Association of Magnesium Intake with Liver Fibrosis among Adults in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ascertainment of Outcomes
2.3. Assessments of Nutrient Intake
2.4. Assessments of Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S. Liver fibrosis—From bench to bedside. J. Hepatol. 2003, 38 (Suppl. 1), 38–52. [Google Scholar] [CrossRef]
- Matteoni, C.A.; Younossi, Z.M.; Gramlich, T.; Boparai, N.; Liu, Y.C.; McCullough, A.J. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology 1999, 116, 1413–1419. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 1999, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.M. Nonalcoholic fatty liver disease-a global public health perspective. J. Hepatol. 2019, 70, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Hagström, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stål, P.; Hultcrantz, R.; Kechagias, S. Fibrosis stage but not nash predicts mortality and time to development of severe liver disease in biopsy-proven nafld. J. Hepatol. 2017, 67, 1265–1273. [Google Scholar] [CrossRef]
- Patel, S.; Jinjuvadia, R.; Patel, R.; Liangpunsakul, S. Insulin resistance is associated with significant liver fibrosis in chronic hepatitis c patients: A systemic review and meta-analysis. J. Clin. Gastroenterol. 2016, 50, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Carr, R.M.; Correnti, J.C. Insulin resistance in clinical and experimental alcoholic liver disease. Ann. N. Y. Acad. Sci. 2015, 1353, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Takemoto, S.; Yamamoto, A.; Tomonaga, S.; Funaba, M.; Matsui, T. Magnesium deficiency induces the emergence of mast cells in the liver of rats. J. Nutr. Sci. Vitaminol. 2013, 59, 560–563. [Google Scholar] [CrossRef] [Green Version]
- Shigematsu, M.; Tomonaga, S.; Shimokawa, F.; Murakami, M.; Imamura, T.; Matsui, T.; Funaba, M. Regulatory responses of hepatocytes, macrophages and vascular endothelial cells to magnesium deficiency. J. Nutr. Biochem. 2018, 56, 35–47. [Google Scholar] [CrossRef]
- Turecky, L.; Kupcova, V.; Szantova, M.; Uhlikova, E.; Viktorinova, A.; Czirfusz, A. Serum magnesium levels in patients with alcoholic and non-alcoholic fatty liver. Bratisl. Lek. Listy 2006, 107, 58–61. [Google Scholar] [PubMed]
- Eshraghian, A.; Nikeghbalian, S.; Geramizadeh, B.; Malek-Hosseini, S.A. Serum magnesium concentration is independently associated with non-alcoholic fatty liver and non-alcoholic steatohepatitis. United Eur. Gastroenterol. J. 2018, 6, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, H.; Mao, Y. Magnesium and liver disease. Ann. Transl. Med. 2019, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhu, X.; Song, Y.; Fan, L.; Wu, L.; Kabagambe, E.K.; Hou, L.; Shrubsole, M.J.; Liu, J.; Dai, Q. Intakes of magnesium, calcium and risk of fatty liver disease and prediabetes. Public Health Nutr. 2018, 21, 2088–2095. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Zhu, X.; Fan, L.; Kabagambe, E.K.; Song, Y.; Tao, M.; Zhong, X.; Hou, L.; Shrubsole, M.J.; Liu, J.; et al. Magnesium intake and mortality due to liver diseases: Results from the third national health and nutrition examination survey cohort. Sci. Rep. 2017, 7, 17913. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.N.; Kim, S.H.; Eun, Y.M.; Song, S.W. Effects of zinc, magnesium, and chromium supplementation on cardiometabolic risk in adults with metabolic syndrome: A double-blind, placebo-controlled randomised trial. J. Trace Elem. Med. Biol. 2018, 48, 166–171. [Google Scholar] [CrossRef]
- Nielsen, F.H.; Johnson, L.K.; Zeng, H. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes. Res. 2010, 23, 158–168. [Google Scholar]
- Mooren, F.C.; Krüger, K.; Völker, K.; Golf, S.W.; Wadepuhl, M.; Kraus, A. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects - a double-blind, placebo-controlled, randomized trial. Diabetes Obes. Metab. 2011, 13, 281–284. [Google Scholar] [CrossRef]
