Association between Dietary Patterns and Kidney Function Parameters in Adults with Metabolic Syndrome: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Definition of Metabolic Syndrome
2.3. Assessment of Dietary Intake
2.4. Assessment of Clinical Parameters and Biochemical Data
2.5. Assessment of Other Variables
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Subjects
3.2. Dietary Patterns
3.3. Characteristics of the Subjects across Tertiles of Dietary Patterns
3.4. Association between Dietary Patterns and Kidney Function Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: A summary of the evidence. Diabetes Care 2005, 28, 1769–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucove, J.; Vupputuri, S.; Heiss, G.; North, K.; Russell, M. Metabolic syndrome and the development of CKD in American Indians: The Strong Heart Study. Am. J. Kidney Dis. 2008, 51, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Muntner, P.; Hamm, L.L.; Jones, D.W.; Batuman, V.; Fonseca, V.; Whelton, P.K.; He, J. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann. Intern. Med. 2004, 140, 167–174. [Google Scholar] [CrossRef]
- Thomas, G.; Sehgal, A.R.; Kashyap, S.R.; Srinivas, T.R.; Kirwan, J.P.; Navaneethan, S.D. Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Hwang, L.C.; Bai, C.H.; Chen, C.J. Prevalence of obesity and metabolic syndrome in Taiwan. J. Med. Assoc. 2006, 105, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Beltran-Sanchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J. Am. Coll. Cardiol. 2013, 62, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, W.; Lun, Z.; Zhang, H.; Sun, Z.; Kanu, J.S.; Qiu, S.; Cheng, Y.; Liu, Y. Prevalence of metabolic syndrome in mainland china: A meta-analysis of published studies. BMC Public Health 2016, 16, 296. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.C.; Hwang, S.J.; Wen, C.P.; Chang, H.Y.; Chen, T.; Shiu, R.S.; Horng, S.S.; Chang, Y.K.; Yang, W.C. High prevalence and low awareness of CKD in Taiwan: A study on the relationship between serum creatinine and awareness from a nationally representative survey. Am. J. Kidney Dis. 2006, 48, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Ming, J.; Xu, S.; Yang, C.; Gao, B.; Wan, Y.; Xing, Y.; Zhang, L.; Yang, W.; Ji, Q. Metabolic syndrome and chronic kidney disease in general Chinese adults: Results from the 2007-08 China National Diabetes and Metabolic Disorders Study. Clin. Chim. Acta 2014, 430, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Syauqy, A.; Hsu, C.Y.; Rau, H.H.; Chao, J.C. Association of dietary patterns with components of metabolic syndrome and inflammation among middle-aged and older adults with metabolic syndrome in Taiwan. Nutrients 2018, 10, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadgil, M.D.; Anderson, C.A.; Kandula, N.R.; Kanaya, A.M. Dietary patterns are associated with metabolic risk factors in South Asians living in the United States. J. Nutr. 2015, 145, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Joung, H. A traditional Korean dietary pattern and metabolic syndrome abnormalities. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Crews, D.C.; Wesson, D.E.; Tilea, A.M.; Saran, R.; Ríos-Burrows, N.; Williams, D.E.; Powe, N.R. High dietary acid load predicts ESRD among adults with CKD. J. Am. Soc. Nephrol. 