Beneficial Effects of Oral Nutritional Supplements on Body Composition and Biochemical Parameters in Women with Breast Cancer Undergoing Postoperative Chemotherapy: A Propensity Score Matching Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Oral Nutritional Supplements (ONS)
2.3. Anthropometric and Biochemical Parameters Measurements
2.4. Statistical Method
3. Results
3.1. Baseline Characteristics of Patients
3.2. The Effect of ONS on Anthropometric and Biochemical Parameters after Six Weeks of Chemotherapy
3.3. The Influence of Initial FM on Biochemical Parameters in the Matched Supplemented Group after Six Weeks of Chemotherapy
3.4. The Influence of Age on Body Composition and Biochemical Parameters in the Matched Supplemented Group after Six Weeks of Chemotherapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 109–126. [Google Scholar] [PubMed]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Bering, T.; Maurício, S.F.; Silva, J.B.; Correia, M.I. Nutritional and metabolic status of breast cancer women. Nutr. Hosp. 2014, 2, 751–758. [Google Scholar]
- Rossi, R.E.; Pericleous, M.; Mandair, D.; Whyand, T.; Caplin, M.E. The role of dietary factors in prevention and progression of breast cancer. Anticancer Res. 2014, 12, 6861–6875. [Google Scholar]
- De Cicco, P.; Catani, M.V.; Gasperi, V.; Sibilano, M.; Quaglietta, M.; Savini, I. Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients 2019, 7, 1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lis, C.G.; Gupta, D.; Lammersfeld, C.A.; Markman, M.; Vashi, P.G. Role of nutritional status in predicting quality of life outcomes in cancer--a systematic review of the epidemiological literature. Nutr. J. 2012, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.; Arensberg, M.B.; Thomas, S.; Kerr, K.W.; Hegazi, R.; Bastasch, M. Impact of Early Incorporation of Nutrition Interventions as a Component of Cancer Therapy in Adults: A Review. Nutrients 2020, 11, 3403. [Google Scholar] [CrossRef] [PubMed]
- Vance, V.; Campbell, S.; Mccargar, L.; Mourtzakis, M.; Hanning, R. Dietary changes and food intake in the first year after breast cancer treatment. Appl. Physiol. Nutr. Metab. 2014, 6, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Rockenbach, G.; Di Pietro, P.F.; Ambrosi, C.; Boaventura, B.C.; Vieira, F.G.; Crippa, C.G.; Da Silva, E.L.; Fausto, M.A. Dietary intake and oxidative stress in breast cancer: Before and after treatments. Nutr. Hosp. 2011, 4, 737–744. [Google Scholar]
- Kottschade, L.; Novotny, P.; Lyss, A.; Mazurczak, M.; Loprinzi, C.; Barton, D. Chemotherapy-induced nausea and vomiting: Incidence and characteristics of persistent symptoms and future directions NCCTG N08C3 (Alliance). Support. Care Cancer 2016, 6, 2661–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demark-Wahnefried, W.; Peterson, B.L.; Winer, E.P.; Marks, L.; Aziz, N.; Marcom, P.K.; Blackwell, K.; Rimer, B.K. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J. Clin. Oncol. 2001, 19, 2381–2389. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.L.; Wu, Y.T.; Wu, H.; Dai, W.; Arshad, B.; Xu, Z.; Li, H.; Wu, K.N.; Kong, L.Q. Status of lipid and lipoprotein in female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis. 2018, 17, 91. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Han, H.; Duan, Q.; Khan, U.; Hu, Y.; Yao, X. Changes of serum albumin level and systemic inflammatory response in inoperable non-small cell lung cancer patients after chemotherapy. J. Cancer Res. Ther. 2014, 10, 1019–1023. [Google Scholar]
- Dantzer, R.; Meagher, M.W.; Cleeland, C.S. Translational approaches to treatment-induced symptoms in cancer patients. Nat. Rev. Clin. Oncol. 2012, 9, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Demark-Wahnefried, W.; Hars, V.; Conaway, M.R.; Havlin, K.; Rimer, B.K.; McElveen, G.; Winer, E.P. Reduced rates of metabolism and decreased physical activity in breast cancer patients receiving adjuvant chemotherapy. Am. J. Clin. Nutr. 1997, 65, 1495–1501. [Google Scholar] [CrossRef]
