High Fat, High Sugar Diet and DJOS Bariatric Surgery Influence Plasma Levels of Fetuin-B, Growth Differentiation Factor-15, and Pentraxin 3 in Diet-Induced Obese Sprague–Dawley Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subject
2.2. Study Design
2.3. Experimental Procedures
2.3.1. Control (SHAM) and Duodenojejunal Omega Switch (DJOS) Surgery
2.3.2. Oral Glucose Tolerance Test (OGTT) and Blood Collection
2.3.3. Hepatokines Analysis
2.4. Statistical Analysis
3. Results
3.1. Oral Glucose Tolerance Test (OGTT)
3.2. Area under the Curve of the Oral Glucose Tolerance Test (AUCOGTT)
3.3. Hepatokines Plasma Concentrations
3.3.1. Fetuin-B
3.3.2. Growth Differentiation Factor-15 (GDF-15)
3.3.3. Pentraxin 3 (PTX3)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1343–1351. [Google Scholar] [CrossRef] [Green Version]
- Stefan, N.; Häring, H.-U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 2013, 9, 144–152. [Google Scholar] [CrossRef]
- Meex, R.C.R.; Watt, M.J. Hepatokines: Linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 2017, 13, 509–520. [Google Scholar] [CrossRef]
- Assifi, M.M.; Eibl, G. Western diet-induced pancreatic cancer. In Nutrition, Diet and Cancer, 1st ed.; Shankar, S., Srivastava, R.K., Eds.; Springer Science + Business Media BV: Berlin, Germany, 2012; pp. 327–338. [Google Scholar]
- Popkin, B.M. Nutrition Transition and the Global Diabetes Epidemic. Curr. Diabetes Rep. 2015, 15, 1–8. [Google Scholar] [CrossRef]
- Aydin, S.; Aksoy, A.; Aydin, S.; Kalayci, M.; Yilmaz, M.; Kuloglu, T.; Citil, C.; Catak, Z. Today’s and yesterday’s of patho-physiology: Biochemistry of metabolic syndrome and animal models. Nutrition 2014, 30, 1–9. [Google Scholar] [CrossRef]
- Pereira, R.M.; Botezelli, J.D.; Rodrigues, K.C.D.C.; Mekary, R.A.; Cintra, D.E.; Pauli, J.R.; Da Silva, A.S.R.; Ropelle, E.R.; De Moura, L.P. Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients 2017, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Stygar, D.; Pigłowski, W.; Chełmecka, E.; Skrzep-Poloczek, B.; Sawczyn, T.; Garłowski, W.; Jochem, J.; Karcz, K.W. Changes in Liver Gene Expression and Plasma Concentration of Rbp4, Fetuin-A, and Fgf21 in Sprague-Dawley Rats Subjected to Different Dietary Interventions and Bariatric Surgery. BioMed Res. Int. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Saeidi, A.; Hackney, A.C.; Tayebi, S.M.; Ahmadian, M.; Zouhal, H. Diabetes, Insulin Resistance, Fetuin-B and Exercise Training. Ann. Appl. Sport Sci. 2019, 7, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Zimmers, T.A.; Jin, X.; Hsiao, E.C.; McGrath, S.A.; Esquela, A.F.; Koniaris, L.G. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005, 23, 543–548. [Google Scholar]
