705. [Google Scholar] [CrossRef] [Green Version]
- Karusheva, Y.; Koessler, T.; Strassburger, K.; Markgraf, D.; Mastrototaro, L.; Jelenik, T.; Simon, M.C.; Pesta, D.; Zaharia, O.P.; Bódis, K.; et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2019, 110, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Alfaqih, M.A.; Abu-Khdair, Z.; Saadeh, R.; Saadeh, N.; Al-Dwairi, A.; Al-Shboul, O. Serum branched chain amino acids are associated with type 2 diabetes mellitus in Jordan. Korean J. Fam. Med. 2018, 39, 313. [Google Scholar] [CrossRef] [Green Version]
- Dyson, P.A.; Twenefour, D.; Breen, C.; Duncan, A.; Elvin, E.; Goff, L.; Hill, A.; Kalsi, P.; Marsland, N.; McArdle, P.; et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet. Med. 2018, 35, 541–547. [Google Scholar] [CrossRef]
- Dworatzek, P.D.; Arcudi, K.; Gougeon, R.; Husein, N.; Sievenpiper, J.L.; Williams, S.L. Nutrition therapy. Can. J. Diabetes 2013, 37, S45–S55. [Google Scholar] [CrossRef] [Green Version]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A. SReduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2020, 5, CD011737. [Google Scholar] [PubMed]
- Shin, J.Y.; Xun, P.; Nakamura, Y.; He, K. Egg consumption in relation to risk of cardiovascular disease and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013, 98, 146–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Lin, J.S.; Aris, I.M.; Yang, G.; Chen, W.Q.; Li, L.J. Circulating saturated fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Nutrients 2019, 11, 998. [Google Scholar] [CrossRef] [Green Version]
- Hannon, B.A.; Thompson, S.V.; An, R.; Teran-Garcia, M. Clinical outcomes of dietary replacement of saturated fatty acids with unsaturated fat sources in adults with overweight and obesity: A systematic review and meta-analysis of randomized control trials. Ann. Nutr. Metab. 2017, 71, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; O’Connor, L.; Ye, Z.; Mursu, J.; Hayashino, Y.; Bhupathiraju, S.N.; Forouhi, N.G. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: Systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015, 351, h3576. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Lampousi, A.M.; Portillo, M.P.; Romaguera, D.; Hoffmann, G.; Boeing, H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutr. Diabetes 2017, 7, e262. [Google Scholar] [CrossRef] [Green Version]
- Wanders, A.J.; Blom, W.A.; Zock, P.L.; Geleijnse, J.M.; Brouwer, I.A.; Alssema, M. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: A meta-analysis of randomized controlled feeding trials. BMJ Open Diabetes Res. Care 2019, 7, e000585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.J.; Brainard, J.; Song, F.; Wang, X.; Abdelhamid, A.; Hooper, L. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: Systematic review and meta-analysis of randomised controlled trials. BMJ 2019, 366, l4697. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Liu, G.; Shin, H.J.; Hu, F.B.; Rimm, E.B.; Rexrode, K.M.; Manson, J.E.; Zong, G.; Sun, Q. Dietary fats and mortality among patients with type 2 diabetes: Analysis in two population based cohort studies. BMJ 2019, 366, l4009. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Barbaresko, J.; Pischke, C.R.; Iser, N.; Beckhaus, J.; Schwingshackl, L.; Schlesinger, S. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med. 2020, 17, e1003347. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Am. J. Clin. Nutr. 2013, 98, 1066–1083. [Google Scholar] [CrossRef] [Green Version]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; De Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Bueno, C.; Cavero-Redondo, I.; Martinez-Vizcaino, V.; Sotos-Prieto, M.; Ruiz, J.R.; Gil, A. Effects of milk and dairy product consumption on type 2 diabetes: Overview of systematic reviews and meta-analyses. Adv. Nutr. 2019, 10 (Suppl. 2), S154–S163. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.; Xu, G.; Du, Y.; Ajjarapu, A.S.; Snetselaar, L.G.; Bao, W. Association between plasma concentrations of elaidic acid, a major trans fatty acid, and depression in a nationally representative sample of US adults. J. Affect. Disord. 2019, 249, 301–306. [Google Scholar] [CrossRef]
