Improved Healing after Non-Surgical Periodontal Therapy Is Associated with Higher Protein Intake in Patients Who Are Non-Smokers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Periodontal Examination
2.3. Diet Assessment
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
Main Findings
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canadian Dental Association. Available online: https://www.cda-adc.ca/en/oral_health/faqs/gum_diseases_faqs.asp (accessed on 3 April 2020).
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Tonetti, M.S.; Jepsen, S.; Jin, L.; Otomo-Corgel, J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017, 44, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eke, P.I.; Dye, B.A.; Wei, L.; Thornton-Evans, G.O.; Genco, R.J. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res. 2012, 91, 914–920. [Google Scholar] [CrossRef]
- Billings, M.; Holtfreter, B.; Papapanou, P.N.; Mitnik, G.L.; Kocher, T.; Dye, B.A. Age-dependent distribution of periodontitis in two countries: Findings from NHANES 2009 to 2014 and SHIP-TREND 2008 to 2012. J. Clin. Periodontol. 2018, 45, S130–S148. [Google Scholar] [CrossRef] [Green Version]
- Chapple, I.L.C.; Bouchard, P.; Cagetti, M.G.; Campus, G.; Carra, M.C.; Cocco, F.; Nibali, L.; Hujoel, P.; Laine, M.L.; Lingstrom, P.; et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: Consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J. Clin. Periodontol. 2017, 44, S39–S51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapple, I.L.C.; van der Weijden, F.; Doerfer, C.; Herrera, D.; Shapira, L.; Polak, D.; Madianos, P.; Louropoulou, A.; Machtei, E.; Donos, N.; et al. Primary prevention of periodontitis: Managing gingivitis. J. Clin. Periodontol. 2015, 42, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Beglundh, T.; Sculean, A.; Tonetti, M.S.; EFP Workshop Participants and Methodological Consultants. Treatment of Stage I–III Periodontitis—The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2020, 47 (Suppl. 22), 4–60. [Google Scholar] [CrossRef] [PubMed]
- Damgaard, C.; Kantarci, A.; Holmstrup, P.; Hasturk, H.; Nielsen, C.H.; van Dyke, T.E. Porphyromonas Gingivalis-induced production of reactive oxygen species, tumor necrosis factor-α, interleukin-6, CXCL8 and CCL2 by neutrophils from localized aggressive periodontitis and healthy donors: Modulating actions of red blood cells and resolvin E1. J. Periodontal. Res. 2017, 52, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, C.; da Costa, A.V.; Guimarães, J.T.; Tuna, D.; Braga, A.C.; Pacheco, J.J.; Arosa, F.A.; Salazar, F.; Cardoso, E.M. Clinical improvement following therapy for periodontitis: Association with a decrease in IL-1 and IL-6. Exp. Ther. Med. 2014, 8, 323–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rom, O.; Avezov, K.; Aizenbud, D.; Reznick, A.Z. Cigarette smoking and inflammation revisited. Respir. Physiol. Neurobiol. 2013, 187, 5–10. [Google Scholar] [CrossRef]
- Barbieri, S.S.; Zacchi, E.; Amadio, P.; Gianellini, S.; Mussoni, L.; Weksler, B.B.; Tremoli, E. Cytokines present in smokers’ serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc. Res. 2011, 90, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Naji, A.; Edman, K.; Holmlund, A. Influence of smoking on periodontal healing one year after active treatment. J. Clin. Periodontol. 2020, 47, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Boström, L.; Linder, L.E.; Bergström, J. Influence of smoking on the outcome of periodontal surgery: A 5-year follow-up. J. Clin. Periodontol. 1998, 25, 194–201. [Google Scholar] [CrossRef]
