Safety, Feasibility, and Effects of Short-Term Calorie Reduction during Induction Chemotherapy in Patients with Diffuse Large B-Cell Lymphoma: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Short-Term Calorie Reduction (SCR) Intervention
2.2. Data Collection and Outcome Measurements
2.3. Matched Pair-Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandhorst, S.; Longo, V.D. Fasting and caloric restriction in cancer prevention and treatment. Recent Results Cancer Res. 2016, 207, 241–266. [Google Scholar]
- Nencioni, A.; Caffa, I.; Cortellino, S.; Longo, V.D. Fasting and cancer: Molecular mechanisms and clinical application. Nat. Rev. Cancer 2018, 18, 707–719. [Google Scholar] [CrossRef]
- D’Aronzo, M.; Vinciguerra, M.; Mazza, T.; Panebianco, C.; Saracino, C.; Pereira, S.P.; Graziano, P.; Pazienza, V. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models. Oncotarget 2015, 6, 18545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Icard, P.; Teboul, B.; El Baze, P. A Simple method to optimize the effectiveness of chemotherapy: Modulation of glucose intake during chemotherapy. Anticancer Res. 2017, 37, 6199–6202. [Google Scholar] [PubMed]
- Lee, C.; Longo, V. Fasting vs dietary restriction in cellular protection and cancer treatment: From model organisms to patients. Oncogene 2011, 30, 3305–3316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Flanagan, C.H.; Smith, L.A.; McDonell, S.B.; Hursting, S.D. When less may be more: Calorie restriction and response to cancer therapy. BMC Med. 2017, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yan, Y.; Gius, D.R.; Vassilopoulos, A. Metabolic regulation of Sirtuins upon fasting and the implication for cancer. Curr. Opin. Oncol. 2013, 25, 630–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo Re, O.; Panebianco, C.; Porto, S.; Cervi, C.; Rappa, F.; Di Biase, S.; Caraglia, M.; Pazienza, V.; Vinciguerra, M. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of sorafenib in hepatocellular cancer cells. J. Cell. Physiol. 2018, 233, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, C.; Adamberg, K.; Adamberg, S.; Saracino, C.; Jaagura, M.; Kolk, K.; Di Chio, A.G.; Graziano, P.; Vilu, R.; Pazienza, V. Engineered resistant-starch (ERS) diet shapes colon microbiota profile in parallel with the retardation of tumor growth in in vitro and in vivo pancreatic cancer models. Nutrients 2017, 9, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.-C.; Chen, C.; Hung, T.-C.; Wu, W.-W.; Lin, J.-M.; Tien, F.-M. Feasibility, process, and effects of short-term calorie reduction in cancer patients receiving chemotherapy: An integrative review. Nutrients 2020, 12, 2823. [Google Scholar] [CrossRef]
- Bauersfeld, S.P.; Kessler, C.S.; Wischnewsky, M.; Jaensch, A.; Steckhan, N.; Stange, R.; Kunz, B.; Brückner, B.; Sehouli, J.; Michalsen, A. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: A randomized cross-over pilot study. BMC Cancer 2018, 18, 476. [Google Scholar] [CrossRef]
- De Groot, S.; Vreeswijk, M.P.; Welters, M.J.; Gravesteijn, G.; Boei, J.J.; Jochems, A.; Houtsma, D.; Putter, H.; van der Hoeven, J.J.; Nortier, J.W.; et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: A randomized pilot study. BMC Cancer 2015, 15, 652. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.H.S.; Krüger, J.F.; Camargo, C.Q.; Preti, V.B.; Hillesheim, E.; Rabito, E.I. Effects of fasting on chemotherapy treatment response: A systematic review of current evidence and suggestions for the design of future clinical trials. Nutr. Cancer 2021. ahead-of-print. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.M.; Al-Foheidi, M.H.; Al-Mansour, M.M. Energy and caloric restriction, and fasting and cancer: A narrative review. Support. Care Cancer 2021, 29, 2299–2304. [Google Scholar] [CrossRef] [PubMed]
