Efficacy and Safety of the Combination of Superoxide Dismutase, Alpha Lipoic Acid, Vitamin B12, and Carnitine for 12 Months in Patients with Diabetic Neuropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Recruitment
2.2. Randomization and Allocation
2.3. Antidiabetic and Concomitant Medication
2.4. Measurements and Tests
2.5. Method of Measurement for Vitamin B12
2.6. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Active | Placebo | ||
---|---|---|---|
White Blood Cells (K/μL) | 7.91 ± 1.48 | 7.97 ± 1.38 | 0.636 |
Platelets (K/μL) | 246.47 ± 42.88 | 233.80 ± 61.45 | 0.294 |
Thyroid Stimulating Hormone (μIU/mL) | 3.37 ± 6.49 | 2.3 ± 0.95 | 0.388 |
Aspartate Aminotransferase (U/L) | 19.93 ± 9.73 | 17.56 ± 5.27 | 0.228 |
Alanine Transaminase (U/L) | 23.54 ± 15.26 | 22.47 ± 9.48 | 0.735 |
Active | Placebo | pc | |||||
---|---|---|---|---|---|---|---|
Baseline | 12Months | pa | Baseline | 12 Months | pb | ||
Systolic BP | 135.2 ± 18.7 | 136.1 ± 17.9 | 0.220 | 137.4 ± 16.9 | 136.5 ± 17.5 | 0.156 | 0.369 |
Diastolic BP | 80.5 ± 8.7 | 81.3 ± 7.8 | 0.450 | 81.1 ± 8.5 | 80.9 ± 8.1 | 0.520 | 0.258 |
Total Cholesterol | 169.48 ± 44.23 | 167.54 ± 39.20 | 0.521 | 171.4 ± 50.17 | 170.1 ± 52.31 | 0.701 | 0.889 |
Triglycerides | 152.55 ± 69.78 | 150.71 ± 67.91 | 0,659 | 152.4 ± 56.1 | 150.90 ± 50.2 | 0.085 | 0.994 |
HDL Cholesterol | 45.71 ± 12.9 | 47.82 ± 14.1 | 0.271 | 49.33 ± 10.7 | 47.61 ± 11.9 | 0.132 | 0.236 |
LDL Cholesterol | 93.3 ± 43.2 | 95.7 ± 44.5 | 0.475 | 91.6 ± 50.2 | 93.9 ± 53.2 | 0.521 | 0.886 |
References
- Boulton, A.J.M.; Vinik, A.I.; Arezzo, J.C.; Bril, V.; Feldman, E.L.; Freeman, R.; Malik, R.A.; Maser, R.E.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathies: A statement by the American Diabetes Association. Diabetes Care 2005, 28, 956–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesfaye, S.; Boulton, A.J.M.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.W.; Zilliox, L.A. Diabetic Neuropathies. Contin. Lifelong Learn. Neurol. 2014, 20, 1226–1240. [Google Scholar] [CrossRef] [Green Version]
- Didangelos, T.; Veves, A. Treatment of Diabetic Cardiovascular Autonomic, Peripheral and Painful Neuropathy. Focus on the Treatment of Cardiovascular Autonomic Neuropathy with ACE Inhibitors. CVP 2020, 18, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Didangelos, T.; Doupis, J.; Veves, A. Painful diabetic neuropathy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 53–61. ISBN 978-0-444-53480-4. [Google Scholar]
- Bennett, G.J. Update on the Neurophysiology of Pain Transmission and Modulation. J. Pain Symptom Manag. 2000, 19, 2–6. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [Green Version]
- Sandkühler, J. Models and Mechanisms of Hyperalgesia and Allodynia. Physiol. Rev. 2009, 89, 707–758. [Google Scholar] [CrossRef]
- Abbott, C.A.; Malik, R.A.; van Ross, E.R.E.; Kulkarni, J.; Boulton, A.J.M. Prevalence and Characteristics of Painful Diabetic Neuropathy in a Large Community-Based Diabetic Population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef] [Green Version]
- DCCT group. The Effect of Intensive Diabetes Therapy on the Development and Progression of Neuropathy. Ann. Intern Med. 1995, 122, 561. [Google Scholar] [CrossRef]
- Snedecor, S.J.; Sudharshan, L.; Cappelleri, J.C.; Sadosky, A.; Mehta, S.; Botteman, M. Systematic Review and Meta-Analysis of Pharmacological Therapies for Painful Diabetic Peripheral Neuropathy. Pain Pr. 2014, 14, 167–184. [Google Scholar] [CrossRef]