- Bell, K.E.; Di Sebastiano, K.M.; Vance, V.; Hanning, R.; Mitchell, A.; Quadrilatero, J.; Russell, C.; Dubin, J.A.; Bahl, M.; Califaretti, N.; et al. A comprehensive metabolic evaluation reveals impaired glucose metabolism and dyslipidemia in breast cancer patients early in the disease trajectory. Clin. Nutr. 2014, 3, 550–557. [Google Scholar] [CrossRef]
- Vance, V.; Mourtzakis, M.; Mccargar, L.; Hanning, R. Weight gain in breast cancer survivors: Prevalence, pattern and health consequences. Obes. Rev. 2011, 12, 282–294. [Google Scholar] [CrossRef]
- Thivat, E.; Thérondel, S.; Lapirot, O.; Abrial, C.; Gimbergues, P.; Gadéa, E.; Planchat, E.; Kwiatkowski, F.; Mouret-Reynier, M.A.; Chollet, P.; et al. Weight change during chemotherapy changes the prognosis in non-metastatic breast cancer for the worse. BMC Cancer 2010, 10, 648. [Google Scholar] [CrossRef] [Green Version]
- Rock, C.L.; Demark-Wahnefried, W. Nutrition and survival after the diagnosis of breast cancer: A review of the evidence. J. Clin. Oncol. 2002, 20, 3302–3316. [Google Scholar] [CrossRef] [Green Version]
- Kroenke, C.H.; Chen, W.Y.; Rosner, B.; Holmes, M.D. Weight, weight gain, and survival after breast cancer diagnosis. J. Clin. Oncol. 2005, 23, 1370–1378. [Google Scholar] [CrossRef]
- Davis, M.P.; Panikkar, R. Sarcopenia associated with chemotherapy and targeted agents for cancer therapy. Ann. Palliat. Med. 2019, 8, 86–101. [Google Scholar] [CrossRef]
- Rzymowska, J. Effect of cytotoxic chemotherapy on serum lipid levels in breast cancer patients. Pathobiology 1999, 67, 129–132. [Google Scholar] [CrossRef]
- Xu, L.; Dong, Q.; Long, Y.; Tang, X.; Zhang, N.; Lu, K. Dynamic Changes of Blood Lipids in Breast Cancer Patients After (Neo)adjuvant Chemotherapy: A Retrospective Observational Study. Int. J. Gen. Med. 2020, 13, 817–823. [Google Scholar] [CrossRef]
- Arrieta, O.; Michel Ortega, R.M.; Villanueva-Rodríguez, G.; Serna-Thomé, M.G.; Flores-Estrada, D.; Diaz-Romero, C.; Rodríguez, C.M.; Martínez, L.; Sánchez-Lara, K. Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: A prospective study. BMC Cancer 2010, 10, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De van der Schueren, M.A.E.; Laviano, A.; Blanchard, H.; Jourdan, M.; Arends, J.; Baracos, V.E. Systematic review and meta-analysis of the evidence for oral nutritional intervention on nutritional and clinical outcomes during chemo(radio)therapy: Current evidence and guidance for design of future trials. Ann. Oncol. 2018, 29, 1141–1153. [Google Scholar] [CrossRef]
- Qin, N.; Jiang, G.; Zhang, X.; Sun, D.; Liu, M. The Effect of Nutrition Intervention With Oral Nutritional Supplements on Ovarian Cancer Patients Undergoing Chemotherapy. Front. Nutr. 2021, 8, 685967. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.M.; Jeung, H.C.; Lee, I.J.; Park, J.S.; Song, M.; Lee, D.K.; Lee, S.M. The Effect of Nutrition Intervention with Oral Nutritional Supplements on pancreatic and Bile Duct Cancer Patients Undergoing Chemotherapy. Nutrients 2019, 5, 1145. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Tan, S.; Jiang, Y.; Han, J.; Xi, Q.; Zhuang, Q.; Wu, G. Post-discharge oral nutritional supplements with dietary advice in patients at nutritional risk after surgery for gastric cancer: A randomized clinical trial. Clin. Nutr. 2021, 1, 40–46. [Google Scholar] [CrossRef]
- Cereda, E.; Cappello, S.; Colombo, S.; Klersy, C.; Imarisio, I.; Turri, A.; Caraccia, M.; Borioli, V.; Monaco, T.; Benazzo, M.; et al. Nutritional counseling with or without systematic use of oral nutritional supplements in head and neck cancer patients undergoing radiotherapy. Radiother. Oncol. 2018, 1, 81–88. [Google Scholar] [CrossRef]
- Burden, S.T.; Gibson, D.J.; Lal, S.; Hill, J.; Pilling, M.; Soop, M.; Ramesh, A.; Todd, C. Pre-operative oral nutritional supplementa-tion with dietary advice versus dietary advice alone in weight-losing patients with colorectal cancer: Single-blind randomized con-trolled trial. J. Cachexia Sarcopenia Muscle 2017, 3, 437–446. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Ho-Pham, L.T.; Campbell, L.V.; Nguyen, T.V. More on body fat cut-off points. Mayo Clin. Proc. 2011, 6, 584–585. [Google Scholar] [CrossRef] [Green Version]