2015, 26, 1693–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 2013, 8, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Muntner, P.; Rizk, D.V.; McClellan, W.M.; Warnock, D.G.; Newby, P.K.; Judd, S.E. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: A cohort study. Am. J. Kidney Dis. 2014, 64, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Rysz, J.; Franczyk, B.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The Effect of diet on the survival of patients with chronic kidney disease. Nutrients 2017, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Fung, T.T.; Hu, F.B.; Curhan, G.C. Association of dietary patterns with albuminuria and kidney function decline in older white women: A subgroup analysis from the Nurses’ Health Study. Am. J. Kidney Dis. 2011, 57, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Babio, N.; Toledo, E.; Estruch, R.; Ros, E.; Martínez-González, M.A.; Castañer, O.; Bulló, M.; Corella, D.; Arós, F.; Gómez-Gracia, E.; et al. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. Can. Med. Assoc. J. 2014, 186, E649–E657. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.J.; Kalantar-Zadeh, K.; Goldstein-Fuchs, J.; Rhee, C.M. Dietary approaches in the management of diabetic patients with kidney disease. Nutrients 2017, 9, 824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Guo, L.L.; Jin, H.M. Low-protein diet for diabetic nephropathy: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.C.; Jhang, H.R.; Chang, W.T.; Lin, C.H.; Shin, S.J.; Hwang, S.J.; Huang, M.C. Associations between dietary patterns and kidney function indicators in type 2 diabetes. Clin. Nutr. 2014, 33, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tsai, S.P.; Tsao, C.K.; Chiu, M.L.; Tsai, M.K.; Lu, P.J.; Lee, J.H.; Chen, C.H.; Wen, C.; Chang, S.-S. Cohort profile: The Taiwan MJ cohort: Half a million Chinese with repeated health surveillance data. Int. J. Epidemiol. 2017, 46, 1744–1744g. [Google Scholar] [CrossRef]
- Crews, D.C.; Scialla, J.J.; Liu, J.; Guo, H.; Bandeen-Roche, K.; Ephraim, P.L.; Jaar, B.G.; Sozio, S.M.; Miskulin, D.C.; Tangri, N.; et al. Predialysis health, dialysis timing, and outcomes among older United States adults. J. Am. Soc. Nephrol. 2014, 25, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Syauqy, A.; Hsu, C.Y.; Rau, H.H.; Chao, J.C. Association of dietary patterns, anthropometric measurements, and metabolic parameters with C-reactive protein and neutrophil-to-lymphocyte ratio in middle-aged and older adults with metabolic syndrome in Taiwan: A cross-sectional study. Nutr. J. 2018, 17, 106. [Google Scholar] [CrossRef]
- Lao, X.Q.; Deng, H.B.; Liu, X.; Chan, T.C.; Zhang, Z.; Chang, L.Y.; Yeoh, E.K.; Tam, T.; Wong, M.C.S.; Thomas, G.N. Increased leisure-time physical activity associated with lower onset of diabetes in 44 828 adults with impaired fasting glucose: A population-based prospective cohort study. Br. J. Sports Med. 2019, 53, 895–900. [Google Scholar] [CrossRef]
