Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Search Strategy and Inclusion Criteria
2.2. Evaluation Validity and Data Extraction Process
3. Results and Discussion
3.1. Turmeric Glycemic Control and Insulin Sensitivity
3.2. Intracellular and Antioxidant Effects of Curcumin
3.3. Physical Exercise and Curcuma
3.4. Toxicity, Adverse Effects, and Contraindication
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Eshak, E.S.; Iso, H.; Muraki, I.; Tamakoshi, A. Fat-soluble vitamins from diet in relation to risk of type 2 diabetes melli-tus in Japanese population. Br. J. Nutr. 2019, 121, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Diabetes Society. Diretrizes da Sociedade Brasileira de Diabetes (2017–2018). Available online: https://www.diabetes.org.br/profissionais/images/2017/diretrizes/diretrizes-sbd-2017-2018.pdf (accessed on 20 September 2019).
- Palacios, O.M.; Kramer, M.; Maki, K.C. Diet and prevention of type 2 diabetes mellitus: Beyond weight loss and exercise. Expert Rev. Endocrinol. Metab. 2019, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mtintsilana, A.; Micklesfield, L.K.; Chorell, E.; Olsson, T.; Goedecke, J.H. Fat redistribution and accumulation of vis-ceral adipose tissue predicts type 2 diabetes risk in middle-aged black South African women: A 13-year longitudinal study. Nutr. Diabetes 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Pot, G.K.; Battjes-Fries, M.C.; Patijn, O.N.; Pijl, H.; Witkamp, R.F.; de Visser, M.; Voshol, P.J. Nutrition and life-style intervention in type 2 diabetes: Pilot study in the Netherlands showing improved glucose control and reduction in glu-cose lowering medication. BMJ Nutr. Prev. Health 2019, 2, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Bódis, K.; Kahl, S.; Simon, M.C.; Zhou, Z.; Sell, H.; Knebel, B.; Tura, A.; Strassburger, K.; Burkart, V.; Müssig, K.; et al. Reduced expression of stearoyl-CoA desaturase-1, but not free fatty acid receptor 2 or 4 in subcutaneous adipose tissue of patients with newly diagnosed type 2 diabetes mellitus. Nutr. Diabetes 2018, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unnikrishnan, R.; Anjana, R.M.; Mohan, V. Diabetes mellitus and its complications in India. Nat. Rev. Endocrinol. 2016, 12, 357–370. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes (2017) Federation About Diabetes. Available online: https://www.idf.org/aboutdiabetes/what-is-diabetes (accessed on 30 June 2017).
- American Diabetes Association. Standards of medical care in diabetes—2017 abridged for primary care providers. Clin. Diabetes Publ. Am. Diabetes Assoc 2017, 35, 5. [Google Scholar]
- Dirice, E.; Kahraman, S.; De Jesus, D.F.; El Ouaamari, A.; Basile, G.; Baker, R.L.; Ng, R.W. Increased β-cell prolif-eration before immune cell invasion prevents progression of type 1 diabetes. Nat. Metab. 2019, 1, 509. [Google Scholar] [CrossRef]
- Haverals, L.; Van Dessel, K.; Verrijken, A.; Dirinck, E.; Peiffer, F.; Verhaegen, A.; De Block, C.; Van Gaal, L. Cardiometabolic importance of 1-h plasma glucose in obese subjects. Nutr. Diabetes 2019, 9, 16. [Google Scholar] [CrossRef]
- American Diabetes Association. Microvascular complications and foot care: Standards of Medical Care in Diabe-tes—2019. Diabetes Care 2019, 42 (Suppl. 1), S124–S138. [Google Scholar] [CrossRef] [Green Version]