- Pin, F.; Couch, M.E.; Bonetto, A. Preservation of muscle mass as a strategy to reduce the toxic effects of cancer chemotherapy on body composition. Curr. Opin. Support. Palliat. Care 2018, 12, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Di Fiore, A.; Lecleire, S.; Gangloff, A.; Rigal, O.; Benyoucef, A.; Blondin, V.; Sefrioui, D.; Quiesse, M.; Iwanicki-Caron, I.; Michel, P.; et al. Impact of nutritional parameter variations during definitive chemoradiotherapy in locally advanced oesophageal cancer. Dig. Liver Dis. 2014, 3, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Lara, K.; Turcott, J.G.; Juárez, E.; Guevara, P.; Núñez-Valencia, C.; Oñate-Ocaña, L.F.; Flores, D.; Arrieta, O. Association of nutrition parameters including bioelectrical impedance and systemic inflammatory response with quality of life and prognosis in patients with advanced non-small-cell lung cancer: A prospective study. Nutr. Cancer 2012, 4, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Caillet, P.; Liuu, E.; Raynaud Simon, A.; Bonnefoy, M.; Guerin, O.; Berrut, G.; Lesourd, B.; Jeandel, C.; Ferry, M.; Rolland, Y.; et al. Association between cachexia, chemotherapy and outcomes in older cancer patients: A systematic review. Clin. Nutr. 2017, 6, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wei, J.; Ji, R.; Wang, B.; Xu, X.; Xin, Y.; Jiang, X. Effect of early nutrition intervention on advanced nasopharyngeal carcinoma patients receiving chemoradiotherapy. J. Cancer 2019, 10, 3650–3656. [Google Scholar] [CrossRef] [Green Version]
- Paccagnella, A.; Morello, M.; Da Mosto, M.C.; Baruffi, C.; Marcon, M.L.; Gava, A.; Baggio, V.; Lamon, S.; Babare, R.; Rosti, G.; et al. Early nutrition intervention improves treatment tolerance and outcome in head and neck cancer patients undergoing concurrent chemoradiotherapy. Support. Care Cancer 2010, 18, 837–845. [Google Scholar] [CrossRef]
- Visovsky, C. Muscle strength, body composition, and physical activity in women receiving chemotherapy for breast cancer. Integr. Cancer Ther. 2006, 5, 183–191. [Google Scholar] [CrossRef]
- Schvartsman, G.; Gutierrez-Barrera, A.M.; Song, J.; Ueno, N.T.; Peterson, S.K.; Arun, B. Association between weight gain during adjuvant chemotherapy for early-stage breast cancer and survival outcomes. Cancer Med. 2017, 11, 2515–2522. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.K.; Moritz, D.A.; Baker, F.L. Breast cancer and weight gain: An unexpected finding. Oncol. Nurs. Forum 1978, 5, 5–7. [Google Scholar]
- Camoriano, J.K.; Loprinzi, C.L.; Ingle, J.N.; Therneau, T.M.; Krook, J.E.; Veeder, M.H. Weight change in women treated with adjuvant therapy or observed following mastectomy for node-positive breast cancer. J. Clin. Oncol. 1990, 8, 1327–1334. [Google Scholar] [CrossRef]
- Aslani, A.; Smith, R.C.; Allen, B.J.; Pavlakis, N.; Levi, J.A. Changes in body composition during breast cancer chemotherapy with the CMF-regimen. Breast Cancer Res. Treat. 1999, 57, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Emond, J.A.; Natarajan, L.; Castillo, A.; Gunderson, E.P.; Habel, L.; Jones, L.; Newman, V.A.; Rock, C.L.; Slattery, M.L.; et al. Post-diagnosis weight gain and breast cancer recurrence in women with early stage breast cancer. Breast Cancer Res. Treat. 2006, 99, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Demark-Wahnefried, W.; Rimer, B.K.; Winer, E.P. Weight gain in women diagnosed with breast cancer. J. Am. Diet Assoc. 1997, 97, 519–526. [Google Scholar] [CrossRef]