- Adela, R.; Banerjee, S.K. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: A translational pro-spective. J. Diabetes Res. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Bao, X.; Borné, Y.; Muhammad, I.F.; Nilsson, J.; Lind, L.; Melander, O.; Niu, K.; Orho-Melander, M.; Engström, G. Growth differentiation factor 15 is positively associated with incidence of diabetes mellitus: The Malmö Diet and Cancer–Cardiovascular Cohort. Diabetologia 2018, 62, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Salio, M.; Chimenti, S.; De Angelis, N.; Molla, F.; Maina, V.; Nebuloni, M.; Pasqualini, F.; Latini, R.; Garlanda, C.; Mantovani, A. Cardioprotective Function of the Long Pentraxin PTX3 in Acute Myocardial Infarction. Circulation 2008, 117, 1055–1064. [Google Scholar] [CrossRef]
- Norata, G.D.; Marchesi, P.; Venu, V.K.P.; Pasqualini, F.; Anselmo, A.; Moalli, F.; Pizzitola, I.; Garlanda, C.; Mantovani, A.; Catapano, A.L. Deficiency of the Long Pentraxin PTX3 Promotes Vascular Inflammation and Atherosclerosis. Circulation 2009, 120, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Norata, G.D.; Garlanda, C.; Catapano, A.L. The Long Pentraxin PTX3: A Modulator of the Immunoinflammatory Response in Atherosclerosis and Cardiovascular Diseases. Trends Cardiovasc. Med. 2010, 20, 35–40. [Google Scholar] [CrossRef]
- Dias, A.A.M.; Goodman, A.R.; Dos Santos, J.L.; Gomes, R.; Altmeyer, A.; Bozza, P.; Horta, M.F.; Vilcek, J.; Reis, L. TSG-14 transgenic mice have improved survival to endotoxemia and to CLP-induced sepsis. J. Leukoc. Biol. 2001, 69. [Google Scholar]
- Zempo-Miyaki, A.; Kumagai, H.; Yoshikawa, T.; Myoenzono, K.; So, R.; Otsuki, T.; Tanaka, K.; Maeda, S. Pentraxin 3 increases in adult overweight and obese men after weight loss by dietary modification with exercise training. Appl. Physiol. Nutr. Metab. 2019, 44, 111–117. [Google Scholar] [CrossRef]
- Heldal, T.F.; Ueland, T.; Jenssen, T.; Hartmann, A.; Reisaeter, A.V.; Aukrust, P.; Michelsen, A.; Åsberg, A. Inflammatory and related biomarkers are associated with post-transplant diabetes mellitus in kidney recipients: A retrospective study. Transpl. Int. 2018, 31, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Panchal, S.K.; Brown, L. Rodent Models for Metabolic Syndrome Research. J. Biomed. Biotechnol. 2010, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Fernández, S.; Garcés-Rimón, M.; Vera, G.; Astier, J.; Landrier, J.F.; Miguel, M. High Fat/High Glucose Diet Induces Metabolic Syndrome in an Experimental Rat Model. Nutrients 2018, 10, 1502. [Google Scholar] [CrossRef] [Green Version]
- Russell, W.M.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959. [Google Scholar]