- Veronese, N.; Watutantrige-Fernando, S.; Luchini, C.; Solmi, M.; Sartore, G.; Sergi, G.; Manzato, E.; Barbagallo, M.; Maggi, S.; Stubbs, B. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 2016, 70, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; He, K.; Levitan, E.B.; Manson, J.E.; Liu, S. Effects of oral magnesium supplementation on glycaemic control in type 2 diabetes: A meta-analysis of randomized double-blind controlled trials. Diabetes Metab. 2006, 23, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Pittas, A.G.; Lau, J.; Hu, F.B.; Dawson-Hughes, B. The role of vitamin d and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 2017–2029. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Lee, K.J. Analysis of the dietary factors associated with suspected pediatric nonalcoholic fatty liver disease and potential liver fibrosis: Korean national health and nutrition examination survey 2014–2017. BMC Pediatr. 2020, 20, 121. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Clark, J.; Riddles, M.K.; Mohadjer, L.K.; Fakhouri, T.H.I. National health and nutrition examination survey, 2015−2018: Sample design and estimation procedures. National center for health statistics. Vital Health Stat 2 2020, 184, 1–35. [Google Scholar]
- Xiao, G.; Zhu, S.; Xiao, X.; Yan, L.; Yang, J.; Wu, G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017, 66, 1486–1501. [Google Scholar] [CrossRef]
- Jiang, W.; Huan, S.; Teng, H.; Wang, P.; Wu, M.; Zhou, X.; Ran, H. Diagnostic accuracy of point shear wave elastography and transient elastography for staging hepatic fibrosis in patients with non-alcoholic fatty liver disease: A meta-analysis. BMJ Open 2018, 8, e021787. [Google Scholar] [CrossRef] [Green Version]
- Tsochatzis, E.A.; Gurusamy, K.S.; Ntaoula, S.; Cholongitas, E.; Davidson, B.R.; Burroughs, A.K. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: A meta-analysis of diagnostic accuracy. J. Hepatol. 2011, 54, 650–659. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of fibroscan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on nhanes dietary data: Focus on collection, release, analytical considerations, and uses to inform public policy. Adv. Nutr. 2016, 7, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine (Abingdon) 2014, 42, 698–702. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Testing for hcv infection: An update of guidance for clinicians and laboratorians. MMWR 2013, 62, 1–4. [Google Scholar]
- Krajden, M.; McNabb, G.; Petric, M. The laboratory diagnosis of hepatitis b virus. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Division of the National Health and Nutrition Examination Surveys. The National Health and Nutrition Examination Survey (Nhanes) Analytic and Reporting Guidelines; Government Publishing Office: Washington, DC, USA, 2020.
- Tao, M.H.; Dai, Q.; Millen, A.E.; Nie, J.; Edge, S.B.; Trevisan, M.; Shields, P.G.; Freudenheim, J.L. Associations of intakes of magnesium and calcium and survival among women with breast cancer: Results from western new york exposures and breast cancer (web) study. Am. J. Cancer Res. 2015, 6, 105–113. [Google Scholar] [PubMed]
- Rodríguez-Hernández, H.; Gonzalez, J.L.; Rodríguez-Morán, M.; Guerrero-Romero, F. Hypomagnesemia, insulin resistance, and non-alcoholic steatohepatitis in obese subjects. Arch. Med. Res. 2005, 36, 362–366. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Younossi, Y.; Golabi, P.; Mishra, A.; Rafiq, N.; Henry, L. Epidemiology of chronic liver disease in the USA in the past three decades. Gut 2020, 69, 564–568. [Google Scholar] [CrossRef]
- Agarwal, S.; Reider, C.; Brooks, J.R.; Fulgoni, V.L., 3rd. Comparison of prevalence of inadequate nutrient intake based on body weight status of adults in the united states: An analysis of nhanes 2001–2008. J. Am. Coll. Nutr. 2015, 34, 126–134. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Fulda, K.G.; Chen, S.; Tao, M.H. Comparison of dietary micronutrient intakes by body weight status among mexican-american and non-hispanic black women aged 19–39 years: An analysis of nhanes 2003–2014. Nutritients 2019, 11, 2846. [Google Scholar] [CrossRef] [Green Version]
- Hoenderop, J.G.; Bindels, R.J. Epithelial ca2+ and mg2+ channels in health and disease. J. Am. Soc. Nephrol. 2005, 16, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F.H.; Milne, D.B.; Gallagher, S.; Johnson, L.; Hoverson, B. Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women. Magnes. Res. 2007, 20, 19–31. [Google Scholar]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Guenther, P.M.; Bowman, S.A.; Goldman, J.D. Alcoholic Beverage Consumption by Adults 21 Years and Over in the United States: Results from the National Health and Nutrition Examinationsurvey, 2003–2006. Technical Report. Center for Nutrition Policy and Promotion and Agriculturalresearch Service, U.S. Department of Agriculture. Available online: www.Cnpp.Usda.Gov/publications/dietaryguidelines/2010/meeting5/alcoholicbeveragesconsumption.Pdf (accessed on 3 November 2020).