- Saquib, N.; Flatt, S.W.; Natarajan, L.; Thomson, C.A.; Bardwell, W.A.; Caan, B.; Rock, C.L.; Pierce, J.P. Weight gain and recovery of pre-cancer weight after breast cancer treatments: Evidence from the women’s healthy eating and living (WHEL) study. Breast Cancer Res. Treat. 2007, 105, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.; Sternfeld, B.; Gunderson, E.; Coates, A.; Quesenberry, C.; Slattery, M.L. Life After Cancer Epidemiology (LACE) Study: A cohort of early stage breast cancer survivors (United States). Cancer Causes Control 2005, 16, 545–556. [Google Scholar] [CrossRef]
- Sanchez-Lara, K.; Turcott, J.G.; Juarez-Hernandez, E.; Nunez-Valencia, C.; Villanueva, G.; Guevara, P.; De La Torre-Vallejo, M.; Mohar, A.; Arrieta, O. Effects of an oral nutritional supplements containing eicosapentaenoic acid on nutritional and clinical outcomes in patients with advanced non-small cell lung cancer. Randomised trial. Clin. Nutr. 2014, 33, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Okugawa, Y.; Hishida, A.; Ogawa, A.; Okamoto, K.; Shintani, M.; Morimoto, Y.; Nishikawa, R.; Yokoe, T.; Tanaka, K.; et al. Fish oil-enriched nutrition combined with systemic chemotherapy for gastrointestinal cancer patients with cancer cachexia. Sci. Rep. 2017, 7, 4826. [Google Scholar] [CrossRef] [PubMed]
- Sultani, M.; Stringer, A.M.; Bowen, J.M.; Gibson, R.J. Anti-inflammatory cytokines: Important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. Chemother. Res. Pract. 2012, 2012, 490804. [Google Scholar] [CrossRef] [Green Version]
- Damrauer, J.S.; Stadler, M.E.; Acharyya, S.; Baldwin, A.S.; Couch, M.E.; Guttridge, D.C. Chemotherapy-induced muscle wasting: Association with NF-κB and cancer cachexia. Eur. J. Transl. Myol. 2018, 28, 7590. [Google Scholar] [CrossRef] [Green Version]
- Gilliam, L.A.; St Clair, D.K. Chemotherapy-induced weakness and fatigue in skeletal muscle: The role of oxidative stress. Antioxid. Redox Signal. 2011, 15, 2543–2563. [Google Scholar] [CrossRef] [Green Version]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EbioMedicine 2019, 49, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, L.; Idorn, M.; Olofsson, G.H.; Lauenborg, B.; Nookaew, I.; Hansen, R.H.; Johannesen, H.H.; Becker, J.C.; Pedersen, K.S.; Dethlefsen, C.; et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 2016, 23, 554–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looijaard, S.M.L.M.; te Lintel Hekkert, M.L.; Wust, R.C.I.; Otten, R.H.J.; Meskers, C.G.M.; Maier, A.B. Pathophysiological mechanisms explaining poor clinical outcome of older cancer patients with low skeletal muscle mass. Acta Physiol. 2021, 231, e13516. [Google Scholar] [CrossRef]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patiens with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Clemons, M.; Goss, P. Estrogen and the risk of breast cancer. N. Engl. J. Med. 2001, 344, 276–285. [Google Scholar] [CrossRef]
- Kaaks, R.; Lukanova, A. Energy balance and cancer. The role of insulin and insulin-like growth factor-I. Proc. Nutr. Soc. 2001, 60, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Makari-Judson, G.; Braun, B.; Jerry, D.J.; Mertens, W.C. Weight gain following breast cancer diagnosis: Implication and proposed mechanisms. World J. Clin. Oncol. 2014, 5, 272–282. [Google Scholar] [CrossRef]
- Gadea, E.; Thivat, E.; Planchat, E.; Morio, B.; Durando, X. Importance of metabolic changes induced by chemotherapy on prognosis of early-stage breast cancer patients: A review of potential mechanisms. Obes. Rev. 2012, 13, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hao, Q.; Zhou, J.; Dong, B. The impact of frailty and sarcopenia on postoperative outcomes in older patients undergoing gastrectomy surgery: A systematic review and meta-analysis. BMC Geriatr. 2017, 17, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shachar, S.S.; Williams, G.R.; Muss, H.; Nishijima, T.F. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur. J. Cancer 2016, 57, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Levolger, S.; van Vugt, J.L.A.; de Bruin, R.W.F.; IJzermans, J.N.M. Systematic review of sarcopenia in patients operated on for gastrointestinal and hepatopancreatobiliary malignancies. Br. J. Surg. 2015, 102, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Anandavadivelan, P.; Brismar, T.B.; Nilsson, M.; Johar, A.M.; Martin, L. Sarcopenic obesity: A probable risk factor for dose limiting toxicity during neo-adjuvant chemotherapy in oesophageal cancer patients. Clin. Nutr. 2016, 35, 724–730. [Google Scholar] [CrossRef]