- Heasman, L.; Stacey, F.; Preshaw, P.M.; McCracken, G.I.; Hepburn, S.; Heasman, P.A. The effect of smoking on periodontal treatment response: A review of clinical evidence. J. Clin. Periodontol. 2006, 33, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Lau, B.Y.; Johnston, B.D.; Fritz, P.C.; Ward, W.E. Dietary strategies to optimize wound healing after periodontal and dental implant surgery: An evidence-based review. Open Dent. J. 2013, 7, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, M.; Manz, M.C.; Taylor, G.W.; Yoshihara, A.; Miyazaki, H. Relations of serum ascorbic acid and α-tocopherol to periodontal disease. J. Dent. Res. 2012, 91, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Dodington, D.W.; Fritz, P.C.; Sullivan, P.J.; Ward, W.E. Higher intakes of fruits and vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA are positively associated with periodontal healing after nonsurgical periodontal therapy in nonsmokers but not in smokers. J. Nutr. 2015, 145, 2512–2519. [Google Scholar] [CrossRef] [Green Version]
- Abou Sulaiman, A.E.; Shehadeh, R.M.H. Assessment of total antioxidant capacity and the use of vitamin C in the treatment of non-smokers with chronic periodontitis. J. Periodontol. 2010, 81, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Martinon, P.; Fraticelli, L.; Giboreau, A.; Dussart, C.; Bourgeois, D.; Carrouel, F. Nutrition as a key modifiable factor for periodontitis and main chronic diseases. J. Clin. Med. 2021, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.L.P.; Milledge, K.L.; O’Leary, F.; Cumming, R.; Eberhard, J.; Hirani, V. Poor dietary intake of nutrients and food groups are associated with increased risk of periodontal disease among community-dwelling older adults: A systematic literature review. Nutr. Rev. 2020, 78, 175–188. [Google Scholar] [CrossRef]
- Baima, G.; Romandini, M.; Citterio, F.; Romano, F.; Aimetti, M. Periodontitis and Accelerated Biological Aging: A Geroscience Approach. J. Dent. Res. 2021. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Kotronia, E.; Ramsay, S.E. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol. 2000 2021, 87, 143–156. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Martindale, R.G.; Vanek, V.W.; McCarthy, M.; Roberts, P.; Taylor, B.; Ochoa, J.B.; Napolitano, L.; Cresci, G. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient. J. Parenter. Enter. Nutr. 2009, 33, 277–316. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. Determining the protein needs of “older” persons one meal at a time. Am. J. Clin. Nutr. 2017, 105, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.I.; Kim, I.Y.; Wolfe, R.R. Protein Consumption and the elderly: What is the optimal level of intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the Prot-Age study group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.L.; Manders, R.J.F.; Sahni, S.; Zhu, K.; Hewitt, C.E.; Prince, R.L.; Millward, D.J.; Lanham-New, S.A. Dietary protein and bone health across the life-course: An updated systematic review and meta-analysis over 40 years. Osteoporos. Int. 2019, 30, 741–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Kim, J. Dairy food consumption is inversely associated with the prevalence of periodontal disease in Korean adults. Nutrients 2019, 11, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adegboye, A.R.A.; Boucher, B.J.; Kongstad, J.; Fiehn, N.E.; Christensen, L.B.; Heitmann, B.L. Calcium, Vitamin D, casein and whey protein intakes and periodontitis among Danish adults. Public Health Nutr. 2016, 19, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, H.; Toba, Y.; Takada, Y.; Kawakami, H.; Ohba, H.; Hama, H.; Horibe, M.; Nagata, T. Milk basic protein increases alveolar bone formation in rat experimental periodontitis. J. Periodontal. Res. 2007, 42, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, C.; Putnins, E. The Periodontal Disease Classification System of the American Academy of Periodontology—An Update. J. Can. Dent. Assoc. 2000, 66, 594–597. [Google Scholar] [PubMed]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases. J. Periodontol. 2018, 89, S173–S182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, T.J.; Drake, R.B.; Naylor, J.E. The plaque control record. J. Periodontol. 1972, 43, 38. [Google Scholar] [CrossRef] [PubMed]