- Murakami, K.; Livingstone, M.B. Prevalence and characteristics of misreporting of energy intake in us adults: Nhanes 2003–2012. Br. J. Nutr. 2015, 114, 1294–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roark, R.A.; Niederhauser, V.P. Fruit and vegetable intake: Issues with definition and measurement. Public Health Nutr. 2013, 16, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characters | Yes (n = 628) | No (n = 3538) | p-Value |
---|---|---|---|
Age (years) ǂ | 52.4 (1.36) | 47.7 (0.68) | <0.01 |
Sex, n (%)* | <0.01 | ||
Male | 371 (58.8) | 1698 (48.1) | |
Female | 257 (41.2) | 1840 (51.9) | |
Race/ethnicity, n (%)* | 0.44 | ||
Non-Hispanic White | 230 (65.3) | 1501 (64.5) | |
Non-Hispanic Black | 161 (11.8) | 950 (10.2) | |
Hispanic | 158 (15.4) | 956 (15.1) | |
Non-Hispanic Asian | 53 (3.4) | 549 (5.4) | |
Other races 1 | 26 (4.1) | 210 (4.8) | |
Education, n (%)* | 0.03 | ||
Less than high school | 131 (11.2) | 637 (10.0) | |
High school | 156 (31.9) | 852 (27.3) | |
Some college | 229 (35.4) | 1147 (30.2) | |
College graduate | 112 (21.5) | 902 (32.5) | |
BMI group, n (%)* | <0.01 | ||
<25 | 89 (13.3) | 975 (28.4) | |
25–30 | 130 (18.0) | 1200 (32.8) | |
≥30 | 409 (68.7) | 1363 (38.8) | |
Physical activity level, n (%)* | <0.01 | ||
Active | 142 (22.8) | 961 (30.5) | |
Less active | 107 (22.2) | 792 (26.5) | |
Inactive | 379 (54.9) | 1785 (43.0) | |
Smoking status, n (%)* | 0.14 | ||
Never | 327 (51.7) | 2050 (57.9) | |
Former | 186 (30.8) | 842 (24.9) | |
Current | 115 (17.4) | 646 (17.2) | |
Daily alcohol drinking status, n (%) | 0.73 | ||
Non-drinkers | 499 (73.2) | 2785 (74.2) | |
Low drinkers (<31.32 g) | 63 (12.1) | 399 (13.2) | |
High drinkers (≥31.32 g) | 66 (14.7) | 354 (12.6) | |
History of diabetes, n (%) | <0.01 | ||
Yes | 239 (32.3) | 622 (11.8) | |
Having HBV infection, n (%) | 0.09 | ||
Yes | 43 (3.9) | 231 (3.8) | |
Having HCV infection, n (%) | <0.01 | ||
Yes | 48 (7.7) | 64 (1.9) | |
Laboratory features ǂ | |||
HDL (mmol/L) | 1.3 (0.03) | 1.4 (0.01) | <0.01 |
Median CAP (dB/m) | 306.8 (4.36) | 258.9 (2.07) | <0.01 |
Median stiffness (kPa) | 13.8 (0.54) | 4.7 (0.04) | <0.01 |
Daily intake of nutrients ǂ | |||
Total energy (kcal) | 2325.6 (45.30) | 2176.3 (18.39) | 0.01 |
Dietary calcium (mg) | 1005.9 (36.95) | 968.5 (14.34) | 0.33 |
Dietary magnesium (mg) | 310.7 (11.8) | 304.9 (4.28) | 0.57 |
Total calcium (mg) | 1101.1 (37.81) | 1061.4 (17.27) | 0.33 |
Total magnesium (mg) | 329.3 (16.91) | 329.8 (6.00) | 0.97 |
Daily Intake of Nutrients (mg) | Liver Fibrosis Status | Model 1 | Model 2 | |
---|---|---|---|---|
Yes | No | OR (95% CI) 1 | OR (95% CI) 2 | |
Dietary magnesium | ||||
Q1 < 205.93 | 190 | 996 | Referent | Referent |