- Coppini, D.V. Enigma of painful diabetic neuropathy: Can we use the basic science, research outcomes and real-world data to help improve patient care and outcomes? Diabet. Med. 2016, 33, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Çakici, N.; Fakkel, T.M.; van Neck, J.W.; Verhagen, A.P.; Coert, J.H. Systematic review of treatments for diabetic peripheral neuropathy. Diabet. Med. 2016, 33, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- UKPDS GROUP. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Gæde, P.; Vedel, P.; Larsen, N.; Jensen, G.V.H.; Parving, H.-H.; Pedersen, O. Multifactorial Intervention and Cardiovascular Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2003, 348, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Gæde, P.; Lund-Andersen, H.; Parving, H.-H.; Pedersen, O. Effect of a Multifactorial Intervention on Mortality in Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 580–591. [Google Scholar] [CrossRef] [Green Version]
- ADVANCE Collaborative group. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, F.; Taniguchi, M.; Kosaka, A.; Uetake, H.; Tavakoli, M. Improvement in Neuropathy Outcomes With Normalizing HbA1c in Patients With Type 2 Diabetes. Diabetes Care 2019, 42, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shichiri, M.; Kishikawa, H.; Ohkubo, Y.; Wake, N. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 2000, 23 (Suppl. 2), B21–B29. [Google Scholar] [PubMed]
- Giorgino, F.; Home, P.D.; Tuomilehto, J. Glucose Control and Vascular Outcomes in Type 2 Diabetes: Is the Picture Clear? Diabetes Care 2016, 39, S187–S195. [Google Scholar] [CrossRef] [Green Version]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019, 5, 41. [Google Scholar] [CrossRef]
- Didangelos, T.; Doupis, J.; Veves, A. Oxidative Stress in Diabetes Mellitus and Possible Interventions. In Studies in Diabetes; Obrosova, I., Stevens, M.J., Yorek, M.A., Eds.; Springer: New York, NY, USA, 2014; pp. 237–261. ISBN 978-1-4899-8035-9. [Google Scholar]
- Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.M.; Ward, J.D.; Manes, C.; Ionescu-Tirgoviste, C.; Witte, D.R.; Fuller, J.H. Vascular Risk Factors and Diabetic Neuropathy. N. Engl. J. Med. 2005, 352, 341–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, U.; Sloan, G.; Tesfaye, S. Treating Pain in Diabetic Neuropathy: Current and Developmental Drugs. Drugs 2020, 80, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin. Ther. 2018, 40, 828–849. [Google Scholar] [CrossRef] [Green Version]
- Javed, S.; Petropoulos, I.N.; Alam, U.; Malik, R.A. Treatment of painful diabetic neuropathy. Ther. Adv. Chronic Dis. 2015, 6, 15–28. [Google Scholar] [CrossRef]
- Waldfogel, J.M.; Nesbit, S.A.; Dy, S.M.; Sharma, R.; Zhang, A.; Wilson, L.M.; Bennett, W.L.; Yeh, H.-C.; Chelladurai, Y.; Feldman, D.; et al. Pharmacotherapy for diabetic peripheral neuropathy pain and quality of life: A systematic review. Neurology 2017, 88, 1958–1967. [Google Scholar] [CrossRef]
- Romao, S. Therapeutic value of oral supplementation with melon superoxide dismutase and wheat gliadin combination. Nutrition 2015, 31, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Papanas, N.; Ziegler, D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin. Pharmacother. 2014, 15, 2721–2731. [Google Scholar] [CrossRef]
- Sima, A.A.F.; Calvani, M.; Mehra, M.; Amato, A. For the Acetyl-l-Carnitine Study Group Acetyl-L-Carnitine Improves Pain, Nerve Regeneration, and Vibratory Perception in Patients with Chronic Diabetic Neuropathy: An analysis of two randomized placebo-controlled trials. Diabetes Care 2005, 28, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Aroda, V.R.; Edelstein, S.L.; Goldberg, R.B.; Knowler, W.C.; Marcovina, S.M.; Orchard, T.J.; Bray, G.A.; Schade, D.S.; Temprosa, M.G.; White, N.H.; et al. Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study. J. Clin. Endocrinol. Metab. 2016, 101, 1754–1761. [Google Scholar] [CrossRef]