- Haslacher, H.; Fallmann, H.; Waldhäusl, C.; Hartmann, E.; Wagner, O.F.; Waldhäusl, W. Type 1 diabetes care: Im-provement by standardization in a diabetes rehabilitation clinic. An observational report. PLoS ONE 2018, 13, e0194135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.; Bredin, S.S.; Guan, Y.; Dickinson, K.; Kim, D.D.; Chua, Z.; Warburton, D.E. Cardiovascular health bene-fits of exercise training in persons living with type 1 diabetes: A systematic review and meta-analysis. J. Clin. Med. 2019, 8, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarneshan, S.N.; Fakhri, S.; Farzaei, M.H.; Khan, H.; Saso, L. Astaxanthin targets PI3K/Akt signaling pathway toward poten-tial therapeutic applications. Food Chem. Toxicol. 2020, 145, 111714. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Guoping, C.; Xiang, L.; Dong, X.; Lingling, Z.; Ni, J.; Wan, L.; Cai, G.; Chen, G. Curcumin inhibits apoptosis by modulating Bax/Bcl-2 expression and alleviates oxidative stress in testes of streptozotocin-induced diabetic rats. Clin. Risk Manag. 2017, 13, 1099–1105. [Google Scholar] [CrossRef] [Green Version]
- Böhm, A.; Weigert, C.; Staiger, H.; Häring, H.-U. Exercise and diabetes: Relevance and causes for response variability. Endocrine 2015, 51, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Widmann, M.; Nieß, A.M.; Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019, 49, 509–523. [Google Scholar] [CrossRef]
- Dos Santos, J.L.; Dantas, R.E.A.; Lima, C.A.; De Araujo, S.S.; De Almeida, E.C.V.; Marçal, A.C.; Estevam, C.D.S. Protective effect of a hydroethanolic extract from Bowdichia virgilioides on muscular damage and oxidative stress caused by strenuous resistance training in rats. J. Int. Soc. Sports Nutr. 2014, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bharti, S.K.; Krishnan, S.; Kumar, A.; Kumar, A. Antidiabetic phytoconstituents and their mode of action on meta-bolic pathways. Ther. Adv. Endocrinol. Metab. 2018, 9, 81–100. [Google Scholar] [CrossRef]
- Saso, L.; Gürer-Orhan, H.; Stepanić, V. Modulators of Oxidative Stress: Chemical and Pharmacological Aspects. Antioxi-Dants (Basel) 2020, 9, 657. [Google Scholar] [CrossRef]
- Kumar, A.; Dora, J.; Singh, A. A review on spice of life Curcuma longa (turmeric). Int. J. Appl. Biol. Pharm. Tech. 2011, 2, 371–379. [Google Scholar]
- Dulbecco, P.; Savarino, V. Therapeutic potential of curcumin in digestive diseases. World J. Gastroenterol. 2013, 19, 9256–9270. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; He, J.; Ahmad, H.; Wang, C.; Zhong, X.; Zhang, L.; Wang, T. Curcumin attenuates insulin resistance and hepatic lipid accumulation in a rat model of intrauterine growth restriction through insulin signaling pathway and SREBPs. Br. J. Nutr. 2019, 122, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sureda, A.; Batle, J.M.; Capó, X.; Martorell, M.; Córdova, A.; Tur, J.A.; Pons, A. Scuba diving induces nitric oxide synthesis and the expression of inflammatory and regulatory genes of the immune response in neutrophils. Physiol. Genom. 2014, 46, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Nicol, L.M.; Rowlands, D.; Fazakerly, R.; Kellett, J. Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 115, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Global Report on Traditional and Complementary Medicine 2019; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/traditional-complementary-integrative-medicine/WhoGlobalReportOnTraditionalAndComplementaryMedicine2019.pdf (accessed on 18 December 2020).
- Cheikhyoussef, A.; Shapi, M.; Matengu, K.; Ashekele, H.M. Ethnobotanical study of indigenous knowledge on me-dicinal plant use by traditional healers in Oshikoto region, Namibia. J. Ethnobiol. Ethnomed. 2011, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Deng, J.; Yuan, J.; Tang, X.; Wang, Y.; Chen, H.; Zhou, L. Curcumin exerts its tumor suppressive func-tion via inhibition of NEDD4 oncoprotein in glioma cancer cells. Int. J. Oncol. 2017, 52, 467–477. [Google Scholar] [CrossRef]
- Marmitt, D.J.; Rempel, C.; Goettert, M.I.; E Silva, A.D.C. Análise da produção científica do Curcuma longa L. (açafrão) em três bases de dados após a criação da RENISUS. Rev. Pan-Amaz. Saúde 2016, 7, 71–77. [Google Scholar] [CrossRef]