- Sjøblom, B.; Benth, J.Š.; Grønberg, B.H.; Baracos, V.E.; Sawyer, M.B.; Fløtten, Ø.; Hjermstad, M.J.; Aassm, N.; Jordhøy, M. Drug Dose Per Kilogram Lean Body Mass Predicts Hematologic Toxicity From Carboplatin-Doublet Chemotherapy in Advanced Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2017, 18, e129–e136. [Google Scholar] [CrossRef] [PubMed]
- Heidelberger, V.; Goldwasser, F.; Kramkimel, N.; Jouinot, A.; Huillard, O.; Boudou-Rouquette, P.; Chanal, J.; Arrondeau, J.; Franck, N.; Alexandre, J.; et al. Sarcopenic overweight is associated with early acute limiting toxicity of anti-PD1 checkpoint inhibitors in melanoma patients. Invest. N. Drugs. 2017, 35, 436–441. [Google Scholar] [CrossRef]
- Ferrer, R.; Mateu, X.; Maseda, E.; Yebenes, J.C.; Aldecoa, C.; De Haro, C.; Ruiz-Rodriguez, J.C.; Garnacho-Montero, J. Non-oncotic properties of albumin. A multidisciplinary vision about the implications for critically ill patients. Expert Rev. Clin. Pharmacol. 2018, 11, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Lis, C.G.; Grutsch, J.F.; Vashi, P.G.; Lammersfeld, C.A. Is serum albumin an independent predictor of survival in patients with breast cancer? JPEN J. Parenter. Enteral. Nutr. 2003, 27, 10–15. [Google Scholar] [CrossRef]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN J. Parenter. Enteral. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; McClave, S.A.; Martindale, R.G.; Miller, K.R.; Hurt, R.T. Hypoalbuminemia and Clinical Outcomes: What is the Mechanism behind the Relationship? Am. Surg. 2017, 83, 1220–1227. [Google Scholar] [CrossRef]
- McLean, T.W.; Stewart, R.M.; Curley, T.P.; Dewsnup, M.Y.; Thomas, S.G.; Russell, T.B.; Tooze, J.A. Hypoalbuminemia in children with cancer treated with chemotherapy. Pediatr. Blood Cancer 2020, 67, e28065. [Google Scholar] [CrossRef]
- Özdemir, Z.C.; Bozkurt, T.A.; Bör, Ö. Changes in Fibrinogen and Total Protein/Albumin Levels During Induction Chemotherapy in Children with Acute Lymphoblastic Leukemia. Osmangazi. Tıp. Dergisi. 2017, 39, 45–50. [Google Scholar]
- Guan, X.; Liu, Z.; Zhao, Z.; Zhang, X.; Tao, S.; Yuan, B.; Zhang, J.; Wang, D.; Liu, Q.; Ding, Y. Emerging roles of low-density lipoprotein in the development and treatment of breast cancer. Lipids Health Dis. 2019, 18, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fichtali, K.; Bititi, A.; Elghanmi, A.; Ghazi, B. Serum Lipidomic Profiling in Breast Cancer to Identify Screening, Diagnostic, and Prognostic Biomarkers. Biores. Open Access 2020, 9, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Overall Cohort (n = 98) | Matched Cohort (n = 76) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Supplemented Group (n = 38) | Control Group (n = 60) | P | Supplemented Group (n = 38) | Control Group (n = 38) | P | ||||||
Age (mean ± SD) | 55.42 ± 9.95 | 59.13 ± 7.97 | 0.0442 * | 55.42 ± 9.95 | 56.47 ± 9.69 | 0.6416 | |||||
BMI [kg/m2], (mean ± SD) | 28.66 ± 6.50 | 26.30 ± 4.76 | 0.0403 * | 28.66 ± 6.50 | 27.21 ± 5.16 | 0.2831 | |||||
Clinicopathological features | N | % | N | % | P | N | % | N | % | P | |
Histopathological grade | |||||||||||
I/II | 21 | 55 | 31 | 52 | 0.7281 | 21 | 55 | 19 | 50 | 0.6459 | |
III | 17 | 45 | 29 | 48 | 17 | 45 | 19 | 50 | |||
HER-2/neu expression | |||||||||||
(+) | 13 | 34 | 20 | 33 | 0.9287 | 13 | 34 | 12 | 32 | 0.8071 | |
(−) | 25 | 66 | 40 | 67 | 25 | 66 | 26 | 68 | |||
Tumor size | |||||||||||
<2 cm | 18 | 47 | 41 | 68 | 0.0388 * | 18 | 47 | 24 | 63 | 0.1663 | |
>2 cm | 20 | 53 | 19 | 32 | 20 | 53 | 14 | 37 | |||
Regional lymph node metastases | |||||||||||
present | 20 | 53 | 32 | 53 | 0.9459 | 20 | 53 | 16 | 42 | 0.3581 | |