- Lam, J.R.; Schneider, J.L.; Zhao, W.; Corley, D.A. Proton Pump Inhibitor and Histamine 2 Receptor Antagonist Use and Vitamin B12 Deficiency. JAMA 2013, 310, 2435. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.G.; Lee, C.G.; Yun, I.H.; Hur, D.Y.; Yang, J.W.; Kim, H.W. Effect of lipoic acid on expression of angiogenic factors in diabetic rat retina: Lipoic acid effect on angiogenic factors. Clin. Exp. Ophthalmol. 2012, 40, e47–e57. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A. Metformin and Vitamin B12 Deficiency: Where Do We Stand? J. Pharm. Pharm. Sci. 2016, 19, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spallone, V.; Ziegler, D.; Freeman, R.; Bernardi, L.; Frontoni, S.; Pop-Busui, R.; Stevens, M.; Kempler, P.; Hilsted, J.; Tesfaye, S.; et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management: Diabetic Cardiovascular Autonomic Neuropathy in Clinical Practice. Diabetes Metab. Res. Rev. 2011, 27, 639–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, W.H.; Pop-Busui, R.; Braffett, B.H.; Martin, C.L.; Cleary, P.A.; Albers, J.W.; Feldman, E.L.; The DCCT/EDIC Research Group. Use of the Michigan Neuropathy Screening Instrument as a measure of distal symmetrical peripheral neuropathy in Type 1 diabetes: Results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications: Michigan Neuropathy Screening Instrument in Type 1 diabetes. Diabet. Med. 2012, 29, 937–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association 6. Glycemic Targets: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020, 43, S66–S76. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [CrossRef]
- Didangelos, T.; Tziomalos, K.; Margaritidis, C.; Kontoninas, Z.; Stergiou, I.; Tsotoulidis, S.; Karlafti, E.; Mourouglakis, A.; Hatzitolios, A.I. Efficacy of Administration of an Angiotensin Converting Enzyme Inhibitor for Two Years on Autonomic and Peripheral Neuropathy in Patients with Diabetes Mellitus. J. Diabetes Res. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.; Gill, J.S.; Aber, V.; Mather, H.M. Variability in vibration perception threshold among sites: A potential source of error in biothesiometry. BMJ 1988, 296, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Binns-Hall, O.; Selvarajah, D.; Sanger, D.; Walker, J.; Scott, A.; Tesfaye, S. One-stop microvascular screening service: An effective model for the early detection of diabetic peripheral neuropathy and the high-risk foot. Diabet. Med. 2018, 35, 887–894. [Google Scholar] [CrossRef]
- Didangelos, T.; Moralidis, E.; Karlafti, E.; Tziomalos, K.; Margaritidis, C.; Kontoninas, Z.; Stergiou, I.; Boulbou, M.; Papagianni, M.; Papanastasiou, E.; et al. A Comparative Assessment of Cardiovascular Autonomic Reflex Testing and Cardiac 123I-Metaiodobenzylguanidine Imaging in Patients with Type 1 Diabetes Mellitus without Complications or Cardiovascular Risk Factors. Int. J. Endocrinol. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Freynhagen, R.; Baron, R.; Gockel, U.; Tölle, T.R. pain DETECT: A new screening questionnaire to identify neuropathic components in patients with back pain. Curr. Med. Res. Opin. 2006, 22, 1911–1920. [Google Scholar] [CrossRef] [PubMed]