- Stender, S.; Astrup, A.; Dyerberg, J. Ruminant and industrially produced trans fatty acids: Health aspects. Food Nutr. Res. 2008, 52, 1651. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.M. The food matrix: Implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 2019, 59, 3612–3629. [Google Scholar] [CrossRef]
- Astrup, A.; Bertram, H.C.; Bonjour, J.P.; De Groot, L.C.; de Oliveira Otto, M.C.; Feeney, E.L.; Garg, M.L.; Givens, I.; Kok, F.J.; Krauss, R.M.; et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ 2019, 366, l4137. [Google Scholar] [CrossRef] [Green Version]
- Coelho, O.G.L.; da Silva, B.P.; Rocha, D.M.U.P.; Lopes, L.L.; Alfenas, R.D.C.G. Polyunsaturated fatty acids and type 2 diabetes: Impact on the glycemic control mechanism. Crit. Rev. Food Sci. Nutr. 2017, 57, 3614–3619. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Ursin, G.; Veierød, M.B. Meat consumption and the risk of type 2 diabetes: A systematic review and meta-analysis of cohort studies. Diabetologia 2009, 52, 2277–2287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Keogh, J.; Clifton, P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism 2015, 64, 768–779. [Google Scholar] [CrossRef]
- Micha, R.; Mozaffarian, D. Trans fatty acids: Effects on metabolic syndrome, heart disease and diabetes. Nat. Rev. Endocrinol. 2009, 5, 335. [Google Scholar] [CrossRef]
- Feskens, E.J.; Sluik, D.; van Woudenbergh, G.J. Meat consumption, diabetes, and its complications. Curr. Diabetes Rep. 2013, 13, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Zeraatkar, D.; Han, M.A.; Guyatt, G.H.; Vernooij, R.W.; El Dib, R.; Cheung, K.; Johnston, B.C. Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: A systematic review and meta-analysis of cohort studies. Ann. Intern. Med. 2019, 171, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Vernooij, R.W.; Zeraatkar, D.; Han, M.A.; El Dib, R.; Zworth, M.; Milio, K.; Johnston, B.C. Patterns of red and processed meat consumption and risk for cardiometabolic and cancer outcomes: A systematic review and meta-analysis of cohort studies. Ann. Intern. Med. 2019, 171, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yu, M.; Fang, L.; Hu, R.Y. Association between sugar-sweetened beverages and type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2015, 6, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Stanhope, K.L. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu. Rev. Med. 2012, 63, 329–343. [Google Scholar] [CrossRef]
- Haines, P.S.; Siega-Riz, A.M.; Popkin, B.M. The Diet Quality Index revised: A measurement instrument for populations. J. Am. Diet. Assoc. 1999, 99, 697–704. [Google Scholar] [CrossRef]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dietary diversity score and cardiovascular risk factors in Tehranian adults. Public Health Nutr. 2006, 9, 728–736. [Google Scholar] [CrossRef]
- Midhet, F.M.; Al-Mohaimeed, A.A.; Sharaf, F.K. Lifestyle related risk factors of type 2 diabetes mellitus in Saudi Arabia. Saudi Med. J. 2010, 31, 768–774. [Google Scholar] [PubMed]
- Nettleton, J.A.; McKeown, N.M.; Kanoni, S.; Lemaitre, R.N.; Hivert, M.F.; Ngwa, J.; Van Rooij, F.J.; Sonestedt, E.; Wojczynski, M.K.; Ye, Z.; et al. Interactions of dietary whole-grain intake with fasting glucose–and insulin-related genetic loci in individuals of European descent: A meta-analysis of 14 cohort studies. Diabetes Care 2010, 33, 2684–2691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.H.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107, S214–S227. [Google Scholar] [CrossRef]