- Himesh, S.; Sharan, P.S.; Mishra, K.; Govind, N.; Singhai, A.K. Qualitative and quantitative profile of curcumin from ethanolic extract of Curcuma longa. Int. Res. J. Pharm. 2011, 2, 180–184. [Google Scholar]
- Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanomedicine: A road to cancer therapeutics. Curr. Pharma-Ceutical Des. 2013, 19, 1994–2010. [Google Scholar]
- Madkor, H.R.; Mansour, S.W.; Ramadan, G. Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats. Br. J. Nutr. 2010, 105, 1210–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Yu, J.; Ke, F.; Lan, M.; Li, D.; Tan, K.; Ling, J.; Wang, Y.; Wu, K.; Li, D. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats. Ophthalmic Res. 2018, 60, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Rashid, K.; Chowdhury, S.; Ghosh, S.; Sil, P.C. Curcumin attenuates oxidative stress induced NFκB mediated in-flammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem. Pharmacol. 2017, 143, 140–155. [Google Scholar] [CrossRef] [PubMed]
- Su, L.Q.; Wang, Y.D.; Chi, H.Y. Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi J. Biol. Sci. 2017, 24, 1776–1780. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumi-noids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: A random-ized double-blind placebo-controlled trial. Drug Res. 2018, 68, 403–409. [Google Scholar]
- Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Majeed, M.; Sahebkar, A. Antioxidant and anti-inflammatory ef-fects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updat-ed meta-analysis. Clin. Nutr. 2015, 34, 1101–1108. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, B.; Shen, G.; Li, X.; Wu, Q. Curcumin alleviates liver oxidative stress in type 1 diabetic rats. Mol. Med. Rep. 2017, 17, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Haryuna, T.S.H.; Munir, D.; Maria, A.; Bashiruddin, J. The Antioxidant Effect of Curcumin on Cochlear Fibroblasts in Rat Models of Diabetes Mellitus. Iran. J. Otorhinolaryngol. 2017, 29, 197–202. [Google Scholar]
- Guo, S.; Meng, X.W.; Yang, X.S.; Liu, X.F.; Ou-Yang, C.H.; Liu, C. Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharm. Sin. 2018, 39, 195–204. [Google Scholar] [CrossRef]
- Kant, V.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K.; Kumar, D. Antioxidant and anti-inflammatory poten-tial of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunophar-Macol. 2014, 20, 322–330. [Google Scholar] [CrossRef]
- Kant, V.; Kumar, D.; Prasad, R.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K. Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats. J. Surg. Res. 2017, 212, 130–145. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Chino, K.; Ohnishi, T.; Ozawa, H.; Sagayama, H.; Maeda, S.; Takahashi, H. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand. J. Med. Sci. Sports 2019, 29, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, N.; Choi, Y.; Miyaki, A.; Tanabe, Y.; Sugawara, J.; Ajisaka, R.; Maeda, S. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr. Res. 2012, 32, 795–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilelli, N.C.; Ragazzi, E.; Valentini, R.; Cosma, C.; Ferraresso, S.; Lapolla, A.; Sartore, G. Curcumin and Boswellia serrata Modulate the Glyco-Oxidative Status and Lipo-Oxidation in Master Athletes. Nutrients 2016, 8, 745. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, J.; Akazawa, N.; Miyaki, A.; Choi, Y.; Tanabe, Y.; Imai, T.; Maeda, S. Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: Pilot study. Am. J. Hypertens. 2012, 25, 651–656. [Google Scholar] [CrossRef]
- Takahashi, M.; Suzuki, K.; Kim, H.K.; Otsuka, Y.; Imaizumi, A.; Miyashita, M.; Sakamoto, S. Effects of Curcumin Supplementation on Exercise-Induced Oxidative Stress in Humans. Int. J. Sports Med. 2014, 35, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Chabory, E.; Damon, C.; Lenoir, A.; Kauselmann, G.; Kern, H.; Zevnik, B.; Garrel, C.; Saez, F.; Cadet, R.; Henry-Berger, J.; et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J. Clin. Investig. 2009, 119, 2074–2085. [Google Scholar] [CrossRef]
