Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical and Socio-Demographics
2.3. Anthropometric Measures
2.4. Blood Sampling
2.5. Soluble Superoxide Dismutase (SOD) 1
2.6. 15-F2t-Isoprostanes
2.7. Total Antioxidant Status (TAS)
2.8. Inflammatory Parameters
2.9. Dietary Assessment
2.10. Data Analyses
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- King, J.A.; Jeong, J.; Underwood, F.E.; Quan, J.; Panaccione, N.; Windsor, J.W.; Coward, S.; Debruyn, J.; Ronksley, P.E.; Shaheen, A.A.; et al. Incidence of Celiac Disease Is Increasing over Time: A Systematic Review and Meta-analysis. Am. J. Gastroenterol. 2020, 115, 507–525. [Google Scholar] [CrossRef]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition Guidelines for the Diagnosis of Coeliac Disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 136–160. [Google Scholar] [CrossRef]
- Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med. 2019, 17, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Castro, J.; Muriel-Neyra, C.; Martin-Masot, R.; Moreno-Fernandez, J.; Maldonado, J.; Nestares, T. Oxidative stress, DNA stability and evoked inflammatory signaling in young celiac patients consuming a gluten-free diet. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Palová-Jelínková, L.; Dáňová, K.; Drašarová, H.; Dvořák, M.; Funda, D.P.; Fundová, P.; Kotrbová-Kozak, A.; Černá, M.; Kamanová, J.; Martin, S.F.; et al. Pepsin Digest of Wheat Gliadin Fraction Increases Production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB Signaling Pathway and an NLRP3 Inflammasome Activation. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Abadie, V.; Jabri, B. IL-15: A central regulator of celiac disease immunopathology. Immunol. Rev. 2014, 260, 221–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serena, G.; Camhi, S.; Sturgeon, C.; Yan, S.; Fasano, A. The role of gluten in celiac disease and type 1 diabetes. Nutrients 2015, 7, 7143–7162. [Google Scholar] [CrossRef] [Green Version]
- Nadal, I.; Donant, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J. Med. Microbiol. 2007, 56, 1669–1674. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.A.; Watson, T.; Clearman, B.; Mitros, F. Effect of a gluten-free diet on gastrointestinal symptoms in celiac disease. Am. J. Clin. Nutr. 2004, 79, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.; Butzner, J.D.; DeFelice, A.R.; Fasano, A.; Guandalini, S.; Liu, E.; Newton, K.P. Evidence-informed expert recommendations for the management of celiac disease in children. Pediatrics 2016, 138. [Google Scholar] [CrossRef] [Green Version]
- Lionetti, E.; Antonucci, N.; Marinelli, M.; Bartolomei, B.; Franceschini, E.; Gatti, S.; Catassi, G.N.; Verma, A.K.; Monachesi, C.; Catassi, C. Nutritional status, dietary intake, and adherence to the mediterranean diet of children with celiac disease on a gluten-free diet: A case-control prospective study. Nutrients 2020, 12, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penagini, F.; Dilillo, D.; Meneghin, F.; Mameli, C.; Fabiano, V.; Zuccotti, G.V. Gluten-free diet in children: An approach to a nutritionally adequate and balanced diet. Nutrients 2013, 5, 4553–4565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestares, T.; Martín-Masot, R.; Labella, A.; Aparicio, V.A.; Flor-Alemany, M.; López-Frías, M.; Maldonado, J. Is a gluten-free diet enough to maintain correct micronutrients status in young patients with celiac disease? Nutrients 2020, 12, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguayo-Patrón, S.; Calderón de la Barca, A.M. Old Fashioned vs. Ultra-Processed-Based Current Diets: Possible Implication in the Increased Susceptibility to Type 1 Diabetes and Celiac Disease in Childhood. Foods 2017, 6, 100. [Google Scholar] [CrossRef] [Green Version]
- Martínez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Popul. Health Metr. 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Koehorst, J.J.; van Dam, J.C.J.; Saccenti, E.; Martins Dos Santos, V.A.P.; Suarez-Diez, M.; Schaap, P.J. SAPP: Functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics 2018, 15, 1401–1403. [Google Scholar] [CrossRef] [Green Version]
- Moubarac, J.C.; Batal, M.; Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017, 108, 512–520. [Google Scholar] [CrossRef]
- OPS/OMS|Alimentos y Bebidas Ultraprocesados en América Latina: Tendencias, Efecto Sobre la Obesidad e Implicaciones para las Políticas Públicas. Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=11153:ultra-processed-food-and-drink-products&Itemid=1969&lang=es (accessed on 12 November 2020).