- Burroughs, T.E.; Desikan, R.; Waterman, B.M.; Gilin, D.; McGill, J. Development and Validation of the Diabetes Quality of Life Brief Clinical Inventory. Diabetes Spectr. 2004, 17, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Nexo, E.; Hoffmann-Lücke, E. Holotranscobalamin, a marker of vitamin B-12 status: Analytical aspects and clinical utility. Am. J. Clin. Nutr. 2011, 94, 359S–365S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heil, S.G.; de Jonge, R.; de Rotte, M.C.F.J.; van Wijnen, M.; Heiner-Fokkema, R.M.R.; Kobold, A.C.M.; Pekelharing, J.M.M.; Adriaansen, H.J.; Sanders, E.; Trienekens, P.H.; et al. Screening for metabolic vitamin B12 deficiency by holotranscobalamin in patients suspected of vitamin B12 deficiency: A multicentre study. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2012, 49, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Valente, E.; Scott, J.M.; Ueland, P.-M.; Cunningham, C.; Casey, M.; Molloy, A.M. Diagnostic Accuracy of Holotranscobalamin, Methylmalonic Acid, Serum Cobalamin, and Other Indicators of Tissue Vitamin B12 Status in the Elderly. Clin. Chem. 2011, 57, 856–863. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. IBM SPSS Statistics; IBM Corp.: Chicago, IL, USA, 2016. [Google Scholar]
- Ismail-Beigi, F.; Craven, T.; Banerji, M.A.; Basile, J.; Calles, J.; Cohen, R.M.; Cuddihy, R.; Cushman, W.C.; Genuth, S.; Grimm, R.H.; et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet 2010, 376, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose Control and Vascular Complications in Veterans with Type 2 Diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Brines, M.; Dunne, A.N.; van Velzen, M.; Proto, P.L.; Ostenson, C.-G.; Kirk, R.I.; Petropoulos, I.N.; Javed, S.; Malik, R.A.; Cerami, A.; et al. ARA 290, a Nonerythropoietic Peptide Engineered from Erythropoietin, Improves Metabolic Control and Neuropathic Symptoms in Patients with Type 2 Diabetes. Mol. Med. 2014, 20, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Azmi, S.; Jeziorska, M.; Ferdousi, M.; Petropoulos, I.N.; Ponirakis, G.; Marshall, A.; Alam, U.; Asghar, O.; Atkinson, A.; Jones, W.; et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 2019, 62, 1478–1487. [Google Scholar] [CrossRef] [Green Version]
- Ponirakis, G.; Abdul-Ghani, M.A.; Jayyousi, A.; Almuhannadi, H.; Petropoulos, I.N.; Khan, A.; Gad, H.; Migahid, O.; Megahed, A.; DeFronzo, R.; et al. Effect of treatment with exenatide and pioglitazone or basal-bolus insulin on diabetic neuropathy: A substudy of the Qatar Study. BMJ Open Diab. Res. Care 2020, 8, e001420. [Google Scholar] [CrossRef]
- Moura, F.; de Andrade, K.; Farias dos Santos, J.; Fonseca Goulart, M. Lipoic Acid: Its Antioxidant and Anti-Inflammatory Role and Clinical Applications. CTMC 2015, 15, 458–483. [Google Scholar] [CrossRef]
- Bierhaus, A.; Chevion, S.; Chevion, M.; Hofmann, M.; Quehenberger, P.; Illmer, T.; Luther, T.; Berentshtein, E.; Tritschler, H.; Muller, M.; et al. Advanced Glycation End Product-Induced Activation of NF-κB is Suppressed by α-Lipoic Acid in Cultured Endothelial Cells. Diabetes 1997, 46, 1481–1490. [Google Scholar] [CrossRef]
- Borcea, V.; Nourooz-Zadeh, J.; Wolff, S.P.; Klevesath, M.; Hofmann, M.; Urich, H.; Wahl, P.; Ziegler, R.; Tritschler, H.; Halliwell, B.; et al. α-lipoic acid decreases oxidative stress even in diabetic patients with poor glycemic control and albuminuria. Free Radic. Biol. Med. 1999, 26, 1495–1500. [Google Scholar] [CrossRef]
- Cameron, N. Effect of α-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic. Biol. Med. 2001, 31, 125–135. [Google Scholar] [CrossRef]
