Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Training Program
2.4. Measurements during the Experiment
- Castelli’s risk index I (CRI-I) = TC/HDL-C
- Castelli’s risk index II (CRI-II) = LDL-C/HDL-C
- Atherogenic index of plasma (AIP) = log10(TG/HDL-C)
2.5. Diets during the Experiment
2.6. Statistical Analysis
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czuba, M.; Fidos-Czuba, O.; Płoszczyca, K.; Zając, A.; Langfort, J. Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biol. Sport 2017, 35, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Czuba, M.; Bril, G.; Płoszczyca, K.; Piotrowicz, Z.; Chalimoniuk, M.; Roczniok, R.; Zembroń-Łacny, A.; Gerasimuk, D.; Langfort, J. Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. BioMed Res. Int. 2019, 2019, 1287506–17. [Google Scholar] [CrossRef]
- Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic Use of Exercising in Hypoxia: Promises and Limitations. Front. Physiol. 2016, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P. Cardiovascular disease and modifiable cardiometabolic risk factors. Clin. Cornerstone 2007, 8, 11–28. [Google Scholar] [CrossRef]
- Manninen, V.; Tenkanen, L.; Koskinen, P.; Huttunen, J.K.; Mantarri, M.; Heinomen, O.P.; Frick, M.H. Joint effects of serum triglyceride and LDL cholesterol and HDL concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment. Circulation 1992, 85, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Kannel, W.B. Risk stratification of dyslipidemia: Insights from the Framingham Study. Curr. Med. Chem. Hematol. Agents 2005, 3, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Dobiášová, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FERHDL). Clin. Biochem. 2001, 34, 583–588. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis. 2017, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak, M.; Skrypnik, D.; Bogdanski, P.; Mądry, E.; Walkowiak, J.; Szulińska, M.; Maciaszek, J.; Kręgielska-Narożna, M.; Karolkiewicz, J. Effects of Endurance and Endurance–Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial. Int. J. Environ. Res. Public Health 2019, 16, 4291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, W.L. Health consequences of physical activity: Understanding and challenges regarding dose-response. Med. Sci. Sports Exerc. 1994, 26, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Houmard, J.A.; Duscha, B.D.; Knetzger, K.J.; Wharton, M.B.; McCartney, J.S.; Bales, C.W.; Henes, S.; Samsa, G.P.; Otvos, J.D.; et al. Effects of the Amount and Intensity of Exercise on Plasma Lipoproteins. N. Engl. J. Med. 2002, 347, 1483–1492. [Google Scholar] [CrossRef]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012, 56, 1–54. [Google Scholar] [CrossRef]
- Tater, D.; Leglise, D.; Person, B.; Lambert, D.; Bercovici, J.-P. Lipoproteins Status in Professional Football Players After Period of Vacation and One Month After a New Intensive Training Program. Horm. Metab. Res. 1987, 19, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Durstine, J.L.; Grandjean, P.W.; Davis, P.G.; Ferguson, M.A.; Alderson, N.L.; DuBose, K.D. Blood lipid and lipoprotein adaptations to exercise: A quantitative analysis. Sports Med. 2001, 31, 1033–1062. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Montagnana, M.; Ballestrieri, F.; Guidi, G.C. Comparison of the lipid profile and lipoprotein(a) between sedentary and highly trained subjects. Clin. Chem. Lab. Med. 2006, 44, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Park, J.-E.; Choi, I.-H.; Cho, K.-H. Enhanced functional and structural properties of high-density lipoproteins from runners and wrestlers compared to throwers and lifters. BMB Rep. 2009, 42, 605–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cioni, G.; Berni, A.; Gensini, G.F.; Abbate, R.; Boddi, M. Impaired femoral vascular compliance and endothelial dysfunction in 30 healthy male soccer players: Competitive sports and local detrimental effects. Sports Health 2015, 7, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamoglu, O.; Atan, T.; Kishali, N.F.; Burmaoglu, G.; Akyol, P.; Yildirim, K. Comparison of lipid and lipoprotein values in men and women differing in training status. Biol. Sport. 2005, 22, 261–270. [Google Scholar]