- Icard, P.; Ollivier, L.; Forgez, P.; Otz, J.; Alifano, M.; Fournel, L.; Loi, M.; Thariat, J. Perspective: Do fasting, caloric restriction, and diets increase sensitivity to radiotherapy? A literature review. Adv. Nutr. 2020, 11, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, Y.; Khoo, B.L. Fasting to enhance cancer treatment in models: The next steps. J. Biomed. Sci. 2020, 27, 58. [Google Scholar] [CrossRef] [PubMed]
- Dorff, T.B.; Groshen, S.; Garcia, A.; Shah, M.; Tsao-Wei, D.; Pham, H.; Cheng, C.W.; Brandhorst, S.; Cohen, P.; Wei, M.; et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 2016, 16, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safdie, F.M.; Dorff, T.; Quinn, D.; Fontana, L.; Wei, M.; Lee, C.; Cohen, P.; Longo, V.D. Fasting and cancer treatment in humans: A case series report. Aging 2009, 1, 988–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorn, S.; Ehret, J.; Schäuble, R.; Rautenberg, B.; Ihorst, G.; Bertz, H.; Urbain, P.; Raynor, A. Impact of modified short-term fasting and its combination with a fasting supportive diet during chemotherapy on the incidence and severity of chemotherapy-induced toxicities in cancer patients-a controlled cross-over pilot study. BMC Cancer 2020, 20, 578. [Google Scholar] [CrossRef]
- Riedinger, C.J.; Kimball, K.J.; Kilgore, L.C.; Bell, C.W.; Heidel, R.E.; Boone, J.D. Water only fasting and its effect on chemotherapy administration in gynecologic malignancies. Gynecol. Oncol. 2020, 159, 799–803. [Google Scholar]
- De Groot, S.; Lugtenberg, R.T.; Cohen, D.; Welters, M.J.; Ehsan, I.; Vreeswijk, M.P.; Smit, V.T.; de Graaf, H.; Heijns, J.B.; Portielje, J.E.; et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat. Commun. 2020, 11, 3083. [Google Scholar] [CrossRef] [PubMed]
- Di Biase, S.; Shim, H.S.; Kim, K.H.; Vinciguerra, M.; Rappa, F.; Wei, M.; Brandhorst, S.; Cappello, F.; Mirzaei, H.; Lee, C. Fasting regulates EGR1 and protects from glucose-and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol. 2017, 15, e2001951. [Google Scholar] [CrossRef] [Green Version]
- Vafa, S.; Zarrati, M.; Malakootinejad, M.; Totmaj, A.S.; Zayeri, F.; Salehi, M.; Sanati, V.; Haghighat, S. Calorie restriction and synbiotics effect on quality of life and edema reduction in breast cancer-related lymphedema, a clinical trial. Breast 2020, 54, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Lugtenberg, R.T.; de Groot, S.; Kaptein, A.A.; Fischer, M.J.; Kranenbarg, E.M.K.; de Carpentier, M.D.; Cohen, D.; de Graaf, H.; Heijns, J.B.; Portielje, J.E.; et al. Quality of life and illness perceptions in patients with breast cancer using a fasting mimicking diet as an adjunct to neoadjuvant chemotherapy in the phase 2 DIRECT (BOOG 2013-14) trial. Breast Cancer Res. Treat. 2021, 185, 741–758. [Google Scholar] [CrossRef]