- Block, G.; Woods, M.; Potosky, A.; Clifford, C. Validation of a self-administered diet history questionnaire using multiple diet records. J. Clin. Epidemiol. 1990, 43, 1327–1335. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, R. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- Patel, R.A.; Wilson, R.F.; Palmer, R.M. The effect of smoking on periodontal bone regeneration: A systematic review and meta-analysis. J. Periodontol. 2012, 83, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Page, R.C.; Eke, P.I. Case definitions for use in population-based surveillance of periodontitis. J. Periodontol. 2007, 78, 1387–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomar, S.L.; Asma, S. Smoking-attributable periodontitis in the United States: Findings from NHANES III. J. Periodontol. 2000, 71, 743–751. [Google Scholar] [CrossRef]
- Yamane, T.; Konno, R.; Iwatsuki, K.; Oishi, Y. Negative Effects of a Low-Quality Protein Diet on Wound Healing via Modulation of the MMP2 activity in rats. Amino Acids 2020, 52, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.E.; Kershaw, J.; Brockington, S. Effect of nutritional supplements on wound healing in home-nursed elderly: A randomized trial. Nutrition 2005, 21, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R.; Miller, S.L.; Miller, K.B. Optimal protein intake in the elderly. Clin. Nutr. 2008, 27, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.O.; Yang, G.; Jin, F.; Liu, D.; Kushi, L.; Wen, W.; Gao, Y.T.; Zheng, W. Validity and reproducibility of the food frequency questionnaire used in the Shanghai Women’s Health Study. Euro. J. Clin. Nutr. 2004, 58, 17–23. [Google Scholar] [CrossRef] [Green Version]
Patients Who Did Not Smoke | Patients Who Did Smoke | |||||
---|---|---|---|---|---|---|
Protein Intake g/kg Body Weight/Day | p Value | Protein Intake g/kg Body Weight/Day | p Value | |||
<1 | ≥1 | <1 | ≥1 | |||
n = 34 | n = 29 | n = 10 | n = 12 | |||
Patient Characteristics | ||||||
Male | 25 (73%) | 8 (28%) | <0.001 | 7 (70%) | 2 (17%) | 0.027 |
Female | 9 (27%) | 21 (72%) | <0.001 | 3 (30%) | 10 (83%) | 0.027 |
Age (years) | 57 ± 10 | 61 ± 13 | 0.10 | 54 ± 8 | 52 ± 7 | 0.72 |
BMI (kg/m2) | 31.8 ± 5.0 | 26.6 ± 3.8 | <0.001 | 31.8 ± 6.1 | 24.6 ± 4.2 | 0.004 |
Former smokers | 15 (44%) | 18 (62%) | 0.16 | - | - | - |
Comorbidities | ||||||
Diabetes | 4 (12%) | 2 (7%) | 0.68 | 1 (10%) | 1 (8.3%) | 1.00 |
HTN or CAD | 14 (41%) | 10 (35%) | 0.59 | 3 (30%) | 2 (17%) | 0.62 |
Osteoporosis | 1 (3%) | 5 (17%) | 0.09 | 0 | 0 | - |
# of medications | 3 ± 3 | 3 ± 4 | 0.75 | 2 ± 1 | 1 ± 2 | 0.25 |
Dental hygiene | ||||||
Brushing (times/day) | 2.2. ± 0.6 | 2.4 ± 1.1 | 0.37 | 1.0 ± 0.7 | 2.3 ± 0.75 | 0.35 |
Flossing (times/week) | 2.7 ± 4.4 | 5.3 ± 3.6 | 0.016 | 2.4 ± 4.7 | 5.0 ± 6.1 | 0.069 |
Electric toothbrush use | 11 (32%) | 10 (35%) | 0.83 | 3 (27%) | 3 (25%) | 1.00 |
Cleanings (months) | 5 ± 3 | 5 ± 3 | 0.54 | 5 ± 3 | 7 ± 6 | 0.67 |
Previous therapy | 10 (29%) | 8 (28%) | 0.89 | 3 (30%) | 3 (25%) | 1.00 |
Baseline clinical outcomes | ||||||
Number of teeth | 25 ± 4 | 25 ± 4 | 0.81 | 25 ± 4 | 26 ± 2 | 0.25 |
PD (# sites ≥ 4 mm) | 93 ± 37 | 93 ± 33 | 0.96 | 102 ± 39 | 107 ± 34 | 0.77 |
BOP (# sites) | 76 ± 46 | 77 ± 50 | 0.92 | 79 ± 61 | 73 ± 43 | 0.77 |
Plaque index (%) | 78 ± 27 | 67 ± 30 | 0.19 | 83 ± 24 | 57 ± 37 | 0.080 |
Follow-up time (days) | 74 ± 17 | 78 ± 15 | 0.37 | 79 ± 17 | 80 ± 16 | 0.92 |
Follow-up clinical outcomes | ||||||
Number of teeth | 24 ± 4 | 24 ± 5 | 0.95 | 24 ± 4 | 26 ± 3 | 0.35 |
PD (# sites ≥ 4 mm) | 16 ± 11 | 11 ± 8 | 0.05 | 22 ± 21 | 20 ± 15 | 1.00 |
BOP (# sites) | 8 ± 9 | 3 ± 6 | 0.009 | 13 ± 18 | 4 ± 7 | 0.069 |