- Stygar, D.; Sawczyn, T.; Skrzep-Poloczek, B.; Owczarek, A.J.; Matysiak, N.; Michalski, M.; Mielańczyk, Ł.; Bażanów, B.; Ziora, P.; Choręza, P.; et al. The Effects of Duodenojejunal Omega Switch in Combination with High-Fat Diet and Control Diet on Incretins, Body Weight, and Glucose Tolerance in Sprague-Dawley Rats. Obes. Surg. 2017, 28, 748–759. [Google Scholar] [CrossRef] [Green Version]
- Cummings, B.P.; Strader, A.D.; Stanhope, K.L.; Graham, J.; Lee, J.; Raybould, H.E.; Baskin, D.G.; Havel, P.J. Ileal Interposition Surgery Improves Glucose and Lipid Metabolism and Delays Diabetes Onset in the UCD-T2DM Rat. Gastroenterology 2010, 138, 2437–2446. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.W.; Liu, H.; Mukherjee, R.; Yun, J.W. Downregulation of fetuin-B and zinc-α2-glycoprotein is linked to impaired fatty acid metabolism in liver cells. Cell Physiol. Biochem. 2012, 30, 295–306. [Google Scholar] [CrossRef]
- Qu, H.; Qiu, Y.; Wang, Y.; Liao, Y.; Zheng, Y.; Zheng, H. Plasma fetuin-B concentrations are associated with insulin resistance and first-phase glucose-stimulated insulin secretion in individuals with different degrees of glucose tolerance. Diabetes Metab. 2018, 44, 488–492. [Google Scholar] [CrossRef]
- Khadir, A.; Kavalakatt, S.; Madhu, D.; Hammad, M.; Devarajan, S.; Tuomilehto, J.; Tiss, A. Fetuin-A levels are increased in the adipose tissue of diabetic obese humans but not in circulation. Lipids Health Dis. 2018, 17, 291. [Google Scholar] [CrossRef] [Green Version]
- Peter, A.; Kovarova, M.; Staiger, H.; Machann, J.; Schick, F.; Königsrainer, A.; Königsrainer, I.; Schleicher, E.; Fritsche, A.; Häring, H.-U.; et al. The hepatokines fetuin-A and fetuin-B are upregulated in the state of hepatic steatosis and may differently impact on glucose homeostasis in humans. Am. J. Physiol. Metab. 2018, 314, E266–E273. [Google Scholar] [CrossRef]
- Mokou, M.; Yang, S.; Zhan, B.; Geng, S.; Li, K.; Yang, M.; Yang, G.; Deng, W.; Liu, H.; Liu, D.; et al. Elevated Circulating Fetuin-B Levels Are Associated with Insulin Resistance and Reduced by GLP-1RA in Newly Diagnosed PCOS Women. Mediat. Inflamm. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Xing, W.; Tan, Y.; Li, K.; Tian, P.; Tian, F.; Zhang, H. Upregulated hepatokine fetuin B aggravates myocardial ische-mia/reperfusion injury through inhibiting insulin signaling in diabetic mice. J. Mol. Cell Cardiol. 2021, 151, 163–172. [Google Scholar] [CrossRef]
- Hong, J.H.; Chung, H.K.; Park, H.Y.; Joung, K.-H.; Lee, J.H.; Jung, J.G.; Kim, K.S.; Kim, H.J.; Ku, B.J.; Shong, M. GDF15 Is a Novel Biomarker for Impaired Fasting Glucose. Diabetes Metab. J. 2014, 38, 472–479. [Google Scholar] [CrossRef]