absent | 18 | 47 | 28 | 47 | 18 | 47 | 22 | 58 | |||
Hormonal sensitivity | |||||||||||
hormonal-positive | 23 | 61 | 44 | 73 | 0.1841 | 23 | 61 | 27 | 71 | 0.3335 | |
hormonal-negative | 15 | 39 | 16 | 27 | 15 | 39 | 11 | 29 |
Analyzed Parameter | Matched Control Group (n = 38) | Matched Supplemented Group (n = 38) | ||||
---|---|---|---|---|---|---|
before Chemotherapy | after 6-Week Chemotherapy | P | before Chemotherapy | after 6-Week Chemotherapy | P | |
Body mass [kg] | 71.14 ± 12.7 | 72.32 ± 12.7 | 0.0009 * | 77.14 ± 17.09 | 78.1 ± 17.31 | 0.0019 * |
BMI [kg/m2] | 27.21 ± 5.16 | 27.64 ± 5.09 | 0.0029 * | 28.66 ± 6.5 | 29.03 ± 6.55 | 0.0015 * |
FM [%] | 32.69 ± 7.68 | 33.60 ± 7.02 | 0.0285 * | 36.83 ± 8.2 | 36.2 ± 7.74 | 0.1976 |
WHR | 0.87 ± 0.13 | 0.89 ± 0.19 | 0.5866 | 0.86 ± 0.08 | 0.87 ± 0.08 | 0.2117 |
Water content [%] | 48.85 ± 5.62 | 48.4 ± 5.03 | 0.1996 | 46.48 ± 5.66 | 46.13 ± 8.82 | 0.1242 |
Muscle mass [kg] | 44.28 ± 4.43 | 44.74 ± 4.85 | 0.0850 | 45.14 ± 5.23 | 46.23 ± 5.68 | 0.0020 * |
Visceral fat | 7.53 ± 3.04 | 7.76 ± 2.94 | 0.0481 * | 8.66 ± 3.81 | 8.55 ± 3.7 | 0.3526 |
FFM [kg] | 46.65 ± 4.69 | 47.1 ± 5.14 | 0.1057 | 47.56 ± 5.51 | 48.72 ± 5.96 | 0.0015 * |
FFMI [kg/m2] | 17.77 ± 1.88 | 17.93 ± 1.93 | 0.0882 | 17.71 ± 2.21 | 18.14 ± 2.36 | 0.0012 * |
BMR [kcal] | 1397.66 ± 146.63 | 1412.37 ± 156.96 | 0.0293 * | 1546.13 ± 654.84 | 1475.68 ± 198.46 | 0.0002 * |
Albumin [g/dL] | 4.55 ± 0.25 | 4.41 ± 0.29 | 0.0045 * | 4.51 ± 0.23 | 4.51 ± 0.27 | 0.9579 |
Transferrin [g/L] | 2.65 ± 0.37 | 2.47 ± 0.38 | 0.0003 | 2.7 ± 0.4 | 2.54 ± 0.4 | 0.0004 * |
Creatinine [mg/dL] | 0.72 ± 0.11 | 0.69 ± 0.1 | 0.1529 | 0.77 ± 0.1 | 0.74 ± 0.08 | 0.0012 * |
Urea [mg/dL] | 30.27 ± 7.42 | 28.93 ± 8.24 | 0.2853 | 28.02 ± 6.93 | 28.05 ± 7.18 | 0.9279 |
GGT [U/L] | 27.84 ± 21.57 | 42.55 ± 34.94 | <0.0001 * | 23.42 ± 14.81 | 33.18 ± 28.7 | 0.0003 * |
Bilirubin [mg/dL] | 0.46 ± 0.19 | 0.26 ± 0.12 | <0.0001 * | 0.44 ± 0.21 | 0.25 ± 0.1 | <0.0001 * |
Glucose [mg/dL] | 104.74 ± 13.16 | 103.32 ± 13.88 | 0.7397 | 108.18 ± 22.62 | 105.58 ± 27.01 | 0.2615 |
TAG [mg/dL] | 129.91 ± 78.06 | 174.18 ± 202.73 | 0.0088 * | 127.97 ± 58.19 | 194.41 ± 136.17 | 0.0001 * |
HDL-Cholesterol [mg/dL] | 67.48 ± 16.68 | 61.87 ± 13.69 | 0.0014 * | 60.03 ± 14.51 | 53.42 ± 14.54 | <0.0001 * |
AlAT [U/L] | 19.87 ± 8.38 | 25.21 ± 14.86 | 0.0514 | 17.81 ± 9.83 | 20.61 ± 10.27 | 0.0070 * |
AspAT [U/L] | 18.68 ± 4.59 | 21.61 ± 8.07 | 0.0302 * | 17.65 ± 6.01 | 20.05 ± 6.07 | 0.0006 * |
Analyzed Parameter | Matched Control Group | Matched Supplemented Group | P |
---|---|---|---|
Δ | Δ1 | ||
Body mass [kg] | 1.17 | 0.96 | 0.5747 |
BMI [kg/m2] | 0.43 | 0.36 | 0.5322 |
FM [%] | 0.74 | −0.63 | 0.0312 * |
WHR | 0.02 | 0.01 | 0.3857 |
Water content [%] | −0.45 | 0.62 | 0.0299 * |
Muscle mass [kg] | 0.45 | 1.09 | 0.1178 |
Visceral fat | 0.24 | −0.11 | 0.0263 * |
FFM [kg] | 0.45 | 1.14 | 0.0284 * |
FFMI [kg/m2] | 0.16 | 0.48 | 0.0390 * |
BMR [kcal] | 14.7 | −70.45 | 0.1167 |
Albumin [g/dL] | −0.14 | 0.12 | 0.0194 * |
Transferrin [g/L] | −0.18 | −0.16 | 0.4574 |
Creatinine [mg/dL] | −0.02 | −0.03 | 0.1666 |
Urea [mg/dL] | −1.34 | 0.03 | 0.4098 |
GGT [U/L] | 14.7 | 9.76 | 0.6032 |
Bilirubin [mg/dL] | −0.21 | −0.17 | 0.3742 |
Glucose [mg/dL] | −1.42 | −2.61 | 0.6899 |
TAG [mg/dL] | 44.27 | 61.32 | 0.1546 |
HDL Cholesterol [mg/dL] | −5.61 | −6.61 | 0.6495 |
AlAT [U/L] | 5.34 | 3.26 | 0.9295 |
AspAT [U/L] | 2.92 | 2.87 | 0.5016 |
Histopathological Grade | Δ BMI | Δ FFM | Δ FFMI | Δ TAG | Δ HDL | Δ Albumine |
---|---|---|---|---|---|---|
Odds ratio (OR) | −0.1962 | −0.8686 | −0.3151 | 58.70 | −2.976 | 0.2081 |
95% Confidence interval (CI) | −0.7223–0.3299 | −2.415–0.6782 | −0.8875–0.2573 | −19.06–136.5 | −9.595–3.642 | −0.3685–0.7846 |
p value | 0.4526 | 0.2609 | 0.2701 | 0.1338 | 0.3661 | 0.4673 |
HER-2/neu expression | ||||||
Odds ratio (OR) | 0.0418 | −0.3719 | −0.1302 | −45.49 | 1.862 | 0.3813 |
