Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tissue Collection
2.3. Blood Profile Analyses
2.4. Quantitative Real-Time PCR Analysis
2.5. Western Blotting
2.6. Gastrocnemius Histology
2.7. Transmission Electron Microscopy
2.8. Statistical Analysis
3. Results
3.1. Phenotypes of Dams
3.2. Phenotypes of Offspring
3.3. Myogenesis Gene Expression and Morphology in SM of Offspring
3.4. Mitochondrial Biogenesis and Dynamics Gene Expression in SM of Offspring
3.5. Mitochondrial Number and Average Volume in SM of Offspring
3.6. AMPK and mTOR Signaling in SM of Offspring
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desai, M.; Ross, M.G. Maternal-infant nutrition and development programming of offspring appetite and obesity. Nutr. Rev. 2020, 78 (Suppl. 2), 25–31. [Google Scholar] [CrossRef]
- Nathanael, J.; Harsono, H.C.A.; Wibawa, A.D.; Suardana, P.; Vianney, Y.M.; Dwi Putra, S.E. The genetic basis of high-carbohydrate and high-monosodium glutamate diet related to the increase of likelihood of type 2 diabetes mellitus: A review. Endocrine 2020, 69, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, A.; Choi, K.; Dasgupta, B. Insight on Transcriptional Regulation of the Energy Sensing AMPK and Biosynthetic mTOR Pathway Genes. Front. Cell Dev. Biol. 2020, 8, 671. [Google Scholar] [CrossRef] [PubMed]
- Carton, F.; Di Francesco, D.; Fusaro, L.; Zanella, E.; Apostolo, C.; Oltolina, F.; Cotella, D.; Prat, M.; Boccafoschi, F. Myogenic Potential of Extracellular Matrix Derived from Decellularized Bovine Pericardium. Int. J. Mol. Sci. 2021, 22, 9406. [Google Scholar] [CrossRef]
- Brown, L.D. Endocrine regulation of fetal skeletal muscle growth: Impact on future metabolic health. J. Endocrinol. 2014, 221, R13–R29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y. Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. Adv. Exp. Med. Biol. 2016, 900, 61–95. [Google Scholar] [CrossRef]
- Zammit, P.S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin. Cell Dev. Biol. 2017, 72, 19–32. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, Y.; Jin, K.; Lu, Z.; Zeng, Z.; Xiong, W. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci. 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- An, S.Y.; Zhang, G.M.; Liu, Z.F.; Zhou, C.; Yang, P.C.; Wang, F. MiR-1197-3p regulates testosterone secretion in goat Leydig cells via targeting PPARGC1A. Gene 2019, 710, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, G.H.; Kunkel, C.J.; Ozuna, H.; Miralda, I.; Tyagi, S.C. TFAM overexpression reduces pathological cardiac remodeling. Mol. Cell. Biochem. 2019, 454, 139–152. [Google Scholar] [CrossRef]
- Koizumi, S.; Irie, T.; Hirayama, S.; Sakurai, Y.; Yashiroda, H.; Naguro, I.; Ichijo, H.; Hamazaki, J.; Murata, S. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife 2016, 5, e18357. [Google Scholar] [CrossRef] [PubMed]
- Murata, D.; Yamada, T.; Tokuyama, T.; Arai, K.; Quiros, P.M.; Lopez-Otin, C.; Iijima, M.; Sesaki, H. Mitochondrial Safeguard: A stress response that offsets extreme fusion and protects respiratory function via flickering-induced Oma1 activation. EMBO J. 2020, 39, e105074. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Jiang, L. Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Front. Endocrinol. 2019, 10, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yerevanian, A.; Soukas, A.A. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr. Obes. Rep. 2019, 8, 156–164. [Google Scholar] [CrossRef]
