Associations between the Mediterranean Diet Pattern and Weight Status and Cognitive Development in Preschool Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Food Frequency Questionnaire (FFQ)
2.3. Mediterranean Diet (MD) Score
2.4. Neuropsychological Assessment
2.5. Statistical Analysis
3. Results
3.1. Description of the Study Population
3.2. Children’s Food, Calories and Nutrients Intake
3.3. Correlations between Food Categories and BMI and Cognitive Outcomes
3.4. Adherence to MD and Cognitive Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luchsinger, J.A.; Ryan, C.; Lenore, J.; Cowie, L.C.C.; Casagrande, S.S.; Menke, A.; Cissell, M.A.; Eberhardt, M.S.; Meigs, J.B.; Gregg, E.W.; et al. (Eds.) Diabetes and Cognitive Impairment. In Diabetes in America, 3rd ed.; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2018. [Google Scholar]
- Glisky, E.L.; Riddle, D.R. (Eds.) Changes in Cognitive Function in Human Aging. In Brain Aging: Models, Methods, and Mechanisms; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ligia, J.; Dominguez, L.J.; Mario Barbagallo, M. Nutritional prevention of cognitive decline and dementia. Acta Biomed. 2018, 89, 276–290. [Google Scholar]
- Russ, T.C.; Hannah, J.; Batty, G.D.; Booth, C.C.; Deary, I.J.; Starr, J.M. Childhood Cognitive Ability and Incident Dementia: The 1932 Scottish Mental Survey Cohort into their 10th Decade. Epidemiology 2017, 28, 361–364. [Google Scholar] [CrossRef] [Green Version]
- Bhat, Z.F.; Morton, J.D.; Mason, S.; Bekhit, A.E.-D.A.; Bhat, H.F. Obesity and neurological disorders: Dietary perspective of a global menace. Crit. Rev. Food. Sci. Nutr. 2019, 59, 1294–1310. [Google Scholar] [CrossRef]
- Lam, L.F.; Lawlis, T.R. Feeding the brain—The effects of micronutrient interventions on cognitive performance among school-aged children: A systematic review of randomized controlled trials. Clin. Nutr. 2017, 36, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Naveed, S.; Lakka, T.; Haapala, E.A. An Overview on the Associations between Health Behaviors and Brain Health in Children and Adolescents with Special Reference to Diet Quality. Int. J. Environ. Res. Public Health 2020, 17, 953. [Google Scholar]
- Montgomery, P.; Burton, J.R.; Sewell, R.P.; Spreckelsen, T.F.; Richardson, A.J. Low blood long chain omega-3 fatty acids in UK children are associated with poor cognitive performance and behavior: A cross-sectional analysis from the DOLAB study. PLoS ONE 2013, 8, e66697. [Google Scholar] [CrossRef]
- Boucher, O.; Burden, M.J.; Muckle, G.; Saint-Amour, D.; Ayotte, P.; Dewailly, E.; Nelson, C.A.; Jacobson, S.W.; Jacobson, J.L. Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. Am. J. Clin. Nutr. 2011, 93, 1025–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyaradi, A.; Li, J.; Hickling, S.; Foster, J.; Oddy, W.H. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 2013, 26, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gispert-Llaurado, M.; Perez-Garcia, M.; Escribano, J.; Closa-Monasterolo, R.; Luque, V.; Grote, V.; Weber, M.; Torres-Espínola, F.J.; Czech-Kowalska, J.; Verduci, E.; et al. Fish consumption in mid-childhood and its relationship to neuropsychological outcomes measured in 7–9 year old children using a NUTRIMENTHE neuropsychological battery. Clin. Nutr. 2016, 35, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Florence, M.D.; Asbridge, M.; Veugelers, P.J. Diet quality and academic performance. J. Sch. Health 2008, 78, 209–215, quiz 239. [Google Scholar] [CrossRef]
- Wolraich, M.L.; Wilson, D.B.; White, J.W. The effect of sugar on behavior or cognition in children. A meta-analysis. JAMA 1995, 274, 1617–1621. [Google Scholar] [CrossRef]