- Da Costa Louzada, M.L.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.B.; Canella, D.S.; Moubarac, J.C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef] [Green Version]
- De Deus Mendonça, R.; Pimenta, A.M.; Gea, A.; De La Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.M.; Nemet, D.; Galassetti, P. Exercise, stress, and inflammation in the growing child: From the bench to the playground. Curr. Opin. Pediatr. 2004, 16, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowd, A.J.; Kronlund, L.; Parmar, C.; Daun, J.T.; Wytsma-Fisher, K.; Reimer, R.A.; Millet, G.Y.; Culos-Reed, S.N. A 12-Week Pilot Exercise Program for Inactive Adults with Celiac Disease: Study Protocol. Glob. Adv. Health Med. 2019, 8, 216495611985377. [Google Scholar] [CrossRef] [PubMed]
- Tortora, R.; Capone, P.; De Stefano, G.; Imperatore, N.; Gerbino, N.; Donetto, S.; Monaco, V.; Caporaso, N.; Rispo, A. Metabolic syndrome in patients with coeliac disease on a gluten-free diet. Aliment. Pharmacol. Ther. 2015, 41, 352–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeevenhooven, J.; Koppen, I.J.N.; Benninga, M.A. The new Rome IV criteria for functional gastrointestinal disorders in infants and toddlers. Pediatr. Gastroenterol. Hepatol. Nutr. 2017, 20, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. Br. Med. J. 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, M.D.; Artacho, R. Guía Para Estudios Dietéticos: Álbum Fotográfico de Alimentos; Universidad de Granada: Granada, Spain, 2011. [Google Scholar]
- FAO. Guidelines on the Collection of Information on Food Processing through Food Consumption Surveys; FAO: Rome, Italy, 2015. [Google Scholar]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Ingestas diarias recomendadas de energía y nutrientes para la población española. In Tablas de Composición de Alimentos, 18th ed.; Ediciones Pirámide: Madrid, Spain, 2016. [Google Scholar]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Fok, C.Y.; Holland, K.S.; Gil-Zaragozano, E.; Paul, S.P. The role of nurses and dietitians in managing paediatric coeliac disease. Br. J. Nurs. 2016, 25, 449–455. [Google Scholar] [CrossRef]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes. Rev. 2020, obr.13146. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2020, 180, 283–291. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; da Costa Louzada, M.L.; Levy, R.B.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption drives excessive free sugar intake among all age groups in Australia. Eur. J. Nutr. 2020, 59, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; De Deus Mendonça, R.; De La Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Rojo, R.; Sandoval-Insausti, H.; López-Garcia, E.; Graciani, A.; Ordovás, J.M.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Consumption of Ultra-Processed Foods and Mortality: A National Prospective Cohort in Spain. Mayo Clin. Proc. 2019, 94, 2178–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olshan, K.L.; Leonard, M.M.; Serena, G.; Zomorrodi, A.R.; Fasano, A. Gut Microbiota in Celiac Disease: Microbes, Metabolites, Pathways and Therapeutics. Expert Rev. Clin. Immunol. 2020. [Google Scholar] [CrossRef]