- Strom, A.; GDS Group; Kaul, K.; Brüggemann, J.; Ziegler, I.; Rokitta, I.; Püttgen, S.; Szendroedi, J.; Müssig, K.; Roden, M.; et al. Lower serum extracellular superoxide dismutase levels are associated with polyneuropathy in recent-onset diabetes. Exp. Mol. Med. 2017, 49, e394. [Google Scholar] [CrossRef] [Green Version]
- Gordana, M.; S.Djuric, S.; Vidosava, B.; Apostolski, S.; Zivkovi, M. The Role of Oxidative Stress in Pathogenesis of Diabetic Neuropathy: Erythrocyte Superoxide Dismutase, Catalase and Glutathione Peroxidase Level in Relation to Peripheral Nerve Conduction in Diabetic Neuropathy Patients. In Role of the Adipocyte in Development of Type 2 Diabetes; Croniger, C., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-598-3. [Google Scholar]
- Ribas, G.S.; Vargas, C.R.; Wajner, M. l-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 2014, 533, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Traina, G.; Federighi, G.; Macchi, M.; Bernardi, R.; Durante, M.; Brunelli, M. Modulation of Myelin Basic Protein Gene Expression by Acetyl-l-Carnitine. Mol. Neurobiol. 2011, 44, 1–6. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Li, Y.; Li, L.; Tian, H.; Sun, X. Acetyl-L-Carnitine in the Treatment of Peripheral Neuropathic Pain: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2015, 10, e0119479. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.S.H. Metformin-Induced Vitamin B12 Deficiency Presenting as a Peripheral Neuropathy. South. Med. J. 2010, 103, 265–267. [Google Scholar] [CrossRef]
- Solomon, L.R. Diabetes as a Cause of Clinically Significant Functional Cobalamin Deficiency. Diabetes Care 2011, 34, 1077–1080. [Google Scholar] [CrossRef] [Green Version]
- De Jager, J.; Kooy, A.; Lehert, P.; Wulffele, M.G.; van der Kolk, J.; Bets, D.; Verburg, J.; Donker, A.J.M.; Stehouwer, C.D.A. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ 2010, 340, c2181. [Google Scholar] [CrossRef] [Green Version]
- Dukowicz, A.C.; Lacy, B.E.; Levine, G.M. Small intestinal bacterial overgrowth: A comprehensive review. Gastroenterol. Hepatol. 2007, 3, 112–122. [Google Scholar]
- McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia 2016, 59, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Tian, H.; Wei, D. Effects of methylcobalamin on diabetic peripheral neuropathy: A systematic review. Chin. J. Evid. -Based Med. 2005, 5, 609–617. [Google Scholar]
- Zhang, M.; Han, W.; Hu, S.; Xu, H. Methylcobalamin: A Potential Vitamin of Pain Killer. Neural Plast. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Mizukami, H.; Ogasawara, S.; Yamagishi, S.-I.; Takahashi, K.; Yagihashi, S. Methylcobalamin effects on diabetic neuropathy and nerve protein kinase C in rats: Methylcobalamin and PKC in diabetic neuropathy. Eur. J. Clin. Investig. 2011, 41, 442–450. [Google Scholar] [CrossRef]
- Chiechio, S.; Copani, A.; Nicoletti, F.; Gereau, R., IV. L-Acetylcarnitine: A Proposed Therapeutic Agent for Painful Peripheral Neuropathies. CN 2006, 4, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergi, G.; Pizzato, S.; Piovesan, F.; Trevisan, C.; Veronese, N.; Manzato, E. Effects of acetyl-l-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin. Exp. Res. 2018, 30, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, X.; Li, Q.; Du, J.; Liu, Z.; Peng, Y.; Xu, M.; Li, Q.; Lei, M.; Wang, C.; et al. Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial. J. Diabetes Investig. 2016, 7, 777–785. [Google Scholar] [CrossRef]
- Clemente, M.G. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003, 52, 218–223. [Google Scholar] [CrossRef]