95% Confidence interval (CI) | −0.4738–0.5575 | −1.888–1.144 | −0.6912–0.4309 | −121.7–30.72 | −4.625–8.348 | −0.1838–0.9463 |
p value | 0.8697 | 0.6203 | 0.6394 | 0.2326 | 0.5625 | 0.1787 |
Tumor size | ||||||
Odds ratio (OR) | −0.0505 | 0.3440 | 0.0971 | −47.32 | −0.6457 | −0.4836 |
95% Confidence interval (CI) | −0.5615–0.4606 | −1.159–1.847 | −0.4589–0.6531 | −122.9–28.21 | −7.075–5.783 | −1.044–0.0765 |
p value | 0.8417 | 0.6438 | 0.7241 | 0.2108 | 0.8390 | 0.0881 |
Regional lymph node metastases | ||||||
Odds ratio (OR) | −0.0616 | −0.5260 | −0.1863 | −40.88 | 1.264 | 0.2402 |
95% Confidence interval (CI) | −0.5480–0.4248 | −1.956–0.9040 | −0.7155–0.3429 | −122.8–31.01 | −4.855–7.382 | −0.2929–0.7732 |
p value | 0.7979 | 0.4588 | 0.4781 | 0.2550 | 0.6765 | 0.3652 |
Hormonal sensitivity | ||||||
Odds ratio (OR) | 0.2628 | 0.1199 | 0.0212 | 21.51 | −2.275 | −0.3300 |
95% Confidence interval (CI) | −0.2517–0.7773 | −1.393–1.632 | −0.5386–0.5809 | −54.52–97.55 | −8.747–4.197 | −0.8938–0.2339 |
p value | 0.3056 | 0.8726 | 0.9390 | 0.5681 | 0.4788 | 0.2417 |
Age | ||||||
Odds ratio (OR) | −0.0083 | −0.0209 | −0.0077 | −2.395 | −0.3546 | −0.0010 |
95% Confidence interval (CI) | −0.03416–0.0176 | −0.0970–0.05520 | −0.03586–0.02045 | −6.219–1.430 | −0.6802–0.0290 | −0.0294–0.0273 |
p value | 0.5190 | 0.5796 | 0.5806 | 0.2111 | 0.0337 * | 0.9411 |
Analyzed Parameter | FM ≤ 33% | FM > 33% | ||||
---|---|---|---|---|---|---|
before Chemotherapy | after 6-Week Chemotherapy | P | before Chemotherapy | after 6-Week Chemotherapy | P | |
Albumin [g/dL] | 4.65 ± 0.15 | 4.70 ± 0.17 | 0.4159 | 5.89 ± 7.30 | 4.42 ± 0.26 | 0.5905 |
Transferrin [g/L] | 2.93 ± 0.40 | 2.73 ± 0.40 | 0.0031 * | 2.6 ± 0.36 | 2.46 ± 0.38 | 0.0169 * |
Creatinine [mg/dL] | 0.70 ± 0.11 | 0.71 ± 0.09 | 0.6641 | 0.80 ± 0.09 | 0.75 ± 0.08 | 0.0001 * |
Urea [mg/dL] | 24.88 ± 4.55 | 27.91 ± 6.79 | 0.1543 | 29.47 ± 7.42 | 28.11 ± 7.48 | 0.2898 |
GGT [U/L] | 16.25 ± 7.86 | 21.83 ± 7.26 | 0.0253 * | 26.73 ± 16.17 | 38.42 ± 33.25 | 0.0036 * |
Bilirubin [mg/dL] | 0.43 ± 0.26 | 0.23 ± 0.08 | 0.0010 * | 0.44 ± 0.20 | 0.26 ± 0.10 | 0.0004 * |
Glucose [mg/dL] | 101.6 ± 10.96 | 98.50 ± 12.0 | 0.2760 | 111.2 ± 25.96 | 108.8 ± 31.33 | 0.3964 |
TAG [mg/dL] | 92.17 ± 30.95 | 121.8 ± 60.51 | 0.0754 | 144.5 ± 60.75 | 225.1 ± 148.1 | 0.0007 * |
HDL-Cholesterol [mg/dL] | 68.75 ± 12.35 | 66.50 ± 11.02 | 0.3943 | 56.0 ± 13.82 | 47.38 ± 11.80 | <0.0001 * |
AlAT [U/L] | 12.75 ± 3.17 | 15.42 ± 4.87 | 0.0446 * | 20.24 ± 11.02 | 23.0 ± 11.26 | 0.0508 |
AspAT [U/L] | 14.58 ± 3.15 | 16.92 ± 2.47 | 0.0187 * | 19.12 ± 6.53 | 21.50 ± 6.7 | 0.0076 * |
Analyzed Parameter | ≤33% FM | >33% FM | P |
---|---|---|---|
Δ | Δ1 | ||
Albumin [g/dL] | 0.05 | −1.24 | 0.5717 |
Transferrin [g/L] | −0.2 | −0.14 | 0.2926 |
Creatinine [mg/dL] | 0.009 | −0.05 | 0.0047 * |
Urea [mg/dL] | 3.03 | −1.35 | 0.0626 |
GGT [U/L] | 5.58 | 11.69 | 0.4596 |
Bilirubin [mg/dL] | −0.2 | −0.16 | 0.6601 |
Glucose [mg/dL] | −3.08 | −2.38 | 0.8892 |
TAG [mg/dL] | 16.1 | 57.74 | 0.0258 * |
HDL Cholesterol [mg/dL] | −2.25 | −8.61 | 0.0488 * |
AlAT [U/L] | 2.67 | 3.54 | 0.7000 |
AspAT [U/L] | 2.33 | 3.12 | 0.8995 |
Analyzed Parameter | Age ≤ 56 | Age > 56 | ||||
---|---|---|---|---|---|---|
Before Chemotherapy | After 6-Week Chemotherapy | P | Before Chemotherapy | After 6-Week Chemotherapy | P | |
Albumin [g/dL] | 4.52 ± 0.21 | 4.59 ± 0.24 | 0.2245 | 4.45 ± 0.27 | 4.42 ± 0.27 | 0.2794 |
Transferrin [g/L] | 2.79 ± 0.48 | 2.57 ± 0.47 | 0.0006 * | 2.62 ± 0.27 | 2.52 ± 0.32 | 0.1281 |
Creatinine [mg/dL] | 0.75 ± 0.12 | 0.74 ± 0.09 | 0.1848 | 0.79 ± 0.08 | 0.73 ± 0.07 | 0.0002 * |
Urea [mg/dL] | 27.21 ± 7.37 | 26.46 ± 6.31 | 0.6276 | 28.92 ± 6.45 | 29.82 ± 7.82 | 0.4996 |
GGT [U/L] | 22.30 ± 19.09 | 36.25 ± 37.49 | 0.0011 * | 24.67 ± 8.19 | 29.78 ± 14.11 | 0.1219 |
Bilirubin [mg/dL] | 0.45 ± 0.21 | 0.23 ± 0.09 | 0.0002 * | 0.42 ± 0.22 | 0.28 ± 0.10 | 0.0084 * |
Glucose [mg/dL] | 101.5 ± 10.12 | 101.6 ± 17.78 | 0.5191 | 115.7 ± 29.77 | 110.0 ± 34.57 | 0.0977 |