- Mas, S.; Le Bonniec, A.; Cousson-Gélie, F. Why do women fast during breast cancer chemotherapy? A qualitative study of the patient experience. Br. J. Health Psychol. 2019, 24, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Champ, C.E.; Klement, R.J. Assessing successful completion of calorie restriction studies for the prevention and treatment of cancer. Nutrition 2020, 78, 110829. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Mattamel, P.B.; Joseph, T.; Huang, J.; Chen, Q.; Akinwunmi, B.O.; Zhang, C.J.; Ming, W.K. Efficacy of low-carbohydrate ketogenic diet as an adjuvant cancer therapy: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 1388. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, K.; Kajimoto, K.; Osaga, S.; Nagai, N.; Shimosegawa, E.; Nakata, H.; Saito, H.; Nakano, M.; Takeuchi, M.; Kanki, H.; et al. Promising effect of a new ketogenic diet regimen in patients with advanced cancer. Nutrients 2020, 12, 1473. [Google Scholar] [CrossRef] [PubMed]
- Schreck, K.C.; Hsu, F.-C.; Berrington, A.; Henry-Barron, B.; Vizthum, D.; Blair, L.; Kossoff, E.H.; Easter, L.; Whitlow, C.T.; Barker, P.B.; et al. Feasibility and biological activity of a ketogenic/intermittent-fasting diet in patients with glioma. Neurology 2021, 97, e953–e963. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.; Wagner, M.; von Mettenheim, N.; Harter, P.N.; Wenger, K.J.; Franz, K.; Bojunga, J.; Vetter, M.; Gerlach, R.; Glatzel, M.; et al. ERGO2: A Prospective, randomized trial of calorie-restricted ketogenic diet and fasting in addition to reirradiation for malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 987–995. [Google Scholar] [CrossRef]
- Bruce, M.A.; Beech, B.M.; Thorpe, R.J., Jr.; Mincey, K.; Griffith, D.M. Racial and gender disparities in sugar consumption change efficacy among first-year college students. Appetite 2017, 109, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portacio, F.G.; Botero, P.; St. George, S.M.; Stoutenberg, M. Informing the adaptation and implementation of a lifestyle modification program in Hispanics: A qualitative study among low-income Hispanic adults. Hisp. Health Care Int. 2018, 16, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Helman, C.G. Culture, Health and Illness, 3rd ed.; Reed Education & Professional Publishing Ltd.: Oxford, UK, 1994. [Google Scholar]
- Cho, H.Y. Oriental Medicine: A Modern Interpretation; Yuin University Press: Compton, CA, USA, 1996. [Google Scholar]
- Castejón, M.; Plaza, A.; Martinez-Romero, J.; Fernandez-Marcos, P.J.; de Cabo, R.; Diaz-Ruiz, A. Energy restriction and colorectal cancer: A call for additional research. Nutrients 2020, 12, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krstic, J.; Pieber, T.R.; Prokesch, A. Stratifying nutritional restriction in cancer therapy: Next stop, personalized medicine. Int. Rev. Cell Mol. Biol. 2020, 354, 231–259. [Google Scholar]
- Marić, A.; Miličević, T.; Lončar, J.V.; Galušić, D.; Radman, M. Patterns of glucose fluctuation are challenging in patients treated for non-Hodgkin’s lymphoma. Int. J. Gen. Med. 2020, 13, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coiffier, B.; Sarkozy, C. Diffuse large B-cell lymphoma: R-CHOP failure—What to do? Hematology 2016, 2016, 366–378. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, R.; Witzig, T.E. Prognostic factors for diffuse large B-cell lymphoma in the R(X)CHOP era. Ann. Oncol. 2014, 25, 2124–2133. [Google Scholar] [CrossRef]
- Unschuld, P.U. The development of medical-pharmaceutical thought in China II. Am. J. Chin. Med. 1977, 5, 211–231. [Google Scholar] [CrossRef]