- Walker, W.A. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr. Res. 2017, 82, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Rautava, S.; Luoto, R.; Salminen, S.; Isolauri, E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 565–576. [Google Scholar] [CrossRef]
- Collado, M.C.; Donat, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, D.; Garrotex, J.A.; Nadalx, I.; Leónx, A.J.; Calvox, C.; Fernández-Salazarx, L.; Blanco-Quirósx, A.; Sanzx, Y.; Arranzx, E. Is it true that coeliacs do not digest gliadin? Degradation pattern of gliadin in coeliac disease small intestinal mucosa. Gut 2009, 58, 886–887. [Google Scholar] [CrossRef] [Green Version]
- Conlon, M.; Bird, A. The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients 2014, 7, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Saturni, L. Celiac disease, inflammation and oxidative damage: A nutrigenetic approach. Nutrients 2012, 4, 243–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katar, M.; Ozugurlu, A.; Ozyurt, H.; Benli, I. Evaluation of glutathione peroxidase and superoxide dismutase enzyme polymorphisms in celiac disease patients. Genet. Mol. Res. 2014, 13, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis 2000, 21, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Diosdado, B.; van Oort, E.; Wijmenga, C. “Coelionomics”: Towards understanding the molecular pathology of coeliac disease. Clin. Chem. Lab. Med. 2005, 43, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Haddad, J.J.E.; Olver, R.E.; Land, S.C. Antioxidant/pro-oxidant equilibrium regulates HIF-1α and NF-κB redox sensitivity: Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J. Biol. Chem. 2000, 275, 21130–21139. [Google Scholar] [CrossRef] [Green Version]
- Leung, F.P.; Yung, L.M.; Laher, I.; Yao, X.; Chen, Z.Y.; Huang, Y. Exercise, vascular wall and cardiovascular diseases. Sports Med. 2008, 38, 1009–1024. [Google Scholar] [CrossRef]
- Yan, Z.; Spaulding, H.R. Extracellular superoxide dismutase, a molecular transducer of health benefits of exercise. Redox Biol. 2020, 32, 101508. [Google Scholar] [CrossRef]
- Avloniti, A.; Chatzinikolaou, A.; Deli, C.K.; Vlachopoulos, D.; Marco, L.G.; Leontsini, D.; Draganidis, D.; Jamurtas, A.Z.; Mastorakos, G.; Fatouros, I.G. Exercise-induced oxidative stress responses in the pediatric population. Antioxidants 2017, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- da Rocha, B.R.S.; Rico-Campà, A.; Romanos-Nanclares, A.; Ciriza, E.; Barbosa, K.B.F.; Martínez-González, M.Á.; Martín-Calvo, N. Adherence to Mediterranean diet is inversely associated with the consumption of ultra-processed foods among Spanish children: The SENDO project. Public Health Nutr. 2020, 1–10. [Google Scholar] [CrossRef]