- Stevens, L.A.; Claybon, M.A.; Schmid, C.H.; Chen, J.; Horio, M.; Imai, E.; Nelson, R.G.; Van Deventer, M.; Wang, H.Y.; Zuo, L.; et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011, 79, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, J.A.; Steluti, J.; Gorgulho, B.M.; Carioca, A.A.F.; Alencar, G.P.; Fisberg, R.M.; Marchioni, D.M. Prudent dietary pattern influences homocysteine level more than folate, vitamin B12, and docosahexaenoic acid: A structural equation model approach. Eur. J. Nutr. 2020, 59, 81–91. [Google Scholar] [CrossRef]
- Suliga, E.; Kozieł, D.; Cieśla, E.; Głuszek, S. Association between dietary patterns and metabolic syndrome in individuals with normal weight: A cross-sectional study. Nutr. J. 2015, 14, 55. [Google Scholar] [CrossRef] [Green Version]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE Publications Ltd.: London, UK, 2009; pp. 650–671. ISBN 1847879071. [Google Scholar]
- Martinez-Lacoba, R.; Pardo-Garcia, I.; Amo-Saus, E.; Escribano-Sotos, F. Socioeconomic, demographic and lifestyle-related factors associated with unhealthy diet: A cross-sectional study of university students. BMC Public Health 2018, 18, 1241. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Judd, S.; Le, A.; Ard, J.; Newsome, B.B.; Howard, G.; Warnock, D.G.; McClellan, W. Associations of dietary fat with albuminuria and kidney dysfunction. Am. J. Clin. Nutr. 2010, 92, 897–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, J.P.; Scheven, L.; de Jong, P.E.; Bakker, S.J.; Curhan, G.C.; Gansevoort, R.T. Association between sodium intake and change in uric acid, urine albumin excretion, and the risk of developing hypertension. Circulation 2012, 125, 3108–3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, E.L.; Stampfer, M.J.; Hankinson, S.E.; Spiegelman, D.; Curhan, G.C. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann. Intern. Med. 2003, 138, 460–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, J.; Ma, J.; Liu, Y.; Tan, R.; Liu, H.; Lao, G. Low protein diet inhibits uric acid synthesis and attenuates renal damage in streptozotocin-induced diabetic rats. J. Diabetes Res. 2014, 2014, 287536. [Google Scholar] [CrossRef]
- Giordano, M.; Ciarambino, T.; Castellino, P.; Cataliotti, A.; Malatino, L.; Ferrara, N.; Politi, C.; Paolisso, G. Long-term effects of moderate protein diet on renal function and low-grade inflammation in older adults with type 2 diabetes and chronic kidney disease. Nutrition 2014, 30, 1045–1049. [Google Scholar] [CrossRef] [Green Version]
- Zarazaga, A.; García-De-Lorenzo, L.; García-Luna, P.P.; García-Peris, P.; López-Martínez, J.; Lorenzo, V.; Quecedo, L.; Del Llano, J. Nutritional support in chronic renal failure: Systematic review. Clin. Nutr. 2001, 20, 291–299. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Comparison of high vs. normal/low protein diets on renal function in subjects without chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2014, 9, e97656. [Google Scholar] [CrossRef] [Green Version]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R., 3rd; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop Hypertension) diet and risk of subsequent kidney disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Juraschek, S.P.; Gelber, A.C.; Choi, H.K.; Appel, L.J.; Miller, E.R., 3rd. Effects of the Dietary Approaches to Stop Hypertension (DASH) diet and sodium intake on serum uric acid. Arthritis Rheumatol. 