- Reis, J.S.; Veloso, C.A.; Mattos, R.T.; Purish, S.; Nogueira-Machado, J.A.; Ii, I. Estresse oxidativo: Revisão da sinalização metabólica no diabetes tipo 1. Arq. Bras. Endocrinol. Metab. 2008, 52, 1096–1105. [Google Scholar] [CrossRef]
- Chimen, M.; Kennedy, A.; Nirantharakumar, K.; Pang, T.T.; Andrews, R.; Narendran, P. What are the health bene-fits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 2012, 55, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, A.; Lima GP, P.; Mastorci, F.; Quinones, A.; Iervasi, G.; Vassalle, C. Exercise and oxidative stress: Poten-tial effects of antioxidant dietary strategies in sports. Nutrition 2015, 31, 916–922. [Google Scholar] [CrossRef]
- Borges, G.A.; Araújo, S.F.; Cunha, R.M. Os benefícios do treinamento resistido para portadores de diabetes mellitus tipo II. Lect. Educ. Física Deportes 2010, 15, 1. [Google Scholar]
- Turgut, M.; Cinar, V.; Pala, R.; Tuzcu, M.; Orhan, C.; Telceken, H.; Sahin, K.; Defo, P.B.D.; Komorowski, J.R.; Sahin, K. Biotin and chromium histidinate improve glucose metabolism and proteins expression levels of IRS-1, PPAR-γ, and NF-κB in exercise-trained rats. J. Int. Soc. Sports Nutr. 2018, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.L.; de Araujo, S.S.; dos Santos Estevam, C.; Lima, C.A.; de Oliveira Carvalho, C.R.; Lima, F.B.; Marçal, A.C. Molecular Mechanisms of Muscle Glucose Uptake in Response to Resistance Exercise: A Review. J. Exerc. Physiol. Online 2017, 20, 200–211. [Google Scholar]
- Liju, V.B.; Jeena, K.; Kuttan, R. Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L). Food Chem. Toxicol. 2013, 53, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer. Res. 2001, 21, 2895–2900. [Google Scholar] [PubMed]
- WHO Safety Evaluation of Certain Food Additives and Contaminants/Prepared by the Sixty-First Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2003. Available online: https://apps.who.int/iris/bitstream/handle/10665/42849/WHO_TRS_922.pdf?sequence=1 (accessed on 18 December 2020).
- Sharma, R.A.; McLelland, H.R.; Hill, K.A.; Ireson, C.R.; Euden, S.A.; Manson, M.M.; Pirmohamed, M.; Marnett, L.J.; Gescher, A.J.; Steward, W.P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorec-tal cancer. Clin. Cancer Res. 2001, 7, 1894–1900. [Google Scholar] [PubMed]
- Júnior, A.S.S.; Aidar, F.J.; Dos Santos, J.L.; Estevam, C.D.S.; Dos Santos, J.D.M.; Silva, A.M.D.O.E.; Lima, F.B.; De Araújo, S.S.; Marçal, A.C. Effects of resistance training and turmeric supplementation on reactive species marker stress in diabetic rats. BMC Sports Sci. Med. Rehabil. 2020, 12, 1–12. [Google Scholar] [CrossRef]
Author and Year | Model and Blood Glucose Levels (According to Papers Analyzed) | Dose and Duration | Results |
---|---|---|---|
ZHAO et al. (2017) [16] | Diabetic and obese rats induced by STZ (13.88 mmol/L) | 100 mg/kg body weight for 8 weeks. | ↓ apoptosis in testicular cells ↓ Bax ↑ expressions of Bcl-2 ↓ MDA ↑ SOD. |
YANG et al. (2018) [35] | Wistar Diabetic rats induced by STZ (≥11.6 mmol/L) | One group received 100 mg/kg of curcumin, the other received 200 mg/kg for 16 weeks. | ↓ blood glucose ↓ body-weight loss |
RASHID et al. (2017) [36] | Diabetic rats induced by STZ (15.5 mmol/L) | 100 mg/kg of curcumin daily for 8 weeks. | ↑ inflammatory cytokines, ↑ NFkB pathway translocation ↓ cytosolic NFkB expression ↑ IkBa, NFkB |
SU, WANG and CHI (2017) [37] | Rats with T2DM induced by STZ (≥16.7 mmol/L) | Received medication for 8 consecutive weeks | ↑ AGL and TNF-α ↓ FBG; AUCs ↓ blood glucose ↓ insulin. |
PANAHI et al. (2018) [38] | Patients with T2DM (6.99 mmol/L) | Curcuminoids 500 mg/day coadministered with piperine, 5 mg/day for 3 months. | ↓ insulin, HbA1c and HOMA-IR ↓ glucose and Peptide C ↓ ALT and AST |