- Tong, X.; Dong, J.Y.; Wu, Z.W.; Li, W.; Qin, L.Q. Dairy consumption and risk of type 2 diabetes mellitus: A meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011, 65, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, D.C.; Threapleton, D.E.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Burley, V.J. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: Systematic review and dose–response meta-analysis of prospective studies. Br. J. Nutr. 2014, 112, 725–734. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.; Zhu, L.; Fang, Z.; He, L.; Ai, D.; Jin, Y. Whole grain and cereal fiber intake and the risk of type 2 diabetes: A meta-analysis. Int. J. Mol. Epidemiol. Genet. 2019, 10, 38. [Google Scholar]
- Hu, Y.; Ding, M.; Sampson, L.; Willett, W.C.; Manson, J.E.; Wang, M.; Rosner, B.; Hu, F.B.; Sun, Q. Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies. BMJ 2020, 370, m2206. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Patel, P.; Lewison, G.; Ekzayez, A.; Coutts, A.; Fouad, F.M.; Shamieh, O.; Giacaman, R.; Kutluk, T.; Khalek, R.A.; et al. The Profile of Non-Communicable Disease (NCD) research in the Middle East and North Africa (MENA) region: Analyzing the NCD burden, research outputs and international research collaboration. PLoS ONE 2020, 15, e0232077. [Google Scholar] [CrossRef] [PubMed]
- Naja, F.; Shatila, H.; Meho, L.; Alameddine, M.; Haber, S.; Nasreddine, L.; Sibai, A.M.; Hwalla, N. Gaps and opportunities for nutrition research in relation to non-communicable diseases in Arab countries: Call for an informed research agenda. Nutr. Res. 2017, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Al-Khudairy, L.; Stranges, S.; Kumar, S.; Al-Daghri, N.; Rees, K. Dietary Factors and Type 2 Diabetes in the Middle East: What Is the Evidence for an Association?––A Systematic Review. Nutrients 2013, 5, 3871–3897. [Google Scholar]
- Esmaillzadeh, A.; Mirmiran, P.A.R.V.I.N.; Azizi, F. Whole-grain consumption and the metabolic syndrome: A favorable association in Tehranian adults. Eur. J. Clin. Nutr. 2005, 59, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Al Busaidi, N.; Shanmugam, P.; Manoharan, D. Diabetes in the Middle East: Government health care policies and strategies that address the growing diabetes prevalence in the Middle East. Curr. Diabetes Rep. 2019, 19, 8. [Google Scholar] [CrossRef]
- Sami, W.; Ansari, T.; Butt, N.S.; Ab Hamid, M.R. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65. [Google Scholar]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Benson, G.; Pereira, R.F.; Boucher, J.L. Rationale for the use of a Mediterranean diet in diabetes management. Diabetes Spectr. 2011, 24, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.P. DASH eating plan: An eating pattern for diabetes management. Diabetes Spectr. 2017, 30, 76–81. [Google Scholar] [CrossRef] [Green Version]
Author | Sample Size | Duration | Outcomes | Comparison | Result |
---|---|---|---|---|---|
Ajala et al. (2013) [90] | 3073 adults with T2D | ≥6 months | Glycemic control; lipid profile; weight loss | 7 dietary approaches (LC, V, vegan, low GI, HF, MD. HP) vs. control diets | MD, LC, HP and low GI all improved glycemic control MD showed largest effect size MD and LC showed greater weight loss All diets increased HDL except HP |
Jannasch et al. (2017) [91] | 16 study populations (non-diabetic participants) | - | Diabetes incidence | MD, DASH, HEI, AHEI | MD, DASH and AHEI showed great potential for diabetes prevention |
Schwingshackl et al. (2018) [92] | 4937 adults with T2D | ≥12 weeks | HbA1c (%); fasting blood glucose (mmol/l) | 9 dietary approaches (LF, LC, MC, HP, MD, low GI/GL and PD vs. control) | LC achieved greatest HbA1c reduction (SUCRA: 84%) MD achieved best results for fasting blood glucose (SUCRA: 88%) |
Neuenschwander et al. (2019) [93] | 5360 adults with T2D | ≥12 weeks | LDL-C (mmol/l); HDL-C (mmol/l); TG (mmol/l) | 9 dietary approaches (LF, LC, MC, HP, MD, low GI/GL and PD vs. control) | MD was the most effective to manage diabetic dyslipidemia (SUCRA: 79%). |