TAG [mg/dL] | 109.0 ± 62.24 | 183.5 ± 145.4 | 0.0007 * | 140.9 ± 37.72 | 169.7 ± 70.04 | 0.0380 * |
HDL-Cholesterol [mg/dL] | 60.35 ± 14.26 | 56.15 ± 14.66 | 0.0395 * | 59.67 ± 15.19 | 50.39 ± 14.18 | 0.0008 * |
AlAT [U/L] | 17.0 ± 12.74 | 20.0 ± 11.53 | 0.0201 * | 18.67 ± 5.61 | 21.28 ± 8.96 | 0.1195 |
AspAT [U/L] | 16.63 ± 6.5 | 19.3 ± 4.82 | 0.0071 * | 18.72 ± 5.42 | 20.89 ± 7.26 | 0.0334 * |
Body mass [kg] | 74.05 ± 19.42 | 75.58 ± 20.01 | 0.0043 * | 80.57 ± 13.82 | 80.91 ± 13.74 | 0.1877 |
BMI [kg/m2] | 26.98 ± 7.37 | 27.59 ± 7.58 | 0.0017 * | 30.53 ± 4.92 | 30.62 ± 4.90 | 0.4274 |
FM [%] | 33.80 ± 8.79 | 33.51 ± 8.42 | 0.6947 | 40.21 ± 6.10 | 39.19 ± 5.75 | 0.1261 |
WHR | 0.84 ± 0.09 | 0.86 ± 0.07 | 0.2922 | 0.88 ± 0.06 | 0.89 ± 0.08 | 0.4777 |
Water content [%] | 48.74 ± 5.97 | 49.11 ± 5.84 | 0.5124 | 43.98 ± 4.17 | 42.82 ± 10.44 | 0.2665 |
Muscle mass [kg] | 45.16 ± 5.43 | 46.34 ± 6.23 | 0.0136 * | 45.12 ± 5.16 | 46.12 ± 5.18 | 0.0487 * |
Visceral fat | 6.8 ± 3.92 | 6.78 ± 3.81 | 0.7455 | 10.72 ± 2.42 | 10.53 ± 2.40 | 0.2650 |
FFM [kg] | 47.58 ± 5.72 | 48.85 ± 6.52 | 0.0118 * | 47.54 ± 5.43 | 48.58 ± 5.45 | 0.0485 * |
FFMI [kg/m2] | 17.43 ± 2.35 | 17.9 ± 2.67 | 0.0085 * | 17.96 ± 2.11 | 18.46 ± 2.05 | 0.0066 * |
BMR [kcal] | 1640.0 ± 888.4 | 1475.0 ± 225.5 | 0.0117 * | 1442.0 ± 171.2 | 1476.0 ± 169.9 | 0.0028 * |
Analyzed Parameter | Age ≤ 56 | Age > 56 | P |
---|---|---|---|
Δ | Δ1 | ||
Albumin [g/dL] | 0.07 | 0.21 | 0.2304 |
Transferrin [g/L] | −0.22 | −0.98 | 0.2924 |
Creatinine [mg/dL] | −0.01 | −0.06 | 0.2083 |
Urea [mg/dL] | −0.76 | 0.9 | 0.4588 |
GGT [U/L] | 13.95 | 5.11 | 0.2412 |
Bilirubin [mg/dL] | −0.20 | −0.14 | 0.2727 |
Glucose [mg/dL] | 0.15 | −5.67 | 0.2856 |
TAG [mg/dL] | 65.40 | 56.78 | 0.3202 |
HDL cholesterol [mg/dL] | −4.20 | −9.28 | 0.0981 |
AlAT [U/L] | 3.85 | 2.61 | 0.5275 |
AspAT [U/L] | 3.50 | 2.17 | 0.5083 |
Body mass [kg] | 1.52 | 0.34 | 0.0203 * |
BMI [kg/m2] | 0.61 | 0.09 | 0.0244 * |
FM [%] | −0.29 | −1.02 | 0.3419 |
WHR | 0.01 | 0.009 | 0.7570 |
Water content [%] | 0.38 | −1.16 | 0.5986 |
Muscle mass [kg] | 1.19 | 0.99 | 0.7672 |
Visceral fat | −0.03 | −0.19 | 0.3652 |
FFM [kg] | 1.27 | 1.05 | 0.7363 |
FFMI [kg/m2] | 0.47 | 0.39 | 0.7290 |
BMR [kcal] | −164.8 | 34.39 | 0.9069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grupińska, J.; Budzyń, M.; Maćkowiak, K.; Brzeziński, J.J.; Kycler, W.; Leporowska, E.; Gryszczyńska, B.; Kasprzak, M.P.; Iskra, M.; Formanowicz, D. Beneficial Effects of Oral Nutritional Supplements on Body Composition and Biochemical Parameters in Women with Breast Cancer Undergoing Postoperative Chemotherapy: A Propensity Score Matching Analysis. Nutrients 2021, 13, 3549. https://doi.org/10.3390/nu13103549
Grupińska J, Budzyń M, Maćkowiak K, Brzeziński JJ, Kycler W, Leporowska E, Gryszczyńska B, Kasprzak MP, Iskra M, Formanowicz D. Beneficial Effects of Oral Nutritional Supplements on Body Composition and Biochemical Parameters in Women with Breast Cancer Undergoing Postoperative Chemotherapy: A Propensity Score Matching Analysis. Nutrients. 2021; 13(10):3549. https://doi.org/10.3390/nu13103549
Chicago/Turabian StyleGrupińska, Joanna, Magdalena Budzyń, Kalina Maćkowiak, Jacek Jakub Brzeziński, Witold Kycler, Ewa Leporowska, Bogna Gryszczyńska, Magdalena Paulina Kasprzak, Maria Iskra, and Dorota Formanowicz. 2021. "Beneficial Effects of Oral Nutritional Supplements on Body Composition and Biochemical Parameters in Women with Breast Cancer Undergoing Postoperative Chemotherapy: A Propensity Score Matching Analysis" Nutrients 13, no. 10: 3549. https://doi.org/10.3390/nu13103549
APA StyleGrupińska, J., Budzyń, M., Maćkowiak, K., Brzeziński, J. J., Kycler, W., Leporowska, E., Gryszczyńska, B., Kasprzak, M. P., Iskra, M., & Formanowicz, D. (2021). Beneficial Effects of Oral Nutritional Supplements on Body Composition and Biochemical Parameters in Women with Breast Cancer Undergoing Postoperative Chemotherapy: A Propensity Score Matching Analysis. Nutrients, 13(10), 3549. https://doi.org/10.3390/nu13103549