- Baek, S.J.; Eling, T. Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases. Pharmacol. Ther. 2019, 198, 46–58. [Google Scholar] [CrossRef]
- Kleinert, M.; Bojsen-Møller, K.N.; Jørgensen, N.B.; Svane, M.S.; Martinussen, C.; Kiens, B.; Wojtaszewski, J.F.; Madsbad, S.; Richter, E.A.; Clemmensen, C. Effect of bariatric surgery on plasma GDF15 in humans. Am. J. Physiol. Metab. 2019, 316, E615–E621. [Google Scholar] [CrossRef]
- Miyaki, A.; Maeda, S.; Choi, Y.; Akazawa, N.; Tanabe, Y.; Ajisaka, R. Habitual aerobic exercise increases plasma pentraxin 3 levels in middle-aged and elderly women. Appl. Physiol. Nutr. Metab. 2012, 37, 907–911. [Google Scholar] [CrossRef] [Green Version]
- Slusher, A.L.; Huang, C.-J. Association of pentraxin 3 with insulin resistance and glucose response following maximal aerobic exercise in obese and normal-mass individuals. Can. J. Physiol. Pharmacol. 2016, 94, 734–738. [Google Scholar] [CrossRef]
- Santilli, F.; Guagnano, M.T.; Innocenti, P.; Aceto, L.; Vazzana, N.; Lattanzio, S.; Liani, R.; Tripaldi, R.; Creato, V.; Romano, M.; et al. Pentraxin 3 and Platelet Activation in Obese Patients After Gastric Banding. Circ. J. 2016, 80, 502–511. [Google Scholar] [CrossRef] [Green Version]
- Stygar, D.; Skrzep-Poloczek, B.; Romuk, E.; Chełmecka, E.; Poloczek, J.; Sawczyn, T.; Maciarz, J.; Kukla, M.; Karcz, K.W.; Jochem, J. The influence of high-fat, high-sugar diet and bariatric surgery on HSP70 and HSP90 plasma and liver concentrations in diet-induced obese rats. Cell Stress Chaperon. 2019, 24, 427–439. [Google Scholar] [CrossRef] [Green Version]
Time of OGTT | Time after Glucose Administration [min] | SHAM-Operated Groups | DJOS-Operated Groups | ||||||
---|---|---|---|---|---|---|---|---|---|
CD/CD | CD/HFS | HFS/CD | HFS/HFS | CD/CD | CD/HFS | HFS/CD | HFS/HFS | ||
8 weeks before surgery | 0 | 95 ± 8 | 123 ± 17 | 144 ± 23 | 128 ± 18 | 103 ± 14 | 104 ± 9 | 104 ± 18 | 108 ± 22 |
10 | 128 ± 14 | 174 ± 16 | 189 ± 25 | 175 ± 33 | 129 ± 5 | 127 ±13 | 154 ± 28 | 140 ± 11 | |
20 | 159 ± 8 | 192 ± 23 | 214 ± 38 | 195 ± 37 | 144 ± 3 | 154 ±17 | 164 ± 29 | 150 ± 15 | |
30 | 171 ± 3 | 207 ± 20 | 210 ± 33 | 220 ± 47 | 153 ± 8 | 168 ± 21 | 184 ± 36 | 156 ± 16 | |
60 | 151 ± 19 | 136 ± 60 | 205 ± 41 | 215 ± 57 | 142 ± 10 | 141 ± 28 | 169 ± 34 | 141 ± 31 | |
90 | 145 ± 13 | 168 ± 25 | 171 ± 17 | 162 ± 24 | 138 ± 23 | 139 ± 20 | 151 ± 22 | 132 ± 15 | |
120 | 133 ± 10 | 157 ± 38 | 151 ± 38 | 170 ± 10 | 140 ± 23 | 147 ± 11 | 159 ± 32 | 138 ± 31 | |
AUC | 400,018 ± 46,876 | 436,264 ± 194,926 | 672,600 ± 216,520 | 734,562 ± 262,214 | 339,529 ± 38,905 | 369,225 ± 90,497 | 496,578 ± 191,264 | 348,584 ± 106,791 | |