- GliSODin®. Literature Review of a Cantaloupe Melon Concentrate Naturally Rich in Superoxide Dismutase/Wheat Gliadin Biopolymer (Glisodin) and Its Beneficial Health Aspects. 2012. Available online: http://www.glisodin.org/wp-content/uploads/2015/04/GliSODin-Monograph-2012.pdf (accessed on 3 October 2020).
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; et al. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, D.; Low, P.A.; Litchy, W.J.; Boulton, A.J.M.; Vinik, A.I.; Freeman, R.; Samigullin, R.; Tritschler, H.; Munzel, U.; Maus, J.; et al. Efficacy and Safety of Antioxidant Treatment With α-Lipoic Acid Over 4 Years in Diabetic Polyneuropathy: The NATHAN 1 trial. Diabetes Care 2011, 34, 2054–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, D.; Low, P.A.; Freeman, R.; Tritschler, H.; Vinik, A.I. Predictors of improvement and progression of diabetic polyneuropathy following treatment with α-lipoic acid for 4years in the NATHAN 1 trial. J. Diabetes Its Complicat. 2016, 30, 350–356. [Google Scholar] [CrossRef]
- Reljanovic, M.; Reichel, G.; Rett, K.; Lobisch, M.; Schuette, K.; Möller, W.; Tritschler, H.-J.; Mehnert, H. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid): A two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Free Radic. Res. 1999, 31, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Mijnhout, G.S.; Kollen, B.J.; Alkhalaf, A.; Kleefstra, N.; Bilo, H.J.G. Alpha Lipoic Acid for Symptomatic Peripheral Neuropathy in Patients with Diabetes: A Meta-Analysis of Randomized Controlled Trials. Int. J. Endocrinol. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Ametov, A.S.; Barinov, A.; Dyck, P.J.; Hermann, R.; Kozlova, N.; Litchy, W.J.; Low, P.A.; Nehrdich, D.; Novosadova, M.; O’Brien, P.C.; et al. The Sensory Symptoms of Diabetic Polyneuropathy Are Improved With -Lipoic Acid: The SYDNEY Trial. Diabetes Care 2003, 26, 770–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, D.; Ametov, A.; Barinov, A.; Dyck, P.J.; Gurieva, I.; Low, P.A.; Munzel, U.; Yakhno, N.; Raz, I.; Novosadova, M.; et al. Oral Treatment With -Lipoic Acid Improves Symptomatic Diabetic Polyneuropathy: The SYDNEY 2 trial. Diabetes Care 2006, 29, 2365–2370. [Google Scholar] [CrossRef] [Green Version]
- Ruhnau, K.J.; Meissner, H.P.; Finn, J.R.; Reljanovic, M.; Lobisch, M.; Schütte, K.; Nehrdich, D.; Tritschler, H.J.; Mehnert, H.; Ziegler, D. Effects of 3-week oral treatment with the antioxidant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet. Med. 1999, 16, 1040–1043. [Google Scholar] [CrossRef]
- Agathos, E.; Tentolouris, A.; Eleftheriadou, I.; Katsaouni, P.; Nemtzas, I.; Petrou, A.; Papanikolaou, C.; Tentolouris, N. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J. Int. Med. Res. 2018, 46, 1779–1790. [Google Scholar] [CrossRef]
- Akbari, M.; Ostadmohammadi, V.; Lankarani, K.B.; Tabrizi, R.; Kolahdooz, F.; Khatibi, S.R.; Asemi, Z. The effects of alpha-lipoic acid supplementation on glucose control and lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Metabolism 2018, 87, 56–69. [Google Scholar] [CrossRef]
- Garcia-Alcala, H.; Santos Vichido, C.I.; Islas Macedo, S.; Genestier-Tamborero, C.N.; Minutti-Palacios, M.; Hirales Tamez, O.; García, C.; Ziegler, D. Treatment with α -Lipoic Acid over 16 Weeks in Type 2 Diabetic Patients with Symptomatic Polyneuropathy Who Responded to Initial 4-Week High-Dose Loading. J. Diabetes Res. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltier, A.; Goutman, S.A.; Callaghan, B.C. Painful diabetic neuropathy. BMJ 2014, 348, g1799. [Google Scholar] [CrossRef] [Green Version]
- Kalso, E.; Aldington, D.J.; Moore, R.A. Drugs for neuropathic pain. BMJ 2013, 347, f7339. [Google Scholar] [CrossRef] [Green Version]