- Gupta, D.; Lis, C.G.; Dahlk, S.L.; Vashi, P.G.; Grutsch, J.F.; Lammersfeld, C.A. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br. J. Nutr. 2004, 92, 957–962. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S.; Nakajima, T.; Nozawa, N.; Katayanagi, S.; Ishizaka, H.; Mizushima, Y.; Matsumoto, K.; Nishikawa, K.; Toyama, Y.; Takahashi, R.; et al. Phase angle as an indicator of sarcopenia, malnutrition, and cachexia in inpatients with cardiovascular diseases. J. Clin. Med. 2020, 9, 2554. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Zocher, D.; Bosy-Westphal, A.; Szramek, A.; Scheufele, R.; Smoliner, C.; Pirlich, M. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am. J. Clin. Nutr. 2010, 92, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, N.J.; Lipsitz, S.R. Review of software to fit generalized estimating equation regression models. Am. Stat. 1999, 53, 160. [Google Scholar]
SCR (n = 6) | Comparison (n = 6) | p Value | |
---|---|---|---|
Median Age (range) | 60.50 (46–69) | 57.50 (50–68) | 0.75 |
Sex: Male | 6 (100%) | 6 (100%) | |
Ethinicity: Chinese | 6 (100%) | 6 (100%) | |
Mean Body Mass Index (SD) | 22.50 (2.93) | 23.97 (3.87) | 0.47 |
Lugano (modified Ann Arbor) Stage | |||
III | 1 (17%) | 3 (50%) | 0.39 |
IV | 5 (83%) | 3 (50%) |
Outcome Indicators Mean (SD) | SCR Group (n = 6) | Comparison Group (n = 6) | ||||||
---|---|---|---|---|---|---|---|---|
Baseline | First SCR | Second SCR | Final SCR a | Baseline | First SCR | Second SCR | Final SCR | |
Prealbumin b | 27.1 (6.39) | 32.54 (3.14) | 30.98 (2.14) | 27.02 (9.76) | - | - | - | - |
Phase angle | 4.92° (0.95) | 4.64° (0.56) | 5.34° (0.76) | 5.33° (0.58) | - | - | - | - |
Body Mass Index | 22.50 (2.93) | 23.31 (1.87) | 23.69 (2.68) | 23.82 (2.68) | 23.97 (3.87) | - | - | - |
Erythrocytes c | 4.10 (0.56) | 4.51 (0.15) | 4.45 (0.29) | 4.3 (0.27) | 4.11 (0.76) | 4.13 (0.72) | 4.15 (0.57) | 4.22 (0.52) |
Leucocytes c | 6.60 (1.98) | 7.05 (2.36) | 5.84 (1.52) | 6.53 (1.53) | 11.43 (8.21) | 6.23 (2.18) | 7.48 (2.93) | 5.76 (1.28) |
Variables | Model 1: Erythrocyte Counts a | Model 2: Leucocyte Counts a | ||||
---|---|---|---|---|---|---|
Estimate | SE | p Value | Estimate | SE | p Value | |
Intercept | 6.93 | 3.64 | 0.06 | 21.07 | 10.89 | 0.05 |
SCR group b | 0.13 | 0.41 | 0.74 | −4.40 | 2.56 | 0.085 |
Cycle 1 c | 0.02 | 0.003 | 0.000 ** | −5.20 | 0.64 | 0.000 ** |
Cycle 2 d | 0.04 | 0.003 | 0.000 | −3.94 | 2.08 | 0.058 |
Stage | −0.24 | 0.54 | 0.65 | −0.64 | 1.59 | 0.69 |
Age | −0.03 | 0.04 | 0.34 | −0.13 | 0.11 | 0.23 |
SCR group × SCR cycle 1 e | 0.39 | 0.005 | 0.000 ** | 5.66 | 0.91 | 0.000 ** |
SCR group × SCR cycle 2 f | 0.32 | 0.005 | 0.000 ** | 3.19 | 2.94 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.-C.; Huang, T.-C.; Tien, F.-M.; Lin, J.-M.; Yeh, Y.-C.; Lee, C.-Y. Safety, Feasibility, and Effects of Short-Term Calorie Reduction during Induction Chemotherapy in Patients with Diffuse Large B-Cell Lymphoma: A Pilot Study. Nutrients 2021, 13, 3268. https://doi.org/10.3390/nu13093268
Tang C-C, Huang T-C, Tien F-M, Lin J-M, Yeh Y-C, Lee C-Y. Safety, Feasibility, and Effects of Short-Term Calorie Reduction during Induction Chemotherapy in Patients with Diffuse Large B-Cell Lymphoma: A Pilot Study. Nutrients. 2021; 13(9):3268. https://doi.org/10.3390/nu13093268
Chicago/Turabian StyleTang, Chia-Chun, Tai-Chung Huang, Feng-Ming Tien, Jing-Meei Lin, Yi-Chen Yeh, and Ching-Yi Lee. 2021. "Safety, Feasibility, and Effects of Short-Term Calorie Reduction during Induction Chemotherapy in Patients with Diffuse Large B-Cell Lymphoma: A Pilot Study" Nutrients 13, no. 9: 3268. https://doi.org/10.3390/nu13093268
APA StyleTang, C. -C., Huang, T. -C., Tien, F. -M., Lin, J. -M., Yeh, Y. -C., & Lee, C. -Y. (2021). Safety, Feasibility, and Effects of Short-Term Calorie Reduction during Induction Chemotherapy in Patients with Diffuse Large B-Cell Lymphoma: A Pilot Study. Nutrients, 13(9), 3268. https://doi.org/10.3390/nu13093268