4 weeks after surgery | 0 | 98 ± 18 | 122 ± 7 | 90 ± 4 | 132 ± 30 | 75 ± 4 | 93 ± 13 | 92 ± 12 | 79 ± 14 |
10 | 110 ± 8 | 157 ± 18 | 118 ± 13 | 171 ± 42 | 90 ± 10 | 106 ± 5 | 101 ± 4 | 129 ± 23 | |
20 | 125 ± 8 | 168 ± 17 | 128 ± 14 | 169 ± 32 | 86 ± 18 | 128 ± 14 | 118 ± 7 | 132 ± 18 | |
30 | 143 ± 11 | 179 ± 33 | 164 ± 32 | 186 ± 33 | 113 ± 13 | 124 ± 6 | 142 ± 8 | 150 ± 26 | |
60 | 126 ± 17 | 156 ± 14 | 151 ± 25 | 154 ± 24 | 108 ± 2 | 125 ± 11 | 127 ± 12 | 133 ± 43 | |
90 | 104 ± 15 | 136 ± 15 | 145 ± 30 | 146 ± 30 | 108 ±12 | 109 ± 10 | 119 ± 12 | 121 ± 47 | |
120 | 129 ± 11 | 143 ± 14 | 131 ± 31 | 137 ± 28 | 90 ± 9 | 110 ± 16 | 121 ± 26 | 113 ± 36 | |
AUC | 14,533 ± 410 | 18,341 ± 2056 | 17,014 ± 1692 | 18,829 ± 3069 | 12,227 ± 554 | 13,937 ± 455 | 14,668 ± 1010 | 15,294 ± 3849 | |
8 weeks after surgery | 0 | 97 ± 6 | 86 ± 10 | 90 ± 7 | 85 ± 5 | 87 ± 6 | 81 ± 10 | 99 ± 5 | 75 ± 13 |
10 | 96 ± 12 | 124 ±1 | 96 ± 15 | 120 ± 12 | 89 ± 6 | 103 ± 13 | 103 ± 7 | 104 ± 13 | |
20 | 112 ± 16 | 104 ± 5 | 140 ± 34 | 144 ± 14 | 99 ± 8 | 108 ± 11 | 103 ± 8 | 97 ± 5 | |
30 | 131 ± 15 | 120 ± 6 | 147 ± 38 | 158 ± 14 | 112 ± 8 | 127 ± 15 | 115 ± 10 | 116 ± 17 | |
60 | 113 ± 25 | 108 ± 8 | 131 ± 36 | 139 ± 14 | 104 ± 23 | 112 ± 4 | 104 ± 9 | 114 ± 6 | |
90 | 107 ± 31 | 112 ± 7 | 148 ± 35 | 124 ± 20 | 91 ± 17 | 104 ± 9 | 113 ± 8 | 111 ± 9 | |
120 | 107 ± 23 | 117 ± 9 | 152 ± 37 | 114 ± 19 | 92 ± 17 | 116 ± 3 | 114 ± 4 | 101 ± 16 | |
AUC | 13,390 ± 2209 | 13,433 ± 600 | 16,395 ± 3693 | 15,815 ± 1349 | 11,784 ± 1547 | 13,279 ± 274 | 13,067 ± 791 | 12,980 ± 913 |
Time of OGTT | ptime | ptime×diet | ptime×diet×surgery |
---|---|---|---|
8 weeks before surgery | <0.001 | 0.161 | 0.114 * |
4 weeks after surgery | <0.001 | <0.001 | <0.05 |
8 weeks after surgery | <0.001 | <0.001 | <0.01 |
Time of OGTT | pSHAM vs. DJOS | |||
---|---|---|---|---|
CD/CD | CD/HFS | HFS/CD | HFS/HFS | |
8 weeks before surgery | 0.601 | <0.01 | <0.001 | <0.001 |
4 weeks after surgery | <0.05 | <0.001 | 0.086 | <0.001 |
8 weeks after surgery | 0.073 | 0.700 | <0.01 | <0.01 |
Time of OGTT | pdiet | psurgery | pdiet×surgery |
---|---|---|---|
AUC 1 | <0.001 | <0.01 | 0.067 |
AUC 2 | <0.01 | <0.001 | 0.568 |
AUC 3 | <0.05 | <0.001 | 0.136 |
Dietary group | pSHAM vs. DJOS | ||
AUC 1 | AUC 2 | AUC 3 | |
CD/CD | 0.527 | 0.069 | 0.121 |
CD/HFS | 0.483 | <0.001 | 0.880 |
HFS/CD | 0.061 | 0.056 | <0.01 |
HFS/HFS | <0.001 | <0.01 | <0.01 |
Hepatokine Concentration | Surgery Group | Dietary Groups | pANOVA | |||||
---|---|---|---|---|---|---|---|---|
CD/CD | CD/HFS | HFS/CD | HFS/HFS | Diet | Surgery | Diet × Surgery | ||
Fetuin-B [ng/mL] | SHAM | 359.6 ± 16.3 | 349.9 ± 16.7 | 301.2 ± 40.2 | 314.1 ± 6.6 | <0.001 | <0.001 | <0.001 |