- Petridou, A.; Lazaridou, D.; Mougios, V. Lipidemic Profile of Athletes and Non-Athletes with Similar Body Fat. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 425–432. [Google Scholar] [CrossRef]
- Jonnalagadda, S.S.; Rosenbloom, C.A.; Skinner, R. Dietary practices, attitudes, and physiological status of collegiate freshman football players. J. Strength Cond. Res. 2001, 15, 507–513. [Google Scholar]
- Buell, J.L.; Calland, D.; Hanks, F.; Johnston, B.; Pester, B.; Sweeney, R.; Thorne, R. Presence of Metabolic Syndrome in Football Linemen. J. Athl. Train. 2008, 43, 608–616. [Google Scholar] [CrossRef] [Green Version]
- Creighton, B.C.; Hyde, P.N.; Maresh, C.M.; Kraemer, W.J.; Phinney, S.D.; Volek, J.S. Paradox of hypercholesterolaemia in highly trained, keto-adapted athletes. BMJ Open Sport Exerc. Med. 2018, 4, e000429. [Google Scholar] [CrossRef] [Green Version]
- Nansseu, J.R.; Moor, V.J.A.; Takam, R.D.M.; Zing-Awona, B.; Azabji-Kenfack, M.; Tankeu, F.; Tchoula, C.M.; Moukette, B.M.; Ngogang, J.Y. Cameroonian professional soccer players and risk of atherosclerosis. BMC Res. Notes 2017, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Kłapcińska, B.; Kempa, K.; Sobczak, A.; Sadowska-Krępa, E.; Jagsz, S.; Szołtysek, I. Evaluation of Autoantibodies Against Oxidized LDL (oLAB) and Blood Antioxidant Status in Professional Soccer Players. Int. J. Sports Med. 2004, 26, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Degoutte, F.; Jouanel, P.; Bègue, R.J.; Colombier, M.; Lac, G.; Pequignot, J.M.; Filaire, E. Food Restriction, Performance, Biochemical, Psychological, and Endocrine Changes in Judo Athletes. Int. J. Sports Med. 2006, 27, 9–18. [Google Scholar] [CrossRef]
- Sadowska-Krępa, E.; Kłapcińska, B.; Podgórski, T.; Szade, B.; Tyl, K.; Hadzik, A. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol. Sport 2015, 32, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Mankowitz, K.; Seipa, R.; Semenkovich, C.F.; Daugherty, A.; Schonfeld, G. Short-term interruption of training affects both fasting and post-prandial lipoproteins. Atherosclerosis 1992, 95, 181–189. [Google Scholar] [CrossRef]
- Petibois, C.; Cassaigne, A.; Gin, H.; Déléris, G. Lipid Profile Disorders Induced by Long-Term Cessation of Physical Activity in Previously Highly Endurance-Trained Subjects. J. Clin. Endocrinol. Metab. 2004, 89, 3377–3384. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, A. Environmental Determinants of Cardiovascular Disease. Circ. Res. 2017, 121, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M. Effects of Living at Higher Altitudes on Mortality: A Narrative Review. Aging Dis. 2014, 5, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S. Clinical, biochemical, electrocardiographic and noninvasive hemodynamic assessment of cardiovascular status in natives at high to extreme altitudes (3000m–5500m) of the Himalayan region. Indian Heart J. 1990, 42, 375–379. [Google Scholar]
- Dominguez Coello, S.; Cabrera De León, A.; Bosa Ojeda, F.; Pérez Méndez, L.I.; Díaz González, L.; Aguirre-Jaime, A.J. High density lipoprotein cholesterol increases with living altitude. Int. J. Epidemiol. 2020, 29, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Mohanna, S.; Baracco, R.; Seclen, S. Lipid Profile, Waist Circumference, and Body Mass Index in a High Altitude Population. High Alt. Med. Biol. 2006, 7, 245–255. [Google Scholar] [CrossRef]