2016, 68, 3002–3009. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Shi, Z.; Lv, J.; Du, H.; Qi, L.; Guo, Y.; Bian, Z.; Chang, L.; Tang, X.; Jiang, Q.; et al. Major dietary patterns in relation to general and central obesity among Chinese adults. Nutrients 2015, 7, 5834–5849. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; Zheng, P.F.; Zhang, X.Y.; Si, C.J.; Yu, X.L.; Gao, W.; Zhang, L.; Liao, D. Association between dietary patterns and the indicators of obesity among Chinese: A cross-sectional study. Nutrients 2015, 7, 7995–8009. [Google Scholar] [CrossRef] [PubMed]
- Yulia; Khusun, H.; Fahmida, U. Dietary patterns of obese and normal-weight women of reproductive age in urban slum areas in Central Jakarta. Br. J. Nutr. 2016, 116, S49–S56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsumata, S.; Matsuzaki, H.; Uehara, M.; Suzuki, K. Effects of dietary calcium supplementation on bone metabolism, kidney mineral concentrations, and kidney function in rats fed a high-phosphorus diet. J. Nutr. Sci. Vitam. 2015, 61, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bover, J.; Egido, J.; Fernández-Giráldez, E.; Praga, M.; Solozábal-Campos, C.; Torregrosa, J.V.; Martínez-Castelao, A. Vitamin D, vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrologia 2015, 35, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Song, Y.; Ford, E.S.; Manson, J.E.; Buring, J.E.; Ridker, P.M. Dietary calcium, vitamin D, and the prevalence of metabolic syndrome in middle-aged and older U.S. women. Diabetes Care 2005, 28, 2926–2932. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Liu, S.; Curhan, G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005, 52, 283–289. [Google Scholar] [CrossRef]
- Soedamah-Muthu, S.S.; Verberne, L.D.; Ding, E.L.; Engberink, M.F.; Geleijnse, J.M. Dairy consumption and incidence of hypertension: A dose-response meta-analysis of prospective cohort studies. Hypertension 2012, 60, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Am. J. Clin. Nutr. 2013, 98, 1066–1083. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.C.; Szeto, I.M.; Chen, L.H.; Han, S.F.; Li, Y.J.; van Hekezen, R.; Qin, L.Q. Dairy products consumption and metabolic syndrome in adults: Systematic review and meta-analysis of observational studies. Sci. Rep. 2015, 5, 14606. [Google Scholar] [CrossRef]
- Bi, H.; Wu, Y.; Zhao, C.; Long, G. Association between the dietary factors and metabolic syndrome with chronic kidney disease in Chinese adults. Int. J. Clin. Exp. Med. 2014, 7, 4448–4454. [Google Scholar] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, M.; Lanti, M.P.; Menotti, A.; Laurenzi, M.; Mancini, M.; Zanchetti, A.; De Santo, N.G. Definition of kidney dysfunction as a cardiovascular risk factor: Use of urinary albumin excretion and estimated glomerular filtration rate. Arch. Intern. Med. 2008, 168, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassalotti, J.A.; Centor, R.; Turner, B.J.; Greer, R.C.; Choi, M.; Sequist, T.D. Practical approach to detection and management of chronic kidney disease for the primary care clinician. Am. J. Med. 2016, 129, 153–162.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All Subjects |