Q2 205.93–279.12 | 154 | 866 | 0.74 (0.51–1.06) | 0.73 (0.50–1.06) |
Q3 279.13–375.20 | 143 | 857 | 0.96 (0.60–1.54) | 0.87 (0.49–1.54) |
Q4 ≥ 375.21 | 141 | 819 | 0.99 (0.67–1.45) | 0.70 (0.35–1.38) |
ptrend | 0.77 | 0.47 | ||
Total magnesium intake | ||||
Q1 < 212.99 | 189 | 1009 | 1.00 | 1.00 |
Q2 212.99–294.38 | 162 | 861 | 0.70 (0.52–0.95) | 0.70 (0.51–0.97) |
Q3 294.39–400.26 | 134 | 853 | 0.91 (0.56–1.47) | 0.70 (0.38–1.28) |
Q4 ≥400.27 | 143 | 815 | 0.85 (0.54–1.34) | 0.53 (0.25–1.10) |
ptrend | 0.74 | 0.14 | ||
Dietary calcium | ||||
Q1 < 574.06 | 183 | 1047 | Referent | Referent |
Q2 574.06–855.22 | 153 | 893 | 1.41 (0.86–2.32) | 1.54 (0.97–2.45) |
Q3 855.23–1238.68 | 160 | 822 | 1.22 (0.84–1.77) | 1.14 (0.77–1.67) |
Q4 ≥1238.69 | 132 | 776 | 1.29 (0.85–1.96) | 1.03 (0.59–1.79) |
ptrend | 0.31 | 0.77 | ||
Total calcium intake | ||||
Q1 < 628.54 | 177 | 1051 | 1.00 | 1.00 |
Q2 628.54–945.25 | 170 | 883 | 1.41 (0.86–2.32) | 1.50 (0.97–2.33) |
Q3 945.25–1356.52 | 146 | 823 | 1.19 (0.76–1.84) | 1.10 (0.72–1.68) |
Q4 ≥ 1356.53 | 135 | 781 | 1.23 (0.78–1.94) | 1.14 (0.71–1.84) |
ptrend | 0.53 | 0.99 |
Total Magnesium Intake (mg/Day) | Significant Liver Fibrosis | |||
---|---|---|---|---|
Yes | No | OR (95% CI) 1 | p for Trend | |
Males | ||||
Q1 < 212.99 | 97 | 357 | 1.00 | |
Q2 212.99–294.38 | 88 | 368 | 0.58 (0.36–0.95) | |
Q3 294.39–400.26 | 84 | 449 | 0.67 (0.32–1.43) | |
Q4 ≥ 400.27 | 102 | 524 | 0.47 (0.23–0.99) | 0.12 |
Females | ||||
Q1 < 212.99 | 92 | 652 | 1.00 | |
Q2 212.99–294.38 | 74 | 493 | 0.77 (0.52–1.15) | |
Q3 294.39–400.26 | 50 | 404 | 0.65 (0.35–1.20) | |
Q4 ≥ 400.27 | 41 | 291 | 0.63 (0.18–2.19) | 0.36 |
p for interaction | 0.75 | |||
Calcium:Magnesium ratio < 2.62 | ||||
Q1 < 212.99 | 46 | 320 | 1.00 | |
Q2 212.99–294.38 | 61 | 274 | 1.83 (1.05–3.21) | |
Q3 294.39–400.26 | 56 | 333 | 1.33 (0.53–3.31) | |
Q4 ≥ 400.27 | 70 | 436 | 0.70 (0.26–1.91) | 0.44 |
Calcium:Magnesium ratio ≥ 2.62 | ||||
Q1 < 212.99 | 143 | 689 | 1.00 | |
Q2 212.99–294.38 | 101 | 587 | 0.52 (0.35–0.78) | |
Q3 294.39–400.26 | 78 | 520 | 0.59 (0.29–1.21) | |
Q4 ≥ 400.27 | 73 | 379 | 0.59 (0.23–1.49) | 0.29 |
p for interaction | 0.30 | |||
Calcium < 1200 mg/day | ||||
Q1 < 212.99 | 171 | 941 | 1.00 | |
Q2 212.99–294.38 | 128 | 681 | 0.66 (0.46–0.96) | |
Q3 294.39–400.26 | 92 | 555 | 0.56 (0.29–1.10) | |
Q4 ≥ 400.27 | 53 | 329 | 0.35 (0.16–0.77) | 0.02 |
Calcium ≥ 1200 mg/day | ||||
Q1 <212.99 | 18 | 68 | 1.00 | |
Q2 212.99–294.38 | 34 | 180 | 0.71 (0.20–1.06) | |
Q3 294.39–400.26 | 42 | 298 | 0.53 (0.20–1.42) | |
Q4 ≥400.27 | 90 | 486 | 0.38 (0.16–1.43) | 0.43 |
p for interaction | 0.44 | |||
Daily alcohol drinking: No | ||||
Q1 < 212.99 | 161 | 858 | 1.00 | |