- Langer, O. Pharmacological treatment of gestational diabetes mellitus: Point/counterpoint. Am. J. Obstet. Gynecol. 2018, 218, 490–499. [Google Scholar] [CrossRef]
- Christos, C.; Paolo, C.; Alexandros, S. Gestational Diabetes Mellitus pharmacological prevention and treatment. Curr. Pharm. Des. 2021. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2019, 15, 569–589. [Google Scholar] [CrossRef] [Green Version]
- Lantier, L.; Williams, A.S.; Williams, I.M.; Guerin, A.; Bracy, D.P.; Goelzer, M.; Foretz, M.; Viollet, B.; Hughey, C.C.; Wasserman, D.H. Reciprocity Between Skeletal Muscle AMPK Deletion and Insulin Action in Diet-Induced Obese Mice. Diabetes 2020, 69, 1636–1649. [Google Scholar] [CrossRef]
- Wang, Y.; An, H.; Liu, T.; Qin, C.; Sesaki, H.; Guo, S.; Radovick, S.; Hussain, M.; Maheshwari, A.; Wondisford, F.E.; et al. Metformin Improves Mitochondrial Respiratory Activity through Activation of AMPK. Cell Rep. 2019, 29, 1511–1523.e5. [Google Scholar] [CrossRef]
- Moore, T.M.; Zhou, Z.; Cohn, W.; Norheim, F.; Lin, A.J.; Kalajian, N.; Strumwasser, A.R.; Cory, K.; Whitney, K.; Ho, T.; et al. The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Mol. Metab. 2019, 21, 51–67. [Google Scholar] [CrossRef]
- Cunningham, J.T.; Rodgers, J.T.; Arlow, D.H.; Vazquez, F.; Mootha, V.K.; Puigserver, P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.S. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front. Physiol. 2017, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Howell, J.J.; Hellberg, K.; Turner, M.; Talbott, G.; Kolar, M.J.; Ross, D.S.; Hoxhaj, G.; Saghatelian, A.; Shaw, R.J.; Manning, B.D. Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab. 2017, 25, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, G.; Salian, S.R.; Agarwal, P.; Suresh Poojary, P.; Rao, A.; Kumari, S.; Kalthur, S.G.; Shreya, A.B.; Mutalik, S.; Adiga, S.K.; et al. Antidiabetic drug metformin affects the developmental competence of cleavage-stage embryos. J. Assist. Reprod. Genet. 2020, 37, 1227–1238. [Google Scholar] [CrossRef] [PubMed]
- Landi, S.N.; Radke, S.; Engel, S.M.; Boggess, K.; Sturmer, T.; Howe, A.S.; Funk, M.J. Association of Long-term Child Growth and Developmental Outcomes With Metformin vs Insulin Treatment for Gestational Diabetes. JAMA Pediatr. 2019, 173, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Salomaki, H.; Heinaniemi, M.; Vahatalo, L.H.; Ailanen, L.; Eerola, K.; Ruohonen, S.T.; Pesonen, U.; Koulu, M. Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring. PLoS ONE 2014, 9, e115778. [Google Scholar] [CrossRef] [Green Version]
- Vogt, M.C.; Paeger, L.; Hess, S.; Steculorum, S.M.; Awazawa, M.; Hampel, B.; Neupert, S.; Nicholls, H.T.; Mauer, J.; Hausen, A.C.; et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell 2014, 156, 495–509. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Yang, Q.; Zhang, L.; Maricelli, J.W.; Rodgers, B.D.; Zhu, M.J.; Du, M. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci. Rep. 2016, 6, 34345. [Google Scholar] [CrossRef] [Green Version]
- Westerkamp, A.C.; Fujiyoshi, M.; Ottens, P.J.; Nijsten, M.W.N.; Touw, D.J.; de Meijer, V.E.; Lisman, T.; Leuvenink, H.G.D.; Moshage, H.; Berendsen, T.A.; et al. Metformin Preconditioning Improves Hepatobiliary Function and Reduces Injury in a Rat Model of Normothermic Machine Perfusion and Orthotopic Transplantation. Transplantation 2020, 104, e271–e280. [Google Scholar] [CrossRef]
- Song, L.; Cui, J.; Wang, N.; Wang, R.; Yan, J.; Sun, B. Maternal exercise during gestation and lactation decreases high-fat diet preference by altering central reward system gene expression in adult female offspring from high-fat fed dams. Behav. Brain Res. 2020, 390, 112660. [Google Scholar] [CrossRef]