---|---|
Age (years) | 41.2 ± 11.8 |
Sex (% female) | 31.3 |
Marital status (% married) | 73.6 |
Education (% high) | 83.4 |
Current smoker (% yes) | 24.0 |
Current drinker (% yes) | 16.7 |
Physical activity (% high) | 32.9 |
Body mass index (kg/m2) | 25.2 ± 3.5 |
Waist circumference (cm) | 84.8 ± 11.8 |
Systolic blood pressure (mmHg) | 122 ± 23 |
Diastolic blood pressure (mmHg) | 77 ± 15 |
Total cholesterol (mmol/L) | 5.18 ± 1.07 |
HDL cholesterol (mmol/L) | 1.07 ± 0.64 |
LDL cholesterol (mmol/L) | 2.99 ± 1.49 |
Triglycerides (mmol/L) | 2.04 ± 1.16 |
FBG (mmol/L) | 5.64 ± 1.46 |
BUN (mmol/L) | 4.95 ± 1.40 |
Creatinine (μmol/L) | 89.2 ± 27.2 |
eGFR (mL/min/1.73 m2) | 85.2 ± 24.1 |
Uric acid (mmol/L) | 0.38 ± 0.10 |
CRP (mg/dL) | 0.22 ± 0.38 |
Processed Food–Sweets Dietary Pattern | Veggie–Fruit–Grains Dietary Pattern | Meat–Seafood–Eggs Dietary Pattern | Milk–Dairy Dietary Pattern | |
---|---|---|---|---|
Milk | −0.004 | 0.185 | 0.184 | 0.776 |
Dairy products | 0.185 | 0.181 | 0.260 | 0.707 |
Eggs | 0.297 | 0.179 | 0.605 | 0.260 |
Meat | 0.323 | 0.118 | 0.753 | 0.125 |
Seafood | 0.106 | 0.325 | 0.666 | 0.214 |
Organ meats | 0.326 | 0.149 | 0.610 | 0.108 |
Legumes/soy products | 0.284 | 0.441 | 0.396 | 0.193 |
Light-colored vegetables | 0.089 | 0.807 | 0.251 | 0.069 |
Dark-colored vegetables | 0.066 | 0.825 | 0.241 | 0.081 |
Vegetables in oil/dressing | 0.217 | 0.595 | 0.404 | −0.078 |
Fruit | 0.098 | 0.640 | 0.117 | 0.308 |
Whole grains | 0.238 | 0.576 | −0.096 | 0.222 |
Root crops | 0.332 | 0.599 | 0.092 | 0.236 |
Rice/flour products | 0.336 | 0.473 | 0.400 | 0.308 |
Fried rice/flour products | 0.534 | 0.349 | 0.160 | 0.060 |
Refined dessert | 0.568 | 0.232 | 0.079 | 0.416 |
Jam/honey | 0.640 | 0.218 | −0.007 | 0.416 |
Sugary drinks | 0.678 | 0.003 | 0.237 | 0.283 |
Deep-fried food | 0.688 | 0.125 | 0.400 | 0.099 |
Processed food | 0.696 | 0.171 | 0.259 | −0.009 |
Instant noodles | 0.658 | 0.183 | 0.159 | 0.048 |
Sauce | 0.679 | 0.117 | 0.256 | 0.041 |
Processed Food–Sweets Dietary Pattern | ||||
---|---|---|---|---|
T1 (n = 18,825) | T2 (n = 18,826) | T3 (n = 18,825) | p-Value | |
Age (years) | 44.6 ± 13.3 a | 41.4 ± 11.8 b | 37.8 ± 10.5 c | <0.001 |
Sex (% female) | 25.7 | 29.7 | 38.1 | <0.001 |
Marital status (% married) | 64.6 | 71.8 | 77.1 | <0.001 |
Education (% high) | 89.5 | 84.5 | 66.3 | <0.001 |
Current smoker (% yes) | 14.9 | 23.4 | 31.2 | <0.001 |
Current drinker (% yes) | 13.1 | 17.1 | 19.4 | <0.001 |
Physical activity (% high) | 33.8 | 33.2 | 31.5 | <0.001 |
Body mass index (kg/m2) | 24.9 ± 3.7 a | 25.4 ± 3.6 a | 25.4 ± 3.7 a | 0.009 |
Waist circumference (cm) | 83.6 ± 12.6 a | 84.9 ± 11.0 b | 85.3 ± 11.0 c | <0.001 |
Systolic blood pressure (mmHg) | 121 ± 22 a | 122 ± 23 b | 124 ± 24 c | <0.001 |
Diastolic blood pressure (mmHg) | 76 ± 14 a | 77 ± 15 b | 77 ± 15 c | <0.001 |
Total cholesterol (mmol/L) | 5.11 ± 1.07 a | 5.18 ± 1.08 b | 5.23 ± 1.15 c | 0.004 |
HDL cholesterol (mmol/L) | 1.09 ± 0.62 a | 1.08 ± 0.67 a | 1.04 ± 0.63 b | <0.001 |
LDL cholesterol (mmol/L) | 2.90 ± 1.52 a | 2.95 ± 1.52 b | 3.04 ± 1.46 c | <0.001 |
Triglycerides (mmol/L) | 1.98 ± 1.10 a | 2.04 ± 1.12 b | 2.10 ± 1.41 c | <0.001 |
FBG (mmol/L) | 5.57 ± 1.26 a | 5.63 ± 1.74 b | 5.67 ± 1.41 b | <0.001 |