- I.P.S. srl. A-lipoic acid-MATRIS Fast RETARD-Technical Data Sheet; I.P.S. srl: Milan, Italy.
- Vinik, A.I.; Strotmeyer, E.S. Diabetic Neuropathy. In Pathy’s Principles and Practice of Geriatric Medicine; Sinclair, A.J., Morley, J.E., Vellas, B., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 751–767. ISBN 978-1-119-95293-0. [Google Scholar]
- Xu, Q.; Pan, J.; Yu, J.; Liu, X.; Liu, L.; Zuo, X.; Wu, P.; Deng, H.; Zhang, J.; Ji, A. Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res. Clin. Pract. 2013, 101, 99–105. [Google Scholar] [CrossRef]
- Han, Y.; Wang, M.; Shen, J.; Zhang, Z.; Zhao, M.; Huang, J.; Chen, Y.; Chen, Z.; Hu, Y.; Wang, Y. Differential efficacy of methylcobalamin and alpha-lipoic acid treatment on symptoms of diabetic peripheral neuropathy. Minerva Endocrinol. 2018, 43, 11–18. [Google Scholar] [CrossRef]
- Jiang, D.-Q.; Li, M.-X.; Wang, Y.; Wang, Y. Effects of prostaglandin E1 plus methylcobalamin alone and in combination with lipoic acid on nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Neurosci. Lett. 2015, 594, 23–29. [Google Scholar] [CrossRef]
- Bertolotto, F.; Massone, A. Combination of Alpha Lipoic Acid and Superoxide Dismutase Leads to Physiological and Symptomatic Improvements in Diabetic Neuropathy. Drugs R&D 2012, 12, 29–34. [Google Scholar] [CrossRef]
- Lai, Y.; Huang, C.; Chiu, W.; Liu, R.; Tsai, N.; Wang, H.; Lin, W.; Cheng, B.; Su, Y.; Su, C.; et al. Sural nerve sensory response in diabetic distal symmetrical polyneuropathy. Muscle Nerve 2020, 61, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, H.; Hamasaki, Y. Diabetic Neuropathy Evaluated by a Novel Device: Sural Nerve Conduction Is Associated with Glycemic Control and Ankle-Brachial Pressure Index in Japanese Patients with Diabetes. Front. Endocrinol. 2017, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Stabler, S.P. Vitamin B12 Deficiency in Older People: Improving Diagnosis and Preventing Disability. J. Am. Geriatr. Soc. 1998, 46, 1317–1319. [Google Scholar] [CrossRef]
- Leishear, K.; Boudreau, R.M.; Studenski, S.A.; Ferrucci, L.; Rosano, C.; de Rekeneire, N.; Houston, D.K.; Kritchevsky, S.B.; Schwartz, A.V.; Vinik, A.I.; et al. Relationship between vitamin B12 and sensory and motor peripheral nerve function in older adults. J. Am. Geriatr. Soc. 2012, 60, 1057–1063. [Google Scholar] [CrossRef]
Active (Group A) | Placebo (Group B) | p | |
---|---|---|---|
Gender (m/w) | 23/20 | 21/21 | 0.901 |
Age (years) | 65.12 ± 11.16 | 62.34 ± 11.32 | 0.323 |
Height (cm) | 170.27 ± 8.64 | 165.44 ± 11.7 | 0.062 |
Body weight (kg) | 89.85 ± 12.5 | 85.22 ± 15.27 | 0.185 |
Body Mass Index (BMI) (kg/m2) | 30.99 ± 3.78 | 31.19 ± 4.99 | 0.859 |
Diabetes Duration (years) | 15.01 ± 8.2 | 14.6 ± 9.7 | 0.824 |
Metformin + other oral antidiabetic drugs (%) | 24 (55.8) | 22 (53.4) | 0.718 |
Duration of receiving Metformin (years) | 14.5 ± 8.5 | 13.2 ± 9.4 | 0.554 |
Smoking (%) | 14 (32.5) | 14 (35.7) | 0.724 |
Cardiovascular disease (%) | 15 (34.9) | 13 (30.9) | 0.633 |
Hyperlipidemia (%) | 32 (74.4) | 30 (71.4) | 0.710 |
Hypertension (%) | 28 (65.1) | 28 (66.7) | 0.847 |
Active | Placebo | p | |
---|---|---|---|
HbA1c (%) | 7.14 ± 1.14 | 6.84 ± 0.83 | 0.242 |
HbA1c(mmol/L) | 54.6 ± 12.5 | 52.12 ± 8.67 | 0.240 |
Vitamin B12 (pg/mL) | 262.9 ± 106.6 | 293.47 ± 125.6 | 0.885 |
Hematocrit (%) | 39.65 ± 5.86 | 40.22 ± 3.12 | 0.109 |
Mean Corpuscular Volume (μm3fl) | 84.72 ± 4.08 | 84.97 ± 9.47 | 0.348 |
Urea (mg/dL) | 35.54 ± 11.26 | 43.55 ± 22.29 | 0.071 |
Creatinine (mg/dL) | 0.90 ± 0.22 | 0.91 ± 0.22 | 0.937 |
Cholesterol (mg/dL) | 169.48 ± 44.23 | 171.4 ± 50.17 | 0.875 |