- Férézou, J.; Richalet, J.P.; Coste, T.; Rathat, C. Changes in plasma lipids and lipoprotein cholesterol during a high altitude mountaineering expedition (4800 m). Eur. J. Arch. Clin. Exp. Ophthalmol. 1988, 57, 740–745. [Google Scholar] [CrossRef]
- Verratti, V.; Falone, S.; Doria, C.; Pietrangelo, T.; Di Giulio, C. Kilimanjaro Abruzzo expedition: Effects of high-altitude trekking on anthropometric, cardiovascular and blood biochemical parameters. Sport Sci. Health 2015, 11, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Płoszczyca, K.; Langfort, J.; Czuba, M. The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Front. Physiol. 2018, 9, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiśniewska, A.; Płoszczyca, K.; Czuba, M. Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. J. Sports Med. Phys. Fit. 2020, 60, 677–684. [Google Scholar] [CrossRef]
- Lizamore, C.A.; Hamlin, M.J. The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review. High Alt. Med. Biol. 2017, 18, 305–321. [Google Scholar] [CrossRef]
- Park, H.-Y.; Lim, K. Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers. J. Sports Sci. Med. 2017, 16, 480–488. [Google Scholar]
- Park, H.-Y.; Kim, J.; Park, M.-Y.; Chung, N.; Hwang, H.; Nam, S.-S.; Lim, K. Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. J. Obes. Metab. Syndr. 2018, 27, 93–101. [Google Scholar] [CrossRef]
- Bailey, D.M.; Davies, B.; Baker, J. Training in hypoxia: Modulation of metabolic and cardiovascular risk factors in men. Med. Sci. Sports Exerc. 2000, 32, 1058–1066. [Google Scholar] [CrossRef]
- Wiesner, S.; Haufe, S.; Engeli, S.; Mutschler, H.; Haas, U.; Luft, F.; Jordan, J. Influences of Normobaric Hypoxia Training on Physical Fitness and Metabolic Risk Markers in Overweight to Obese Subjects. Obesity 2010, 18, 116–120. [Google Scholar] [CrossRef]
- Morishima, T.; Kurihara, T.; Hamaoka, T.; Goto, K. Whole body, regional fat accumulation, and appetite-related hormonal response after hypoxic training. Clin. Physiol. Funct. Imaging 2014, 34, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Gatterer, H.; Haacke, S.; Burtscher, M.; Faulhaber, M.; Melmer, A.; Ebenbichler, C.; Strohl, K.P.; Högel, J.; Netzer, N.C. Normobaric Intermittent Hypoxia over 8 Months Does Not Reduce Body Weight and Metabolic Risk Factors—A Randomized, Single Blind, Placebo-Controlled Study in Normobaric Hypoxia and Normobaric Sham Hypoxia. Obes. Facts 2015, 8, 200–209. [Google Scholar] [CrossRef]
- Netzer, N.C.; Chytra, R.; Küpper, T. Low intense physical exercise in normobaric hypoxia leads to more weight loss in obese people than low intense physical exercise in normobaric sham hypoxia. Sleep Breath. 2007, 12, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Z.; Shi, Q.; Nie, J.; Tong, T.K.; Song, L.; Yi, L.; Hu, Y. High-Intensity Interval Training in Normobaric Hypoxia Improves Cardiorespiratory Fitness in Overweight Chinese Young Women. Front. Physiol. 2017, 8, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Brazo-Sayavera, J.; Burtscher, M.; Timón, R.; Olcina, G. Effects of High-Intensity Interval Training Under Normobaric Hypoxia on Cardiometabolic Risk Markers in Overweight/Obese Women. High Alt. Med. Biol. 2018, 19, 356–366. [Google Scholar] [CrossRef]
- Zembron-Lacny, A.; Tylutka, A.; Wacka, E.; Wawrzyniak-Gramacka, E.; Hiczkiewicz, D.; Kasperska, A.; Czuba, M. Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BioMed Res. Int. 2020, 2020, 6479630. [Google Scholar] [CrossRef]