De Carvalho et al. (2019) [94] | Adults with T2D | 8 weeks–4 years | HbA1c (%) | Dietary patterns favoring glycemic control vs. control diets | Vegan, V, MD and DASH achieved greatest reduction |
Abbasnezhad et al. (2020) [95] | 1130 adults with T2D | 2 weeks–3 years | Systolic and Diastolic BP | 11 dietary approaches (Vegan, LF, LS, HF, LP, HP, LC, Low GI, PD, MD, Korean traditional diet) | LS achieved greatest reduction for systolic BPHF achieved greatest reduction for diastolic BP |
Author | Sample Size | Follow-up | Objective | Result |
---|---|---|---|---|
De Souza et al. (2015) [173] | - | - | Association of fat intake with mortality, CVD and T2D | SFA not associated with all-cause mortality, CVD mortality, total CHD mortality, ischemic stroke or T2D Total TFA associated with all-cause mortality, CHD and CHD mortality but not ischemic stroke or T2D Industrial but not ruminant TFA associated with CHD and CHD mortality Ruminant TFA inversely associated with T2D |
Imamura et al. (2016) [176] | 4220 adults with T2D | 3–166 days | Effects of fat intake on blood glucose, insulin, HbA1c, insulin sensitivity, and insulin secretion | Isocaloric substitution of SFA and carbohydrates with PUFA significantly improved fasting glucose and HOMA-IR, but not fasting insulin |
Schwingshackl et al. (2017) [177] | 187,068 adults with or without T2D | 2 weeks–22 years | Association between intake of olive oil and glycemic control | Highest versus lowest intake of olive oil associated with 16% decreased T2D risk |
Wanders et al. (2019) [178] | 576 adults with and without T2D | 3–16 weeks | Effects of plant-derived PUFA on fasting glucose, fasting insulin, HOMA-IR, HbA1c, post-challenge measures of glucose metabolism and markers of insulin sensitivity | -Isocaloric substitution of SFA or carbohydrates with PUFA reduced fasting insulin and HOMA-IR, but not glucose -Highest PUFA intake associated with larger effects on fasting insulin and HOMA-IR |
Brown et al. (2019) [179] | - | ≥24 weeks | Effects of dietary fat intake on diabetes diagnosis, fasting glucose, fasting insulin, HbA1c, HOMA-IR | T2D incidence associated with omega 6 FA and inversely associated with higher linoleic acid and |
Jiao et al. (2019) [180] | 11,264 adults with T2D based on 2 cohort studies | Cohort 1: 1980–2014 Cohort 2: 1984–2014 | Association between dietary fat intake and mortality | -PUFA associated with lower CVD and total mortality -PUFA n-3, linoleic acid associated with lower total mortality -MUFA of animal but not plant origin associated with greater total mortality -Replacing 2% of energy from SFA with PUFA or linoleic acid associated with 13% and 15% decreased CVD mortality respectively and 12% decreased total mortality for PUFA |
Neuenschwander et al. (2020) [181] | 53,185 adults | 4.1 years–32 years | Association between intake of different types of dietary fat and T2D incidence | -Vegetable fat (PUFA, plant-based linoleic acid) associated with lower T2D incidence at low doses -Animal derived long chain omega 3 FA associated with increased T2D incidence -SFA, total omega 3 FA, trans FA and MUFA not associated with T2D incidence |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwalla, N.; Jaafar, Z.; Sawaya, S. Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence. Nutrients 2021, 13, 1060. https://doi.org/10.3390/nu13041060
Hwalla N, Jaafar Z, Sawaya S. Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence. Nutrients. 2021; 13(4):1060. https://doi.org/10.3390/nu13041060
Chicago/Turabian StyleHwalla, Nahla, Zeinab Jaafar, and Sally Sawaya. 2021. "Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence" Nutrients 13, no. 4: 1060. https://doi.org/10.3390/nu13041060
APA StyleHwalla, N., Jaafar, Z., & Sawaya, S. (2021). Dietary Management of Type 2 Diabetes in the MENA Region: A Review of the Evidence. Nutrients, 13(4), 1060. https://doi.org/10.3390/nu13041060