Triglycerides (mg/dL) | 152.55 ± 69.78 | 152.4 ± 56.1 | 0.993 |
HDL-cholesterol (mg/dL) | 45.71 ± 12.9 | 49.33 ± 10.7 | 0.236 |
LDL cholesterol (mg/dL) | 93.3 ± 43.2 | 91.6 ± 50.2 | 0.889 |
Active | Placebo | p | |
---|---|---|---|
MNSIQ | 6.76 ± 1.66 | 6.16 ± 2.35 | 0.244 |
MNSIE | 4.26 ± 3.01 | 3.75 ± 2.5 | 0.444 |
QL | 39.83 ± 10.82 | 38.01 ± 10.5 | 0.763 |
SNAP (IV) | 5.62 ± 5.79 | 6.93 ± 6.19 | 0.414 |
SNCV(m/s) | 30.8 ± 23.5 | 38 ± 21.67 | 0.237 |
BIO (V) | 33.7 ± 11.6 | 29.8 ± 11.9 | 0.192 |
MCR | 17 ± 19.6 | 19.3 ± 22.4 | 0.660 |
PI | 3.2 ± 1.5 | 2.75 ± 1.1 | 0.177 |
PO (mm/Hg) | 10.5 ± 8.9 | 10.3 ± 10.3 | 0.929 |
Valsalva | 1.50 ± 0.29 | 1.53 ± 0.24 | 0.753 |
Pain score | 19.5 ± 7.8 | 16.6 ± 8.7 | 0.168 |
Active | Placebo | pc | |||||
---|---|---|---|---|---|---|---|
Baseline | 12Months | pa | Baseline | 12Months | pb | ||
HbA1c (%) | 7.14 ± 1.14 | 6.91 ± 0.79 | 0.120 | 6.84 ± 0.83 | 6.88 ± 0.75 | 0.81 | 0.486 |
HbA1c (mmol/L) | 54.6 ± 12.5 | 51.4 ± 9.1 | 0.120 | 52.12 ± 8.67 | 51.75 ± 8.19 | 0.806 | 0.486 |
B12 (pg/mL) | 262.94 ± 106.6 | 335.42 ± 107.59 | 0.000 | 293.47 ± 125.6 | 305.1 ± 145.2 | 0.57 | 0.018 |
MNSIQ | 6.76 ± 1.66 | 6.16 ± 1.7 | 0.000 | 6.16 ± 2.35 | 6.35 ± 2.26 | 0.06 | <0.001 |
MNSIE | 4.26 ± 3.01 | 4.06 ± 2.49 | 0.161 | 3.75 ± 2.5 | 3.86 ± 2.4 | 0.16 | 0.063 |
QL | 39.83 ± 10.82 | 36.2 ± 9.8 | 0.000 | 38.1 ± 10.5 | 38.8 ± 9.7 | 0.21 | <0.001 |
SNAP (IV) | 5.62 ± 5.79 | 7.55 ± 6.58 | 0.031 | 6.93 ± 6.19 | 6.56 ± 6.27 | 0.70 | 0.065 |
SNCV (m/s) | 30.8 ± 23.5 | 39.4 ± 22.8 | 0.027 | 38 ± 21.67 | 38.9 ± 21.4 | 0.87 | 0.031 |
BIO (V) | 33.7 ± 11.6 | 23.3 ± 11.5 | 0.000 | 29.8 ± 11.9 | 28.5 ± 11.5 | 0.78 | <0.001 |
MCR | 17 ± 19.6 | 16.4 ± 13.9 | 0.630 | 19.3 ± 22.4 | 12.5 ± 19.1 | 0.01 | 0.220 |
PI | 3.2 ± 1.5 | 3.4 ± 1.2 | 0.330 | 2.75 ± 1.1 | 2.9 ± 1.1 | 0.18 | 0.494 |
PO (mm/Hg) | 10.5 ± 8.9 | 8,7 ± 7.3 | 0.001 | 10.3 ± 10.3 | 12.9 ± 9.8 | 0.06 | <0.001 |
Valsalva | 1.50 ± 0.29 | 1.55 ± 0.34 | 0.110 | 1.53 ± 0.24 | 1.49 ± 0.29 | 0.220 | 0.393 |
PAIN | 19.5 ± 7.8 | 17.4 ± 7 | 0.000 | 16.6 ± 8.7 | 17.7 ± 9.4 | 0.00 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didangelos, T.; Karlafti, E.; Kotzakioulafi, E.; Kontoninas, Z.; Margaritidis, C.; Giannoulaki, P.; Kantartzis, K. Efficacy and Safety of the Combination of Superoxide Dismutase, Alpha Lipoic Acid, Vitamin B12, and Carnitine for 12 Months in Patients with Diabetic Neuropathy. Nutrients 2020, 12, 3254. https://doi.org/10.3390/nu12113254
Didangelos T, Karlafti E, Kotzakioulafi E, Kontoninas Z, Margaritidis C, Giannoulaki P, Kantartzis K. Efficacy and Safety of the Combination of Superoxide Dismutase, Alpha Lipoic Acid, Vitamin B12, and Carnitine for 12 Months in Patients with Diabetic Neuropathy. Nutrients. 2020; 12(11):3254. https://doi.org/10.3390/nu12113254
Chicago/Turabian StyleDidangelos, Triantafyllos, Eleni Karlafti, Evangelia Kotzakioulafi, Zisis Kontoninas, Charalampos Margaritidis, Parthena Giannoulaki, and Konstantinos Kantartzis. 2020. "Efficacy and Safety of the Combination of Superoxide Dismutase, Alpha Lipoic Acid, Vitamin B12, and Carnitine for 12 Months in Patients with Diabetic Neuropathy" Nutrients 12, no. 11: 3254. https://doi.org/10.3390/nu12113254
APA StyleDidangelos, T., Karlafti, E., Kotzakioulafi, E., Kontoninas, Z., Margaritidis, C., Giannoulaki, P., & Kantartzis, K. (2020). Efficacy and Safety of the Combination of Superoxide Dismutase, Alpha Lipoic Acid, Vitamin B12, and Carnitine for 12 Months in Patients with Diabetic Neuropathy. Nutrients, 12(11), 3254. https://doi.org/10.3390/nu12113254