Plaque index (%) | 36 ± 19 | 28 ± 25 | 0.14 | 47 ± 26 | 30 ± 25 | 0.50 |
Nutritional intake and status | ||||||
Calories (Kcal/day) | 1625 ± 586 | 1583 ± 649 | 0.79 | 1828 ± 530 | 1525 ± 674 | 0.28 |
Protein (g/day) | 79 ± 10 | 88 ± 9 | <0.001 | 69 ± 13 | 84 ± 13 | 0.025 |
Carbohydrate (g/day) | 244 ± 34 | 230 ± 37 | 0.14 | 231 ± 51 | 227 ± 33 | 0.72 |
Fats (g/day) | 76 ± 12 | 78 ±13 | 0.43 | 77 ± 12 | 80 ±18 | 1.00 |
EPA + DHA (mg/day) | 320 ± 463 | 380 ± 365 | 0.58 | 99 ± 61 | 253 ± 163 | 0.021 |
Vitamin C (mg/day) | 130 ± 51 | 129 ± 37 | 0.90 | 105 ± 61 | 137 ± 73 | 0.25 |
25-OH-D (nmol/L) | 59 ± 21 | 70 ± 25 | 0.074 | 44 ± 12 | 57 ± 21 | 0.159 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
B (95% CI) | p | B (95% CI) | p | B (95% CI) | p | |
Protein intake | ||||||
<1 g/kg body weight/day | Reference | Reference | Reference | |||
≥1 g/kg body weight/day | −4.8 (−9.6, 0.0) | 0.050 | −5.4 (−9.9, −1.0) | 0.018 | −9.7 (−15.5, −3.9) | 0.001 |
Hygienist | ||||||
Hygienist 1 | Reference | Reference | ||||
Hygienist 2 | −7.3 (−12.8, −1.8) | 0.011 | −7.2 (−12.4, −1.9) | 0.009 | ||
Hygienist 3 | −4.8 (−10.7, 1.0) | 0.11 | −6.1 (−11.9, −0.4) | 0.037 | ||
Hygienist 4 | −4.2 (−0.1, 0.2) | 0.23 | −6.3 (−13.7, 1.0) | 0.09 | ||
Baseline PD (# ≥ 4 mm) | 0.1 (0.01, 0.2) | <0.001 | 0.2 (0.1, 0.2) | <0.001 | ||
Follow-up time (days) | 0.0 (−0.1, 0.2) | 0.54 | 0.0 (−0.1, 0.2) | 0.54 | ||
Sex | ||||||
Male | Reference | |||||
Female | 4.1 (−0.8, 9.0) | 0.10 | ||||
Age (years) | 0.2 (0.0, 0.4) | 0.041 | ||||
BMI (kg/m2) | −0.5 (−1.0, 0.0) | 0.038 | ||||
Flossing (times/week) | 0.0 (−0.5, 0.6) | 0.89 | ||||
BOP (# sites) | 0.3 (0.0, 0.6) | 0.09 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
B (95% CI) | p | B (95% CI) | p | B (95% CI) | p | |
Protein intake | ||||||
<1 g/kg body weight/day | Reference | Reference | Reference | |||
≥1 g/kg body weight/day | −2.2 (−18.3, 13.8) | 0.77 | −0.4 (11.9, 11.1) | 0.95 | 16.3 (−1.4, 34.0) | 0.066 |
Hygienist | ||||||
Hygienist 1 | Reference | Reference | ||||
Hygienist 2 | −18.2 (−32.7, −3.8) | 0.017 | −25.0 (−44.7, −5.2) | 0.016 | ||
Hygienist 3 | −7.0 (−28.4, 14.4) | 0.49 | −9.8 (−35.3, 15.7) | 0.45 | ||
Hygienist 4 | −20.7 (−46.1, 4.8) | 0.10 | −26.2 (−55.2, 2.8) | 0.033 | ||
Baseline PD (# ≥ 4 mm) | 0.2 (0.0, 0.4) | 0.025 | 0.1 (−0.2, 0.3) | 0.38 | ||
Follow-up time (days) | 0.3 (−0.1, 0.6) | 0.17 | 0.0 (−0.5, 0.5) | 0.98 | ||
Sex | ||||||
Male | Reference | |||||
Female | −9.6 (−27.1, 7.9) | 0.30 | ||||
Age (years) | 0.2 (−0.6, 0.9) | 0.60 | ||||
BMI (kg/m2) | 0.3 (−1.0, 1.6) | 0.66 | ||||
Flossing (times/week) | −0.3 (−1.3, 0.7) | 0.47 | ||||
BOP (# sites) | 0.8 (0.1, 1.4) | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodington, D.W.; Young, H.E.; Beaudette, J.R.; Fritz, P.C.; Ward, W.E. Improved Healing after Non-Surgical Periodontal Therapy Is Associated with Higher Protein Intake in Patients Who Are Non-Smokers. Nutrients 2021, 13, 3722. https://doi.org/10.3390/nu13113722
Dodington DW, Young HE, Beaudette JR, Fritz PC, Ward WE. Improved Healing after Non-Surgical Periodontal Therapy Is Associated with Higher Protein Intake in Patients Who Are Non-Smokers. Nutrients. 2021; 13(11):3722. https://doi.org/10.3390/nu13113722
Chicago/Turabian StyleDodington, David W., Hannah E. Young, Jennifer R. Beaudette, Peter C. Fritz, and Wendy E. Ward. 2021. "Improved Healing after Non-Surgical Periodontal Therapy Is Associated with Higher Protein Intake in Patients Who Are Non-Smokers" Nutrients 13, no. 11: 3722. https://doi.org/10.3390/nu13113722
APA StyleDodington, D. W., Young, H. E., Beaudette, J. R., Fritz, P. C., & Ward, W. E. (2021). Improved Healing after Non-Surgical Periodontal Therapy Is Associated with Higher Protein Intake in Patients Who Are Non-Smokers. Nutrients, 13(11), 3722. https://doi.org/10.3390/nu13113722