- Caradonna, F.; Consiglio, O.; Luparello, C.; Gentile, C. Science and healthy meals in the world: Nutritional epigenomics and nutrigenetics of the mediterranean diet. Nutrients 2020, 12, 1748. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Da-Silva, L.; Rêgo, C.; Pietrobelli, A. The diet of preschool children in the Mediterranean countries of the European Union: A systematic review. Int. J. Environ. Res. Public Health 2016, 13, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Galarraga, L.; Martín-Álvarez, I.; Fernández-Montero, A.; Santos Rocha, B.; Ciriza Barea, E.; Martín-Calvo, N. Consumption of ultra-processed products and wheezing respiratory diseases in children: The SENDO project. An. Pediatr. 2020. [Google Scholar] [CrossRef]
Variable | Celiac Group (n = 53) | Control Group (n = 32) | p |
---|---|---|---|
Age (years) | 9.6 (3.8) | 10.7 (4.0) | 0.187 |
Sex (female, n [%]) | 37 (69.8) | 13 (40.6) | 0.008 |
Weight (kg) | 32.9 (12.3) | 40.1 (15.0) | 0.018 |
Height (cm) | 134.6 (21.1) | 144.3 (22.7) | 0.048 |
Physical activity levels (METS/week) | |||
Moderate physical activity (n = 81) | 981 (1061) | 937 (825) | 0.842 |
Vigorous physical activity (n = 81) | 1425 (1548) | 1599 (1644) | 0.632 |
Mediterranean diet adherence n (%) (n = 81) | |||
Low | 6 (11.8) | 1 (3.1) | 0.199 |
Medium | 23 (45.1) | 19 (63.3) | |
High | 22 (43.1) | 11 (33.3) | |
Following a gluten-free diet for at least 18 months n (%) | |||
Yes | 17 (32.1) | - | |
No | 36 (67.9) | - | |
Parents’ marital status (% married) (n = 68) | 39 (97.5) | 28 (100) | 0.339 |
Celiac Group (n = 53) | Control Group (n = 32) | pa | pb | |
---|---|---|---|---|
Energy (kcal/day) | 1905 (69.4) | 1839 (90.4) | 0.571 | 0.818 |
NOVA food classification | ||||
Unprocessed or minimally processed foods (kcal/day) | 654 (42.0) | 733 (55.6) | 0.272 | 0.325 |
Unprocessed or minimally processed foods (%E) | 35.5 (1.9) | 40.6 (2.6) | 0.129 | 0.273 |
Processed culinary ingredients (kcal/day) | 113 (12.8) | 98 (16.7) | 0.490 | 0.289 |
Processed Foods (kcal/day) | 213 (28.8) | 278 (37.5) | 0.182 | 0.117 |
Ultra-processed food and drink products (kcal/day) | 920 (54.9) | 730 (71.6) | 0.043 | 0.119 |
Ultra-processed food and drink products (%E) | 47.0 (2.2) | 38.6 (2.8) | 0.023 | 0.056 |
Celiac Children Below 50% | Celiac Children Above 50% | Control Children | pa | pb | |
---|---|---|---|---|---|
Oxidative/antioxidant biomarkers | |||||
SOD1 (pg/mL) | 87.7 (13.4) (n = 16) a | 148.2 (16.6) (n = 13) a,b | 83.7 (12.6) (n = 18) b | 0.014 | 0.020 |
15-F2t-isoprostanes (pg/mL) | 8.3 (0.3) (n = 22) a | 9.9 (0.4) (n = 18) a | 9.2 (0.3) (n = 27) | 0.008 | 0.004 |
TAS (mmol/L) | 1.7 (0.1) (n = 22) | 1.5 (0.1) (n = 18) | 1.6 (0.1) (n = 26) | 0.154 | 0.144 |
Inflammatory markers | |||||
IFN-γ (pg/mL) | 45.8 (8.1) (n = 22) | 69.6 (9.2) (n = 15) a | 38.8 (7.6) (n = 26) a | 0.043 | 0.047 |
IL-10 (pg/mL) | 11.8 (2.0) (n = 22) | 16.5 (2.3) (n = 18) | 12.3 (1.9) (n = 26) | 0.265 | 0.239 |
IL-12P40 (pg/mL) | 32.9 (5.2) (n = 16) | 44.3 (6.1) (n = 12) | 40.6 (4.9) (n = 19) | 0.331 | 0.478 |