BUN (mmol/L) | 4.81 ± 1.31 a | 4.95 ± 1.39 b | 4.98 ± 1.78 c | <0.001 |
Creatinine (mol/L) | 86.6 ± 32.2 a | 89.6 ± 30.0 a | 90.5 ± 26.0 b | <0.001 |
eGFR (mL/min/1.73 m2) | 85.6 ± 21.0 a | 85.1 ± 22.2 b | 84.9 ± 22.6 b | 0.011 |
Uric acid (mmol/L) | 0.36 ± 0.10 a | 0.38 ± 0.09 b | 0.39 ± 0.09 c | <0.001 |
CRP (mg/dL) | 0.22 ± 0.37 a | 0.23 ± 0.38 b | 0.24 ± 0.43 b | 0.001 |
Veggie–Fruit–Grains Dietary Pattern | ||||
---|---|---|---|---|
T1 (n = 18,825) | T2 (n = 18,826) | T3 (n = 18,825) | p-Value | |
Age (years) | 38.1 ± 11.5 a | 41.2 ± 11.7 b | 44.5 ± 12.3 c | <0.001 |
Sex (% female) | 31.7 | 29.8 | 32.0 | <0.001 |
Marital status (% married) | 63.0 | 72.5 | 75.7 | <0.001 |
Education (% high) | 76.9 | 79.3 | 84.6 | <0.001 |
Current smoker (% yes) | 25.8 | 24.8 | 18.9 | <0.001 |
Current drinker (% yes) | 17.5 | 16.3 | 15.8 | <0.001 |
Physical activity (% high) | 30.1 | 32.8 | 35.6 | <0.001 |
Body mass index (kg/m2) | 25.5 ± 3.6 a | 25.1 ± 3.4 b | 25.0 ± 3.5 c | 0.005 |
Waist circumference (cm) | 85.0 ± 10.5 a | 84.8 ± 10.9 b | 83.9 ± 13.1 b | <0.001 |
Systolic blood pressure (mmHg) | 124 ± 23 a | 122 ± 23 b | 121 ± 22 c | <0.001 |
Diastolic blood pressure (mmHg) | 78 ± 14 a | 77 ± 15 b | 76 ± 14 c | <0.001 |
Total cholesterol (mmol/L) | 5.20 ± 1.07 a | 5.19 ± 1.06 b | 5.13 ± 1.15 b | <0.001 |
HDL cholesterol (mmol/L) | 0.95 ± 0.68 a | 1.09 ± 0.63 b | 1.15 ± 0.60 c | <0.001 |
LDL cholesterol (mmol/L) | 3.16 ± 1.40 a | 3.03 ± 1.47 b | 2.70 ± 1.62 c | <0.001 |
Triglycerides (mmol/L) | 2.05 ± 1.09 a | 2.05 ± 1.22 a | 2.02 ± 1.36 b | 0.036 |
FBG (mmol/L) | 5.76 ± 1.43 a | 5.66 ± 1.40 b | 5.45 ± 1.60 c | <0.001 |
BUN (mmol/L) | 5.17 ± 1.48 a | 4.97 ± 1.41 b | 4.60 ± 1.60 b | <0.001 |
Creatinine (mol/L) | 89.9 ± 31.2 a | 89.1 ± 27.6 b | 87.8 ± 29.6 c | <0.001 |
eGFR (mL/min/1.73 m2) | 84.6 ± 22.8 a | 84.9 ± 23.2 b | 86.0 ± 24.8 b | <0.001 |
Uric acid (mmol/L) | 0.39 ± 0.09 a | 0.38 ± 0.11 b | 0.36 ± 0.09 c | <0.001 |
CRP (mg/dL) | 0.24 ± 0.43 a | 0.22 ± 0.35 b | 0.21 ± 0.39 c | <0.001 |
Meat–Seafood–Eggs Dietary Pattern | ||||
---|---|---|---|---|
T1 (n = 18,825) | T2 (n = 18,826) | T3 (n = 18,825) | p-Value | |
Age (years) | 43.7 ± 13.1 a | 41.4 ± 11.9 b | 38.6 ± 11.1 c | <0.001 |
Sex (% female) | 25.5 | 31.3 | 36.7 | <0.001 |
Marital status (% married) | 66.9 | 72.0 | 74.1 | <0.001 |
Education (% high) | 87.1 | 84.7 | 68.5 | <0.001 |
Current smoker (% yes) | 15.7 | 23.6 | 30.2 | <0.001 |
Current drinker (%yes) | 11.0 | 16.9 | 21.7 | <0.001 |
Physical activity (% high) | 34.7 | 32.5 | 31.3 | <0.001 |
Body mass index (kg/m2) | 24.8 ± 3.6 a | 25.0 ± 3.5 b | 25.7 ± 3.5 c | 0.003 |
Waist circumference (cm) | 83.3 ± 14.6 a | 84.5 ± 14.6 b | 85.9 ± 11.1 c | <0.001 |
Systolic blood pressure (mmHg) | 122 ± 22 a | 122 ± 22 a | 123 ± 23 b | <0.001 |
Diastolic blood pressure (mmHg) | 77 ± 15 a | 77 ± 14 a | 77 ± 14 a | 0.002 |
Total cholesterol (mmol/L) | 5.14 ± 1.16 a | 5.18 ± 1.07 a | 5.20 ± 1.07 b | <0.001 |
HDL cholesterol (mmol/L) | 1.08 ± 0.63 a | 1.06 ± 0.63 b | 1.05 ± 0.66 c | <0.001 |
LDL cholesterol (mmol/L) | 2.90 ± 1.54 a | 2.95 ± 1.50 b | 3.04 ± 1.47 c | <0.001 |
Triglycerides (mmol/L) | 2.00 ± 1.12 a | 2.02 ± 1.15 b | 2.10 ± 1.39 c | <0.001 |