- Castelli, W.P.; Abbott, R.D.; McNamara, P.M. Summary estimates of cholesterol used to predict coronary heart disease. Circulation 1983, 67, 730–734. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Lira, F.S.; Rosa, J.C.; Lima-Silva, A.E.; Souza, H.A.; Caperuto, E.C.; Seelaender, M.C.; Damaso, A.R.; Oyama, L.M.; Santos, R.V. Sedentary subjects have higher PAI-1 and lipoproteins levels than highly trained athletes. Diabetol. Metab. Syndr. 2010, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Farsani, P.A.; Rezaeimanesh, D. The Effect of Six-Week Aerobic Interval Training on Some Blood Lipids and VO2max in Female Athlete Students. Procedia-Soc. Behav. Sci. 2011, 30, 2144–2148. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, N.; Khammassi, M.; Boukorraa, S.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of a high-intensity intermittent training program on aerobic capacity and lipid profile in trained subjects. Open Access J. Sports Med. 2014, 5, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Manna, I.; Khanna, G.L.; Dhara, P.C. Effect of Training on Physiological and Biochemical Variables of Soccer Players of Different Age Groups. Asian J. Sports Med. 2010, 1, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Herd, S.L.; Hardman, A.E.; Boobis, L.H.; Cairns, C.J. The effect of 13 weeks of running training followed by 9 d of detraining on postprandial lipaemia. Br. J. Nutr. 1998, 80, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardman, A.E.; Lawrence, J.E.M.; Herd, S.L. Postprandial lipemia in endurance-trained people during a short interruption to training. J. Appl. Physiol. 1998, 84, 1895–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, K.A.; Atkinson, R.A.; Richardson, L.; Koulman, A.; Murray, A.J.; Harridge, S.D.R.; Martin, D.S.; Levett, D.Z.H.; Mitchell, K.; Mythen, M.G.; et al. Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp. Sci. Rep. 2019, 9, 2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mendoza, S.; Nucete, H.; Ineichen, E.; Salazar, E.; Zerpa, A.; Glueck, C.J. Lipids and Lipoproteins in Subjects at 1000 and 3500 Meter Altitudes. Arch. Environ. Health Int. J. 1979, 34, 308–311. [Google Scholar] [CrossRef]
- Gutwenger, I.; Hofer, G.; Gutwenger, A.K.; Sandri, M.; Wiedermann, C.J. Pilot study on the effects of a 2-week hiking vacation at moderate versus low altitude on plasma parameters of carbohydrate and lipid metabolism in patients with metabolic syndrome. BMC Res. Notes 2015, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Greie, S.; Humpeler, E.; Gunga, H.C.; Koralewski, E.; Klingler, A.; Mittermayr, M.; Fries, D.; Lechleitner, M.; Hoertnagl, H.; Hoffmann, G.; et al. Improvement of metabolic syndrome markers through altitude specific hiking vacations. J. Endocrinol. Investig. 2006, 29, 497–504. [Google Scholar] [CrossRef]
- Minvaleev, R.S. Comparison of the rates of changes in the lipid spectrumof human blood serum at moderate altitudes. Hum. Physiol. 2011, 37, 355–360. [Google Scholar] [CrossRef]
- Gao, H.; Xu, J.; Zhang, L.; Lu, Y.; Gao, B.; Feng, L. Effects of Living High-Training Low and High on Body Composition and Metabolic Risk Markers in Overweight and Obese Females. BioMed Res. Int. 2020, 2020, 3279710. [Google Scholar] [CrossRef] [Green Version]
- Pialoux, V.; Brugniaux, J.; Rock, E.; Mazur, A.; Schmitt, L.; Richalet, J.-P.; Robach, P.; Clottes, E.; Coudert, J.; Fellmann, N.; et al. Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp. Eur. J. Nutr. 2010, 49, 285–292. [Google Scholar] [CrossRef]
- Bergström, H.; Ekström, L.; Warnqvist, A.; Bergman, P.; Björkhem-Bergman, L. Variations in biomarkers of dyslipidemia and dysbiosis during the menstrual cycle: A pilot study in healthy volunteers. BMC Women’s Health 2021, 21, 166. [Google Scholar] [CrossRef]
- Tin’Kov, A.N.; Aksenov, V.A. Effects of Intermittent Hypobaric Hypoxia on Blood Lipid Concentrations in Male Coronary Heart Disease Patients. High Alt. Med. Biol. 2002, 3, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.-X.; Shao, R.-G.; He, H.-W. Advances in understanding the regulatory mechanism of cholesterol 7α-hydroxylase. Biochem. Pharmacol. 2019, 164, 152–164. [Google Scholar] [CrossRef]