- Nascimento, G.C.; Malzone, B.L.; Iyomasa, D.M.; Pereira, Y.C.L.; Issa, J.P.M.; Leite-Panissi, C.R.A.; Watanabe, I.S.; Iyomasa, M.M.; Fuentes, R.; Del Bel, E.; et al. Beneficial effects of benzodiazepine on masticatory muscle dysfunction induced by chronic stress and occlusal instability in an experimental animal study. Sci. Rep. 2020, 10, 8787. [Google Scholar] [CrossRef]
- Roman, W.; Gomes, E.R. Nuclear positioning in skeletal muscle. Semin. Cell Dev. Biol. 2018, 82, 51–56. [Google Scholar] [CrossRef]
- Pennington, K.A.; Dong, Y.; Ruano, S.H.; van der Walt, N.; Sangi-Haghpeykar, H.; Yallampalli, C. Brief high fat high sugar diet results in altered energy and fat metabolism during pregnancy in mice. Sci. Rep. 2020, 10, 20866. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Trujillo, A.; Huff, K.; Ramires Ferreira, C.; Paschoal Sobreira, T.J.; Buhman, K.K.; Casey, T. High-fat-diet induced obesity increases the proportion of linoleic acyl residues in dam serum and milk and in suckling neonate circulation. Biol. Reprod. 2020, 103, 736–749. [Google Scholar] [CrossRef]
- Lainez, N.M.; Jonak, C.R.; Nair, M.G.; Ethell, I.M.; Wilson, E.H.; Carson, M.J.; Coss, D. Diet-Induced Obesity Elicits Macrophage Infiltration and Reduction in Spine Density in the Hypothalami of Male but Not Female Mice. Front. Immunol. 2018, 9, 1992. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Purcell, R.H.; Terrillion, C.E.; Yan, J.; Moran, T.H.; Tamashiro, K.L. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes 2012, 61, 2833–2841. [Google Scholar] [CrossRef] [Green Version]
- Bradley, E.A.; Premilovac, D.; Betik, A.C.; Hu, D.; Attrill, E.; Richards, S.M.; Rattigan, S.; Keske, M.A. Metformin improves vascular and metabolic insulin action in insulin-resistant muscle. J. Endocrinol. 2019, 243, 85–96. [Google Scholar] [CrossRef]
- Geerling, J.J.; Boon, M.R.; van der Zon, G.C.; van den Berg, S.A.; van den Hoek, A.M.; Lombes, M.; Princen, H.M.; Havekes, L.M.; Rensen, P.C.; Guigas, B. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 2014, 63, 880–891. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, D.; Berdeaux, R. The effects of obesity on skeletal muscle regeneration. Front. Physiol. 2013, 4, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinkovich, A.; Livshits, G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 2017, 35, 200–221. [Google Scholar] [CrossRef]
- Harris, K.; Desai, N.; Gupta, M.; Xue, X.; Chatterjee, P.K.; Rochelson, B.; Metz, C.N. The effects of prenatal metformin on obesogenic diet-induced alterations in maternal and fetal fatty acid metabolism. Nutr. Metab. 2016, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.; Guo, P.; Pan, H.; Tseng, C.; Sinha, K.M.; Yang, F.; Scibetta, A.; Cui, Y.; Huard, M.; Zhong, L.; et al. Enhancement of myogenic potential of muscle progenitor cells and muscle healing during pregnancy. FASEB J. 2021, 35, e21378. [Google Scholar] [CrossRef]