FBG (mmol/L) | 5.55 ± 1.69 a | 5.63 ± 1.35 b | 5.69 ± 1.39 c | <0.001 |
BUN (mmol/L) | 4.77 ± 1.70 a | 4.95 ± 1.39 b | 5.02 ± 1.39 c | <0.001 |
Creatinine (mol/L) | 87.2 ± 30.5 a | 89.2 ± 26.8 b | 90.3 ± 31.0 c | <0.001 |
eGFR (mL/min/1.73 m2) | 85.5 ± 22.8 a | 85.3 ± 23.0 a | 84.8 ± 23.6 b | 0.001 |
Uric acid (mmol/L) | 0.36 ± 0.10 a | 0.38 ± 0.09 b | 0.39 ± 0.09 c | <0.001 |
CRP (mg/dL) | 0.22 ± 0.38 a | 0.22 ± 0.38 b | 0.25 ± 0.43 c | <0.001 |
Milk–Dairy Dietary Pattern | ||||
---|---|---|---|---|
T1 (n = 18,825) | T2 (n = 18,826) | T3 (n = 18,825) | p-Value | |
Age (years) | 40.7 ± 12.7 a | 40.9 ± 11.7 b | 42.2 ± 12.2 c | <0.001 |
Sex (% female) | 29.0 | 30.7 | 33.7 | <0.001 |
Marital status (% married) | 68.7 | 70.7 | 72.7 | <0.001 |
Education (% high) | 70.2 | 85.1 | 85.2 | <0.001 |
Current smoker (% yes) | 18.9 | 24.1 | 26.5 | <0.001 |
Current drinker (% yes) | 14.7 | 16.4 | 18.5 | <0.001 |
Physical activity (% high) | 30.1 | 33.2 | 35.2 | <0.001 |
Body mass index (kg/m2) | 25.5 ± 3.9 a | 25.1 ± 3.7 b | 25.1 ± 3.8 c | 0.001 |
Waist circumference (cm) | 84.9 ± 13.1 a | 84.8 ± 10.6 a | 84.0 ± 10.9 b | <0.001 |
Systolic blood pressure (mmHg) | 123 ± 23 a | 122 ± 22 b | 122 ± 22 b | <0.001 |
Diastolic blood pressure (mmHg) | 78 ± 15 a | 77 ± 14 b | 77 ± 15 b | <0.001 |
Total cholesterol (mmol/L) | 5.19 ± 1.06 a | 5.18 ± 1.07 b | 5.15 ± 1.17 c | <0.001 |
HDL cholesterol (mmol/L) | 1.04 ± 0.62 a | 1.06 ± 0.64 b | 1.11 ± 0.60 c | <0.001 |
LDL cholesterol (mmol/L) | 3.07 ± 1.46 a | 3.03 ± 1.46 b | 2.79 ± 1.57 c | <0.001 |
Triglycerides (mmol/L) | 2.13 ± 1.41 a | 2.03 ± 1.16 b | 1.96 ± 0.99 c | 0.027 |
FBG (mmol/L) | 5.67 ± 1.34 a | 5.63 ± 1.33 b | 5.55 ± 1.74 b | <0.001 |
BUN (mmol/L) | 4.97 ± 1.38 a | 4.93 ± 1.41 b | 4.84 ± 1.71 c | <0.001 |
Creatinine (mol/L) | 90.0 ± 27.0 a | 88.8 ± 24.4 b | 88.0 ± 36.4 c | <0.001 |
eGFR (mL/min/1.73 m2) | 84.5 ± 24.3 a | 85.5 ± 23.5 b | 85.7 ± 23.1 b | <0.001 |
Uric acid (mmol/L) | 0.38 ± 0.11 a | 0.38 ± 0.09 a | 0.37 ± 0.09 b | <0.001 |
CRP (mg/dL) | 0.25 ± 0.45 a | 0.22 ± 0.36 b | 0.22 ± 0.38 c | <0.001 |
BUN (mmol/L) | T1 (Ref) | T2 | T3 | p-Value |
---|---|---|---|---|
Processed food–sweets dietary pattern | ||||
Model 1 a | 4.83 (4.81–5.02) | 4.88 (4.86–4.90) | 4.99 (4.97–5.01) | <0.001 |
Model 2 b | 4.84 (4.82–5.03) | 4.88 (4.86–4.90) | 4.98 (4.96–5.01) | <0.001 |
Veggie–fruit–grains dietary pattern | ||||
Model 1 a | 4.96 (4.94–4.98) | 4.96 (4.94–4.98) | 4.78 (4.76–4.80) | <0.001 |
Model 2 b | 4.96 (4.94–4.98) | 4.96 (4.94–4.98) | 4.78 (4.76–4.80) | <0.001 |
Meat–seafood–eggs dietary pattern | ||||
Model 1 a | 4.76 (4.74–4.79) | 4.92 (4.90–4.94) | 5.03 (5.02–5.06) | <0.001 |
Model 2 b | 4.77 (4.75–4.79) | 4.92 (4.90–4.94) | 5.04 (5.02–5.06) | <0.001 |
Milk–dairy dietary pattern | ||||
Model 1 a | 5.05 (5.02–5.07) | 4.83 (4.82–4.86) | 4.82 (4.80–4.84) | <0.001 |
Model 2 b | 5.05 (5.02–5.07) | 4.84 (4.82–4.86) | 4.82 (4.80–4.84) | <0.001 |
Creatinine (mol/L) | ||||
Processed food–sweets dietary pattern | ||||
Model 1 a | 86.6 (86.1–87.1) | 86.9 (86.5–87.3) | 87.7 (87.3–88.2) | 0.005 |
Model 2 b | 86.6 (86.2–87.1) | 86.9 (86.5–87.3) | 87.7 (87.2–88.1) | 0.008 |
Veggie–fruit–grains dietary pattern | ||||