PANAHI et al. (2015) [39] | Patients with T2DM (6.1 mmol/L) | Curcuminoids 1000 mg/day + piperine 10 mg/day for 12 weeks | ↓ IMC, LDL-C, CT, TG, LDL-C and non-HDL-C ↑ HDL-C |
XIE et al. (2018) [40] | Sprague-Dawley rats with T1DM induced by STZ (≥11,1 mmol/L) | Treated with 1.0% curcumin (weight ratio) mixed into diet for 21 days. | ↓ body-weight loss ↓ blood glucose concentration ↓ insulin concentration ↑ antioxidant genes |
HARYUNA et al. (2017) [41] | Diabetic Wistar rats induced by STZ (11.1 mmol/L) | Groups 3 and 4 received curcumin therapy of 200 and 400 mg/kg for 3 days. Group 5 and 6 received 200 and 400 mg/kg for 8 days. | ↑ SOD expression in cochlear fibroblasts ↓ ROS ↓ NADPH ↓ oxidase, lipoxygenase, dehydrogenase xanthine and nitric oxide synthase. |
GUO et al. (2018) [42] | Diabetic Sprague-Dawley rats induced by STZ (16.7 mmol/L) | Received 300 mg/kg 16 weeks. | ↓ TGF-β1, ↑ Smad7 expression ↑ AMPK; p38 and MAPK. |
KANT et al. (2014) [43] | Diabetic Wistar rats induced by STZ (16.7 mmol/L) | Curcumin (0.3%) in pluronic gel once a day for 19 days. | ↑ anti-inflammatory cytokine (IL-10). ↓ Ser52, GRP78, CHOP ↓ TNF-a ↑ mRNA of IL-10 ↓ IL-1b; MMP-9. |
KANT et al. (2017) [44] | Diabetic Wistar rats induced by STZ (16.7 mmol/L) | 0.15% curcumin topically once a day for 19 days. | ↓ MDA ↑ SOD |
Author and Year | Model | Dose and Duration | Results |
---|---|---|---|
NICOL et al. (2015) [26] | Seventeen men | 2.5 g curcumin twice a day for eccentric exercise, 2 days before and 3 days after. | ↓ Ck activity ↑ IL-6 =TNF-alpha |
TANABE et al. (2018) [45] | Healthy men | Group 1 ingested 180 mg/day of Curcuma 7 days before isokinetic eccentric exercise. Group 2 ingested 180 mg/day; 1 CUR 7 days after isokinetic eccentric exercise. | ↑ IL-8 ↓ CK |
AKAZAWA et al. (2018) [46] | Postmenopausal women | 150 mg/day of curcumin along with aerobic exercise training for 8 weeks. | ↑ flow-mediated dilation in postmenopausal women ↑ endothelial function |
CHILELLI et al. (2016) [47] | 25 healthy individuals receiving Mediterranean diet and curcumin Boswellia serrata (BSE) | 12 weeks | ↑ TNG ↓ sRAGE and NEFA ↓ MDA |
SUGAWARA et al. (2012) [48] | Forty-five women | curcumin 150 mg/day, along with physical training with curcumin for 8 weeks. | ↓ PAS ↓ ALX ↑VO2 peak ↓ LV afterload |
TAKAHASHI et al. (2014) [49] | 10 men | 90 mg of curcumin 2 h before exercise and immediately after exercise for 60 min. | ↑ ROMs ↑ TRX-1 =TBARS, GSSG and GSH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sena-Júnior, A.S.; Aidar, F.J.; Oliveira e Silva, A.M.d.; Estevam, C.d.S.; de Oliveira Carvalho, C.R.; Lima, F.B.; dos Santos, J.L.; Marçal, A.C. Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review. Nutrients 2021, 13, 124. https://doi.org/10.3390/nu13010124
Sena-Júnior AS, Aidar FJ, Oliveira e Silva AMd, Estevam CdS, de Oliveira Carvalho CR, Lima FB, dos Santos JL, Marçal AC. Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review. Nutrients. 2021; 13(1):124. https://doi.org/10.3390/nu13010124
Chicago/Turabian StyleSena-Júnior, Ailton Santos, Felipe José Aidar, Ana Mara de Oliveira e Silva, Charles dos Santos Estevam, Carla Roberta de Oliveira Carvalho, Fábio Bessa Lima, Jymmys Lopes dos Santos, and Anderson Carlos Marçal. 2021. "Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review" Nutrients 13, no. 1: 124. https://doi.org/10.3390/nu13010124
APA StyleSena-Júnior, A. S., Aidar, F. J., Oliveira e Silva, A. M. d., Estevam, C. d. S., de Oliveira Carvalho, C. R., Lima, F. B., dos Santos, J. L., & Marçal, A. C. (2021). Whether or Not the Effects of Curcuma longa Supplementation Are Associated with Physical Exercises in T1DM and T2DM: A Systematic Review. Nutrients, 13(1), 124. https://doi.org/10.3390/nu13010124