- Johnson, P.R. Down-regulation of bile acid synthesis and a metabolic co-activator under hypoxic conditions—Implications in obstructive sleep apnea. Med. Hypotheses 2008, 71, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.; Park, B.; Park, H. Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism. BMB Rep. 2016, 49, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein-Szanto, A.J.; Bassi, D.E. Keep recycling going: New approaches to reduce LDL-C. Biochem. Pharmacol. 2019, 164, 336–341. [Google Scholar] [CrossRef]
- Wei, C.; Penumetcha, M.; Santanam, N.; Liu, Y.-G.; Garelnabi, M.; Parthasarathy, S. Exercise might favor reverse cholesterol transport and lipoprotein clearance: Potential mechanism for its anti-atherosclerotic effects. Biochim. Biophys. Acta-Gen. Subj. 2005, 1723, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Wilund, K.R.; Feeney, L.A.; Tomayko, E.J.; Chung, H.R.; Kim, K. Endurance exercise training reduces gallstone development in mice. J. Appl. Physiol. 2008, 104, 761–765. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, G.; Langmann, T. Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim. et Biophys. Acta-Mol. Cell Biol. Lipids 2005, 1735, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, I. Recent advances in physiological lipoprotein metabolism. Clin. Chem. Lab. Med. 2014, 52, 1695–1727. [Google Scholar] [CrossRef] [PubMed]
- Haskell, W.L. The Influence of Exercise Training on Plasma Lipids and Lipoproteins in Health and Disease. Acta Med. Scand. 2009, 220, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Stefàno, E.; Marsigliante, S. The effects of exercise training on lipid metabolism and coronary heart disease. Am. J. Physiol. Circ. Physiol. 2020, 319, H76–H88. [Google Scholar] [CrossRef] [PubMed]
- Haufe, S.; Wiesner, S.; Engeli, S.; Luft, F.; Jordan, J. Influences of Normobaric Hypoxia Training on Metabolic Risk Markers in Human Subjects. Med. Sci. Sports Exerc. 2008, 40, 1939–1944. [Google Scholar] [CrossRef]
- Du, X.; Girard, O.; Fan, R.Y.; Ma, F. Effects of Active and Passive Hypoxic Conditioning for 6 Weeks at Different Altitudes on Blood Lipids, Leptin, and Weight in Rats. High Alt. Med. Biol. 2020, 21, 243–248. [Google Scholar] [CrossRef]
- Gilde, A.J.; Van Bilsen, M. Peroxisome proliferator-activated receptors (PPARS): Regulators of gene expression in heart and skeletal muscle. Acta Physiol. Scand. 2003, 178, 425–434. [Google Scholar] [CrossRef]
- Zoll, J.; Ponsot, E.; Dufour, S.; Doutreleau, S.; Ventura-Clapier, R.; Vogt, M.; Hoppeler, H.; Richard, R.; Flück, M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 2006, 100, 1258–1266. [Google Scholar] [CrossRef]
- Debevec, T.; Simpson, E.J.; Macdonald, I.A.; Eiken, O.; Mekjavić, I.B. Exercise Training during Normobaric Hypoxic Confinement Does Not Alter Hormonal Appetite Regulation. PLoS ONE 2014, 9, e98874. [Google Scholar] [CrossRef]
- Wood, G.; Murrell, A.; Van Der Touw, T.; Smart, N. HIIT is not superior to MICT in altering blood lipids: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2019, 5, e000647. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Sheikholeslami-Vatani, D.; Ghaeeni, S.; Baazm, M. The effects of different training modalities on monocarboxylate transporters MCT1 and MCT4, hypoxia inducible factor-1α (HIF-1α), and PGC-1α gene expression in rat skeletal muscles. Mol. Biol. Rep. 2021, 48, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wan, Y.; Yang, B.; Huggins, C.E.; Li, D. Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2017, 119, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, N.; Vinknes, K.; Veierød, M.B.; Retterstøl, K. Low-carbohydrate diets increase LDL-cholesterol, and thereby indicate increased risk of CVD. Br. J. Nutr. 2016, 115, 2264–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalczyk, M.M.; Maszczyk, A.; Stastny, P. The Effects of Low-Energy Moderate-Carbohydrate (MCD) and Mixed (MixD) Diets on Serum Lipid Profiles and Body Composition in Middle-Aged Men: A Randomized Controlled Parallel-Group Clinical Trial. Int. J. Environ. Res. Public Health 2020, 17, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsiki, N.; Mikhailidis, D.P.; Bajraktari, G.; Miserez, A.R.; Cicero, A.F.; Bruckert, E.; Serban, M.