Model 1 a | 89.2 (88.7–89.6) | 88.5 (88.1–89.0) | 87.5 (87.1–87.9) | <0.001 |
Model 2 b | 89.2 (88.7–89.6) | 88.4 (87.9–88.9) | 87.5 (87.1–88.0) | <0.001 |
Meat–seafood–eggs dietary pattern | ||||
Model 1 a | 87.6 (87.1–88.0) | 88.1 (87.7–88.5) | 88.9 (88.4–89.3) | <0.001 |
Model 2 b | 87.4 (87.3–88.3) | 88.1 (87.7–88.5) | 88.9 (88.4–89.3) | <0.001 |
Milk–dairy dietary pattern | ||||
Model 1 a | 88.8 (88.4–89.3) | 88.1 (87.7–88.5) | 87.7 (87.2–88.1) | 0.001 |
Model 2 b | 88.7 (88.2–89.2) | 88.1 (87.7–88.5) | 87.8 (87.4–88.2) | 0.004 |
eGFR (mL/min/1.73 m2) | ||||
Processed food–sweets dietary pattern | ||||
Model 1 a | 85.7 (85.4–86.1) | 85.0 (84.7–85.2) | 84.8 (84.6–85.1) | 0.007 |
Model 2 b | 85.6 (85.4–85.9) | 85.0 (84.7–85.4) | 84.8 (84.6–85.1) | 0.006 |
Veggie–fruit–grains dietary pattern | ||||
Model 1 a | 84.6 (84.4–84.9) | 85.0 (84.7–85.3) | 85.8 (85.5–86.0) | 0.003 |
Model 2 b | 84.6 (84.4–84.9) | 85.0 (84.7–85.2) | 85.8 (85.6–86.1) | 0.004 |
Meat–seafood–eggs dietary pattern | ||||
Model 1 a | 85.9 (85.7–86.1) | 84.9 (84.7–85.1) | 84.6 (84.4–84.9) | <0.001 |
Model 2 b | 85.8 (85.6–86.1) | 85.0 (84.7–85.2) | 84.7 (84.4–85.0) | <0.001 |
Milk–dairy dietary pattern | ||||
Model 1 a | 84.5 (84.3–84.7) | 85.1 (84.8–85.3) | 86.0 (85.7–86.1) | <0.001 |
Model 2 b | 84.6 (84.4–84.9) | 85.1 (84.8–85.3) | 85.9 (85.6–86.2) | <0.001 |
Uric acid (mmol/L) | ||||
Processed food–sweets dietary pattern | ||||
Model 1 a | 0.37 (0.37–0.38) | 0.38 (0.38–0.38) | 0.39 (0.39–0.39) | <0.001 |
Model 2 b | 0.37 (0.37–0.38) | 0.38 (0.38–0.38) | 0.39 (0.39–0.39) | <0.001 |
Veggie–fruit–grains dietary pattern | ||||
Model 1 a | 0.39 (0.39–0.39) | 0.38 (0.38–0.38) | 0.36 (0.36–0.36) | <0.001 |
Model 2 b | 0.39 (0.39–0.39) | 0.38 (0.38–0.38) | 0.37 (0.37–0.37) | <0.001 |
Meat–seafood–eggs dietary pattern | ||||
Model 1 a | 0.36 (0.36–0.37) | 0.37 (0.37–0.37) | 0.38 (0.38–0.39) | <0.001 |
Model 2 b | 0.37 (0.36–0.37) | 0.37 (0.37–0.37) | 0.39 (0.39–0.39) | <0.001 |
Milk–dairy dietary pattern | ||||
Model 1 a | 0.38 (0.37–0.38) | 0.38 (0.38–0.38) | 0.37 (0.37–0.38) | <0.001 |
Model 2 b | 0.38 (0.37–0.38) | 0.38 (0.38–0.38) | 0.37 (0.37–0.37) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syauqy, A.; Hsu, C.-Y.; Lee, H.-A.; Rau, H.-H.; Chao, J.C.-J. Association between Dietary Patterns and Kidney Function Parameters in Adults with Metabolic Syndrome: A Cross-Sectional Study. Nutrients 2021, 13, 40. https://doi.org/10.3390/nu13010040
Syauqy A, Hsu C-Y, Lee H-A, Rau H-H, Chao JC-J. Association between Dietary Patterns and Kidney Function Parameters in Adults with Metabolic Syndrome: A Cross-Sectional Study. Nutrients. 2021; 13(1):40. https://doi.org/10.3390/nu13010040
Chicago/Turabian StyleSyauqy, Ahmad, Chien-Yeh Hsu, Hsiu-An Lee, Hsiao-Hsien Rau, and Jane C.-J. Chao. 2021. "Association between Dietary Patterns and Kidney Function Parameters in Adults with Metabolic Syndrome: A Cross-Sectional Study" Nutrients 13, no. 1: 40. https://doi.org/10.3390/nu13010040
APA StyleSyauqy, A., Hsu, C. -Y., Lee, H. -A., Rau, H. -H., & Chao, J. C. -J. (2021). Association between Dietary Patterns and Kidney Function Parameters in Adults with Metabolic Syndrome: A Cross-Sectional Study. Nutrients, 13(1), 40. https://doi.org/10.3390/nu13010040