IL-12P70 (pg/mL) | 8.5 (1.1) (n = 22) | 10.5 (1.3) (n = 18) | 8.8 (1.0) (n = 26) | 0.456 | 0.415 |
IL-13 (pg/mL) | 39.5 (18.1) (n = 16) | 54.2 (22.4) (n = 10) | 52.7 (18.1) (n = 16) | 0.842 | 0.953 |
IL-15 (pg/mL) | 4.9 (0.9) (n = 17) | 6.5 (1.0) (n = 14) | 5.9 (0.9) (n = 21) | 0.529 | 0.721 |
IL-17A (pg/mL) | 6.9 (1.1) (n = 20) | 8.6 (1.2) (n = 17) | 6.3 (1.0) (n = 24) | 0.334 | 0.364 |
IL-1α (pg/mL) | 33.5 (5.9) (n = 21) | 43.9 (6.8) (n = 17) | 32.5 (5.6) (n = 24) | 0.376 | 0.425 |
IL-1β (pg/mL) | 4.6 (0.5) (n = 22) | 4.4 (0.6) (n = 18) | 4.8 (0.5) (n = 26) | 0.903 | 0.913 |
IL-2 (pg/mL) | 3.4 (0.4) (n = 21) | 3.5 (0.5) (n = 17) | 3.4 (0.4) (n = 23) | 0.994 | 0.994 |
IL-3 (pg/mL) | 8.9 (1.3) (n = 20) | 7.8 (1.4) (n = 17) | 9.7 (1.1) (n = 25) | 0.576 | 0.644 |
IL-4 (pg/mL) | 24.2 (5.5) (n = 15) | 18.1 (5.4) (n = 16) | 25.9 (4.6) (n = 22) | 0.556 | 0.494 |
IL-5 (pg/mL) | 3.2 (0.6) (n = 20) | 4.1 (0.7) (n = 15) | 2.9 (0.5) (n = 25) | 0.451 | 0.492 |
IL-6 (pg/mL) | 10.9 (5.4) (n = 16) | 22.4 (6.6) (n = 10) | 18.2 (5.6) (n = 15) | 0.385 | 0.544 |
IL-7 (pg/mL) | 20.1 (1.9) (n = 21) | 18.5 (2.2) (n = 18) | 21.5 (1.8) (n = 26) | 0.591 | 0.658 |
IL-8 (pg/mL) | 7.2 (1.6) (n = 22) | 9.1 (1.8) (n = 18) | 7.4 (1.5) (n = 25) | 0.708 | 0.812 |
IP-10 (pg/mL) | 519.8 (48.6) (n = 22) | 552.9 (55.3) (n = 18) | 528.2 (45.8) (n = 26) | 0.901 | 0.967 |
MCP-1 (pg/mL) | 379.4 (25.9) (n = 22) | 305.7 (29.4) (n = 18) | 317.3 (24.3) (n = 26) | 0.116 | 0.142 |
MIP-1α (pg/mL) | 4.3 (0.9) (n = 10) a | 11.7 (1.2) (n = 6) a,b | 6.9 (1.0) (n = 9) b | <0.001 | 0.001 |
MIP-1β (pg/mL) | 32.5 (1.9) (n = 22) | 28.6 (2.2) (n = 18) | 29.0 (1.8) (n = 26) | 0.324 | 0.350 |
TNF-α (pg/mL) | 24.8 (1.6) (n = 22) | 21.8 (1.8) (n = 18) | 24.6 (1.5) (n = 26) | 0.387 | 0.392 |
TNF-β (pg/mL) | 32.1 (15.2) (n = 17) | 40.2 (17.2) (n = 13) | 40.4 (14.9) (n = 18) | 0.913 | 0.941 |
VEGF (pg/mL) | 88.6 (8.3) (n = 22) | 95.4 (9.3) (n = 18) | 88.3 (7.8) (n = 25) | 0.825 | 0.799 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nestares, T.; Martín-Masot, R.; Flor-Alemany, M.; Bonavita, A.; Maldonado, J.; Aparicio, V.A. Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients. Nutrients 2021, 13, 156. https://doi.org/10.3390/nu13010156
Nestares T, Martín-Masot R, Flor-Alemany M, Bonavita A, Maldonado J, Aparicio VA. Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients. Nutrients. 2021; 13(1):156. https://doi.org/10.3390/nu13010156
Chicago/Turabian StyleNestares, Teresa, Rafael Martín-Masot, Marta Flor-Alemany, Antonela Bonavita, José Maldonado, and Virginia A. Aparicio. 2021. "Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients" Nutrients 13, no. 1: 156. https://doi.org/10.3390/nu13010156
APA StyleNestares, T., Martín-Masot, R., Flor-Alemany, M., Bonavita, A., Maldonado, J., & Aparicio, V. A. (2021). Influence of Ultra-Processed Foods Consumption on Redox Status and Inflammatory Signaling in Young Celiac Patients. Nutrients, 13(1), 156. https://doi.org/10.3390/nu13010156