-C.; Mirrakhimov, E.; Alnouri, F.; Reiner, Ž.; et al. Statin therapy in athletes and patients performing regular intense exercise—Position paper from the International Lipid Expert Panel (ILEP). Pharmacol. Res. 2020, 155, 104719. [Google Scholar] [CrossRef] [PubMed]
Day | Microcycle 1 | Microcycle 2 | Microcycle 3 |
---|---|---|---|
1 | T1 + 2 h endurance training (60–75% of WRLT) | T2 + 2 h endurance training (60–75% of WRLT) | T3 + 2 h endurance training (60–75% of WRLT) |
2 | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) |
3 | T1 + 2 h endurance training (60–75% of WRLT) | T2 + 2 h endurance training (60–75% of WRLT) | T3 + 2 h endurance training (60–75% of WRLT) |
4 | Strength endurance (gym) Upper body | Strength endurance (gym) Upper body | Strength endurance (gym) Upper body |
5 | T1 + 2 h endurance training (60–75% of WRLT) | T2 + 2 h endurance training (60–75% of WRLT) | T3 + 2 h endurance training (60–75% of WRLT) |
6 | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) | 3–4 h of endurance training 60–75% of WRLT with high-speed intervals (2 × 6 × 10 s-max) |
7 | Day off | Day off | Day off |
Protein (g) | Fat (g) | Carbohydrates (g) | Caloric intake (kcal) |
---|---|---|---|
204 ± 4.2 | 124.9 ± 5.9 | 384.7 ± 8.6 | 3479.5 ± 36.2 |
Variables | LH-TL | IHT | N | |||
---|---|---|---|---|---|---|
Before (S1) | After (S2) | Before (S1) | After (S2) | Before (S1) | After (S2) | |
AIP | 0.046 ± 0.187 | −0.115 * ± 0.181 | 0.132 ± 0.225 | 0.097 ± 0.227 | −0.003 ± 0.221 | −0.004 ± 0.268 |
CRI-I | 2.788 ± 0.511 | 2.345 ** ± 0.403 | 2.822 ± 0.694 | 2.598 ± 0.556 | 2.512 ± 0.706 | 2.390 ± 0.699 |
CRI-II | 1.545 ± 0.409 | 1.182 ** ± 0.350 | 1.470 ± 0.651 | 1.304 ± 0.447 | 1.294 ± 0.644 | 1.142 ± 0.564 |
Variables | LH-TL | IHT | N |
---|---|---|---|
∆TC(mg/dL) | −15.24 * ± 5.32 | −0.79 ± 5.37 | 1.38 ± 5.68 |
∆LDL-C(mg/dL) | −14.45 ± 4.50 | −2.65 ± 4.45 | −7.10 ± 4.78 |
∆HDL-C(mg/dL) | 5.47 ± 2.84 | 3.44 ± 2.82 | 5.76 ± 3.01 |
∆TG(mg/dL) | −22.31 * ± 6.48 | 3.54 ± 6.67 | 0.56 ± 6.88 |
Variables | LH-TL | IHT | N |
---|---|---|---|
AIP | −0.16 # ± 0.05 | −0.02 ± 0.05 | −0.01 ± 0.05 |
CRI-I | −0.42 ± 0.11 | −0.19 ± 0.11 | −0.18 ± 0.11 |
CRI-II | −0.32 ± 0.09 | −0.15 ± 0.09 | −0.20 ± 0.09 |
Variables | LH-TL | IHT | N | |||
---|---|---|---|---|---|---|
Before (S1) | After (S2) | Before (S1) | After (S2) | Before (S1) | After (S2) | |
BM (kg) | 70.4 ± 7.1 | 69.6 ± 6.9 | 70.8 ± 9.4 | 70.5 ± 9.1 | 69.9 ± 5.9 | 70.1 ± 5.4 |
%FAT | 6.9 ± 2.1 | 6.7 ± 1.6 | 10.4 ± 2.6 | 10.8 ± 2.9 | 7.3 ± 1.2 | 7.6 ± 1.2 |
FFM (kg) | 65.5 ± 6.0 | 64.9 ± 6.2 | 63.5 ± 8.9 | 62.9 ± 9.3 | 64.4 ± 6.2 | 64.4 ± 5.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płoszczyca, K.; Czuba, M.; Langfort, J.; Baranowski, M. Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients 2021, 13, 3481. https://doi.org/10.3390/nu13103481
Płoszczyca K, Czuba M, Langfort J, Baranowski M. Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients. 2021; 13(10):3481. https://doi.org/10.3390/nu13103481
Chicago/Turabian StylePłoszczyca, Kamila, Miłosz Czuba, Józef Langfort, and Marcin Baranowski. 2021. "Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists" Nutrients 13, no. 10: 3481. https://doi.org/10.3390/nu13103481
APA StylePłoszczyca, K., Czuba, M., Langfort, J., & Baranowski, M. (2021). Exposure to Normobaric Hypoxia Combined with a Mixed Diet Contributes to Improvement in Lipid Profile in Trained Cyclists. Nutrients, 13(10), 3481. https://doi.org/10.3390/nu13103481