Q2 212.99–294.38 | 134 | 683 | 0.72 (0.49–1.06) | |
Q3 294.39–400.26 | 106 | 650 | 0.69 (0.39–1.24) | |
Q4 ≥ 400.27 | 98 | 594 | 0.45 (0.18–1.09) | 0.09 |
Daily alcohol drinking: Yes | ||||
Q1 < 212.99 | 28 | 151 | 1.00 | |
Q2 212.99–294.38 | 28 | 178 | 0.60 (0.33–1.09) | |
Q3 294.39–400.26 | 28 | 203 | 0.57 (0.23–1.40) | |
Q4 ≥ 400.27 | 45 | 221 | 0.68 (0.30–1.51) | 0.51 |
p for interaction | 0.51 |
Total Calcium Intake (mg/Day) | Significant Liver Fibrosis | |||
---|---|---|---|---|
Yes | No | OR (95% CI) 1 | p for Trend | |
Males | ||||
Q1 < 628.54 | 95 | 450 | 1.00 | |
Q2 628.54–945.25 | 95 | 414 | 1.56 (0.96–2.54) | |
Q3 945.25–1356.52 | 91 | 393 | 1.07 (0.70–1.63) | |
Q4 ≥ 1356.53 | 90 | 441 | 1.10 (0.58–2.07) | 0.77 |
Females | ||||
Q1 < 628.54 | 82 | 601 | 1.00 | |
Q2 628.54–945.25 | 75 | 469 | 1.51 (0.77–3.00) | |
Q3 945.25–1356.52 | 55 | 430 | 1.23 (0.57–2.63) | |
Q4 ≥ 1356.53 | 45 | 340 | 1.37 (0.50–3.75) | 0.64 |
p for interaction | 0.99 | |||
Calcium:Magnesium ratio < 2.62 | ||||
Q1 < 628.54 | 125 | 737 | 1.00 | |
Q2 628.54–945.25 | 64 | 370 | 1.89 (0.93–3.83) | |
Q3 945.25–1356.52 | 32 | 181 | 2.40 (1.18–4.85) | |
Q4 ≥ 1356.53 | 12 | 75 | 1.72 (0.32–9.20) | 0.12 |
Calcium:Magnesium ratio ≥ 2.62 | ||||
Q1 < 628.54 | 52 | 314 | 1.00 | |
Q2 628.54–945.25 | 106 | 513 | 1.99 (0.69–2.09) | |
Q3 945.25–1356.52 | 114 | 642 | 0.82 (0.47–1.42) | |
Q4 ≥ 1356.53 | 123 | 706 | 0.91 (0.46–1.81) | 0.45 |
p for interaction | 0.17 | |||
Daily alcohol drinking: No | ||||
Q1 < 628.54 | 151 | 837 | 1.00 | |
Q2 628.54–945.25 | 139 | 695 | 1.29 (0.85–1.96) | |
Q3 945.25–1356.52 | 104 | 636 | 0.99 (0.69–1.42) | |
Q4 ≥ 1356.53 | 105 | 617 | 0.92 (0.53–1.61) | 0.51 |
Daily alcohol drinking: Yes | ||||
Q1 < 628.54 | 26 | 214 | 1.00 | |
Q2 628.54–945.25 | 31 | 188 | 2.17 (0.66–7.12) | |
Q3 945.25–1356.52 | 42 | 187 | 1.50 (0.37–6.11) | |
Q4 ≥ 1356.53 | 30 | 164 | 2.40 (0.37–15.77) | 0.51 |
p for interaction | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, M.-H.; Fulda, K.G. Association of Magnesium Intake with Liver Fibrosis among Adults in the United States. Nutrients 2021, 13, 142. https://doi.org/10.3390/nu13010142
Tao M-H, Fulda KG. Association of Magnesium Intake with Liver Fibrosis among Adults in the United States. Nutrients. 2021; 13(1):142. https://doi.org/10.3390/nu13010142
Chicago/Turabian StyleTao, Meng-Hua, and Kimberly G. Fulda. 2021. "Association of Magnesium Intake with Liver Fibrosis among Adults in the United States" Nutrients 13, no. 1: 142. https://doi.org/10.3390/nu13010142
APA StyleTao, M.-H., & Fulda, K. G. (2021). Association of Magnesium Intake with Liver Fibrosis among Adults in the United States. Nutrients, 13(1), 142. https://doi.org/10.3390/nu13010142