DJOS | 180.7 ± 66.1 | 257.7 ± 45.5 | 302.4 ± 15.3 | 302.8 ± 15.6 | ||||
GDF-15 [ng/mL] | SHAM | 128.6 ± 36.6 | 144.9 ± 22.0 | 179.7 ± 33.1 | 269.8 ± 64.7 | <0.001 | <0.01 | 0.728 |
DJOS | 90.5 ± 37.7 | 129.4 ± 17.1 | 134.9 ± 23.6 | 227.9 ± 19.4 | ||||
Pentraxin 3 [pg/mL] | SHAM | 929.7 ± 37.1 | 817.4 ± 73.6 | 858.8 ± 42.5 | 881.6 ± 8.6 | <0.01 | 0.200 | <0.01 |
DJOS | 884.6 ± 1.5 | 882.2 ±13.2 | 882.7 ± 5.7 | 888.2 ± 1.8 |
Hepatokine Concentration | Surgery Group | pCD/CD vs. CD/HFS | pCD/CD vs. HFS/CD | pCD/CD vs. HFS/HFS | pCD/HFS vs. HFS/CD | pCD/HFS vs. HFS/HFS | pHFS/CD vs. HFS/HFS | pSHAM vs. DJOS | |||
---|---|---|---|---|---|---|---|---|---|---|---|
CD/CD | CD/HFS | HFS/CD | HFS/HFS | ||||||||
Fetuin-B [ng/mL] | SHAM | 0.620 | <0.01 | <0.05 | <0.05 | 0.071 | 0.508 | <0.001 | <0.001 | 0.933 | 0.058 |
DJOS | <0.001 | <0.001 | <0.001 | <0.05 | <0.001 | <0.05 | |||||
GDF-15 [ng/mL] | SHAM | 0.423 | <0.05 | <0.001 | 0.092 | <0.001 | <0.001 | 0.066 | 0.446 | <0.05 | <0.05 |
DJOS | 0.061 | <0.05 | <0.001 | 0.783 | <0.001 | <0.001 | |||||
Pentraxin 3 [pg/mL] | SHAM | <0.001 | <0.001 | <0.05 | <0.05 | <0.01 | 0.243 | <0.05 | <0.01 | 0.222 | 0.731 |
DJOS | 0.902 | 0.920 | 0.850 | 0.982 | 0.756 | 0.773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poloczek, J.; Tarnawska, M.; Chełmecka, E.; Łaszczyca, P.; Gumprecht, J.; Stygar, D. High Fat, High Sugar Diet and DJOS Bariatric Surgery Influence Plasma Levels of Fetuin-B, Growth Differentiation Factor-15, and Pentraxin 3 in Diet-Induced Obese Sprague–Dawley Rats. Nutrients 2021, 13, 3632. https://doi.org/10.3390/nu13103632
Poloczek J, Tarnawska M, Chełmecka E, Łaszczyca P, Gumprecht J, Stygar D. High Fat, High Sugar Diet and DJOS Bariatric Surgery Influence Plasma Levels of Fetuin-B, Growth Differentiation Factor-15, and Pentraxin 3 in Diet-Induced Obese Sprague–Dawley Rats. Nutrients. 2021; 13(10):3632. https://doi.org/10.3390/nu13103632
Chicago/Turabian StylePoloczek, Jakub, Monika Tarnawska, Elżbieta Chełmecka, Piotr Łaszczyca, Janusz Gumprecht, and Dominika Stygar. 2021. "High Fat, High Sugar Diet and DJOS Bariatric Surgery Influence Plasma Levels of Fetuin-B, Growth Differentiation Factor-15, and Pentraxin 3 in Diet-Induced Obese Sprague–Dawley Rats" Nutrients 13, no. 10: 3632. https://doi.org/10.3390/nu13103632
APA StylePoloczek, J., Tarnawska, M., Chełmecka, E., Łaszczyca, P., Gumprecht, J., & Stygar, D. (2021). High Fat, High Sugar Diet and DJOS Bariatric Surgery Influence Plasma Levels of Fetuin-B, Growth Differentiation Factor-15, and Pentraxin 3 in Diet-Induced Obese Sprague–Dawley Rats. Nutrients, 13(10), 3632. https://doi.org/10.3390/nu13103632