- Kabagambe, S.K.; Lankford, L.; Kumar, P.; Chen, Y.J.; Herout, K.T.; Lee, C.J.; Stark, R.A.; Farmer, D.L.; Wang, A. Isolation of myogenic progenitor cell population from human placenta: A pilot study. J. Pediatr. Surg. 2017, 52, 2078–2082. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kang, B.; Zhang, T.; Gu, H.; Song, P.; Chen, J.; Wang, X.; Xu, B.; Zhao, W.; Zhang, J. Dietary Pattern and Dietary Energy from Fat Associated with Sarcopenia in Community-Dwelling Older Chinese People: A Cross-Sectional Study in Three Regions of China. Nutrients 2020, 12, 3689. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Sowers, J.R. Increased Fibro-Adipogenic Progenitors and Intramyocellular Lipid Accumulation in Obesity-Related Skeletal Muscle Dysfunction. Diabetes 2019, 68, 18–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, J.; Mulya, A.; Fealy, C.E.; Fitzgerald, K.M.; Huang, E.; Kirwan, J.P. Effect of Metformin on Mitochondrial Pathways in Human Skeletal Muscle Cells. Diabetes 2018, 67, 157-OR. [Google Scholar] [CrossRef]
- Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, S.; Iossa, S.; Venditti, P. Skeletal muscle insulin resistance: Role of mitochondria and other ROS sources. J. Endocrinol. 2017, 233, R15–R42. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Buja, L.M.; Scarpulla, R.C.; McMillin, J.B. Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc. Natl. Acad. Sci. USA 1997, 94, 11399–11404. [Google Scholar] [CrossRef] [Green Version]
- Dorn, G.W., 2nd; Vega, R.B.; Kelly, D.P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015, 29, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Pileggi, C.A.; Hedges, C.P.; Segovia, S.A.; Markworth, J.F.; Durainayagam, B.R.; Gray, C.; Zhang, X.D.; Barnett, M.P.; Vickers, M.H.; Hickey, A.J.; et al. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring. Front. Physiol. 2016, 7, 546. [Google Scholar] [CrossRef]
- Leprivier, G.; Rotblat, B. How does mTOR sense glucose starvation? AMPK is the usual suspect. Cell Death Discov. 2020, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Chen, G.; Li, W.; Kepp, O.; Zhu, Y.; Chen, Q. Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Front. Cell Dev. Biol. 2020, 8, 467. [Google Scholar] [CrossRef]
- Rodriguez, C.; Contreras, C.; Saenz-Medina, J.; Munoz, M.; Corbacho, C.; Carballido, J.; Garcia-Sacristan, A.; Hernandez, M.; Lopez, M.; Rivera, L.; et al. Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol. 2020, 34, 101575. [Google Scholar] [CrossRef]
- Gaccioli, F.; White, V.; Capobianco, E.; Powell, T.L.; Jawerbaum, A.; Jansson, T. Maternal overweight induced by a diet with high content of saturated fat activates placental mTOR and eIF2alpha signaling and increases fetal growth in rats. Biol. Reprod. 2013, 89, 96. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Fu, Y.; Pang, Y.; Tong, H.; Li, S.; Yan, Y. GRP94 promotes muscle differentiation by inhibiting the PI3K/AKT/mTOR signaling pathway. J. Cell. Physiol. 2019, 234, 21211–21223. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.E.; Pollock, A.C.; Lamon, S. The effect of sex hormones on skeletal muscle adaptation in females. Eur. J. Sport Sci. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cheung, O.K.; Cheng, A.S. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression. Front. Genet. 2016, 7, 168. [Google Scholar] [CrossRef]
- Manippa, V.; Padulo, C.; van der Laan, L.N.; Brancucci, A. Gender Differences in Food Choice: Effects of Superior Temporal Sulcus Stimulation. Front. Hum. Neurosci. 2017, 11, 597. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Stubbins, R.E.; Smith, R.R.; Harvey, A.E.; Nunez, N.P. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr. J. 2009, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, B.K.; Eto, M.; Oura, M.; Ishida, Y.; Taniguchi, S.; Ito, K.; Umeda-Kameyama, Y.; Kojima, T.; Akishita, M. Low-Intensity Exercise Suppresses CCAAT/Enhancer-Binding Protein delta/Myostatin Pathway Through Androgen Receptor in Muscle Cells. Gerontology 2019, 65, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Chan, S.Y.; Teo, A.K.K. Metformin from mother to unborn child—Are there unwarranted effects? EBioMedicine 2018, 35, 394–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gormsen, L.C.; Sundelin, E.I.; Jensen, J.B.; Vendelbo, M.H.; Jakobsen, S.; Munk, O.L.; Hougaard Christensen, M.M.; Brosen, K.; Frokiaer, J.; Jessen, N. In Vivo Imaging of Human 11C-Metformin in Peripheral Organs: Dosimetry, Biodistribution, and Kinetic Analyses. J. Nucl. Med. 2016, 57, 1920–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Gene Bank No. | DNA Sequence (5′-3′) |
---|---|---|
Myogenesis | ||
MyoD | NM_176079.1 | Forward Primer GACGGCTCTCTCTGCTCC Reverse Primer AAGTGTGCGTGCTCCTCC |
Myog | NM_017115.2 | Forward Primer GAGCGCGATCTCCGCTCAAGAG Reverse Primer CTGGCTTGTGGCAGCCCAGG |
Myf5 | NM_001106783.1 | Forward Primer GAGCCAAGAGTAGCAGCCTTCG Reverse Primer GTTCTTTCGGGACCAGACAGGG |
MRF4 | NM_013172.2 | Forward Primer AGAGACTGCCCAAGGTGGAGATTC Reverse Primer AAGACTGCTGGAGGCTGAGGCATC |
Mitochondrial biogenesis | ||
Ppargc1a | NM_031347.1 | Forward Primer GACACGAGGAAAGGAAGACTAAA Reverse Primer GTCTTGGAGCTCCTGTGATATG |
Tfam | NM_031326.1 | Forward Primer CTGATGGGCTTAGAGAAGGAAG Reverse Primer GTTATATGCTGACCGAGGTCTTT |
Nrf1 | NM_001100708.1 | Forward Primer GCTCATCCAGGTTGGTACTG Reverse Primer CCATCAGCCACAGCAGAATA |
Mitochondrial dynamics | ||
Opa1 | NM_133585.3 | Forward Primer GAGTATCAAGCGGCACAAATG Reverse Primer CGTCCCACTGTTGCTTATCT |
Drp1 | NM_053655.3 | Forward Primer TGTGGTGGTGCTAGGATTTG Reverse Primer TGGCGGTCAAGATGTCAATAG |
Mfn1 | NM_138976.1 | Forward Primer AACAGCACACTATCAGAGCTAAA Reverse Primer GATTTGGTCTTCCCTCTCTTCC |
Mfn2 | NM_130894.4 | Forward Primer CAGTGTTTCTCCCTCAGCTATG Reverse Primer TAGGGCCCAGGAACCTATT |
Housekeeping genes | ||
Actb | NM_031144.3 | Forward Primer ACAGGATGCAGAAGGAGATTAC Reverse Primer ACAGTGAGGCCAGGATAGA |
CH-CT (n = 8) | CH-MT (n = 5) | HF-CT (n = 8) | HF-MT (n = 6) | |
---|---|---|---|---|
Body weight (g) | ||||
Before pregnancy | 209.1 ± 5.1 | 209.7 ± 5.1 | 211.4 ± 4.6 | 207.5 ± 6.5 |
GD10 | 265.4 ± 7.9 | 201.4 ± 16.9 # | 265.9 ± 6.1 | 234.5 ± 6.4 # |
GD20 | 342.5 ± 15.8 | 298.0 ± 14.4 # | 337.0 ± 8.7 | 284.7 ± 6.7 # |
PND21 | 296.9 ± 6.4 | 293.8 ± 8.9 | 270.4 ± 6.4 § | 262.5 ± 6.7 § |
Plasma profile | ||||
Glucose (mmol L−1) | 8.6 ± 0.3 | 8.7 ± 0.1 | 8.0 ± 0.2 | 8.7 ± 0.2 |
Insulin (mU L−1) | 35.9 ± 1.3 | 26.7 ± 1.7 # | 43.7 ± 2.4 § | 30.8 ± 2.7 #,§ |
TG (mmol L−1) | 5.3 ± 0.3 | 4.5 ± 0.5 # | 6.4 ± 0.6 | 4.3 ± 0.5 # |
Cho (nmol mL−1) | 2.4 ± 0.2 | 2.1 ± 0.1 # | 2.8 ± 0.2 | 2.1 ± 0.2 # |
Leptin (ng mL−1) | 5.2 ± 0.7 | 5.3 ± 0.5 | 5.1 ± 0.6 | 5.2 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Song, L.; Wang, R.; Hu, S.; Yang, Z.; Zhang, Z.; Sun, B.; Cui, W. Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet. Nutrients 2021, 13, 3417. https://doi.org/10.3390/nu13103417
Cui J, Song L, Wang R, Hu S, Yang Z, Zhang Z, Sun B, Cui W. Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet. Nutrients. 2021; 13(10):3417. https://doi.org/10.3390/nu13103417
Chicago/Turabian StyleCui, Jiaqi, Lin Song, Rui Wang, Shuyuan Hu, Zhao Yang, Zengtie Zhang, Bo Sun, and Wei Cui. 2021. "Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet" Nutrients 13, no. 10: 3417. https://doi.org/10.3390/nu13103417
APA StyleCui, J., Song, L., Wang, R., Hu, S., Yang, Z., Zhang, Z., Sun, B., & Cui, W. (2021). Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet. Nutrients, 13(10), 3417. https://doi.org/10.3390/nu13103417