- Cohen, J.F.W.; Rifas-Shiman, S.L.; Young, J.; Oken, E. Associations of Prenatal and Child Sugar Intake with Child Cognition. Am. J. Prev. Med. 2018, 54, 727–735. [Google Scholar] [CrossRef]
- Ingwersen, J.; Defeyter, M.A.; O Kennedy, D.; Wesnes, K.A.; Scholey, A.B. A low glycaemic index breakfast cereal preferentially prevents children’s cognitive performance from declining throughout the morning. Appetite 2007, 49, 240–244. [Google Scholar] [CrossRef]
- Micha, R.; Rogers, P.J.; Nelson, M. Glycaemic index and glycaemic load of breakfast predict cognitive function and mood in school children: A randomised controlled trial. Br. J. Nutr. 2011, 106, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Taki, Y.; Hashizume, H.; Sassa, Y.; Takeuchi, H.; Asano, M.; Asano, K. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children. PLoS ONE 2010, 5, e15213. [Google Scholar] [CrossRef]
- Hoyland, A. A systematic review of the effect of breakfast on the cognitive performance of children and adolescents. Nut. Res. Rev. 2009, 22, 220–243. [Google Scholar] [CrossRef] [Green Version]
- Allès, B.; Samieri, C.; Féart, C.; Jutand, M.A.; Laurin, D.; Barberger-Gateau, P. Dietary patterns: A novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr. Res. Rev. 2012, 25, 207–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassiloudis, I.; Yiannakouris, N.; Panagiotakos, D.B.; Apostolopoulos, K.; Costarelli, V. Academic performance in relation to adherence to the Mediterranean diet and energy balance behaviors in Greek primary schoolchildren. J. Nutr. Educ. Behav. 2014, 46, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Guzzardi, M.A.; Granziera, F.; Sanguinetti, E.; Ditaranto, F.; Muratori, F.; Iozzo, P. Exclusive Breastfeeding Predicts Higher Hearing-Language Development in Girls of Preschool Age. Nutrients 2020, 12, 2320. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age (accessed on 29 July 2021).
- Institute for Social and Economic Research, University of Essex. Available online: https://www.iser.essex.ac.uk/files/esec/guide/docs/UserGuide.pdf (accessed on 29 July 2021).
- The ZOOM8 Study: Nutrition and Physical Activity of Primary School Children. Reports ISTISAN. Available online: https://www.ncbi.nlm.nih.gov/nlmcatalog/101602341 (accessed on 29 July 2021). (In Italian)
- Saravia, L.; Miguel-Berges, M.L.; Iglesia, I.; Nascimento-Ferreira, M.V.; Perdomo, G.; Bove, I.; Slater, B.; Moreno, L.A. Relative validity of FFQ to assess food items, energy, macronutrient and micronutrient intake in children and adolescents: A systematic review with meta-analysis. Br. J. Nutr. 2020, 125, 792–818. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for a Healthy Diet, Scientific Dossier 2017. Chapter 10. Available online: https://www.crea.gov.it/documents/59764/0/Dossier+LG+2017_CAP10.pdf/627ccb4d-4f80-cc82-bd3a7156c27ddd4a?t=1575530729812 (accessed on 29 July 2021). (In Italian)
- Food Composition Database for Epidemiological Studies in Italy (BDA). Available online: http://www.bda-ieo.it/wordpress/en/?page_id=31 (accessed on 29 July 2021). (In Italian).
- Council for Agricultural Research and Agricultural Economics Analysis (CREA). Available online: https://www.crea.gov.it/-/tabella-di-composizione-degli-alimenti (accessed on 29 July 2021). (In Italian)
- Francesco Sofi, F.; Francesca Cesari, F.; Rosanna Abbate, R.; Gian Franco Gensini, G.F.; Alessandro Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luiz, D.M.; Foxcroft, C.D.; Stewart, R. The construct validity of the Griffiths Scales of Mental Development. Child Care Health Dev. 2001, 27, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Ivens, J.; Martin, N. A common metric for the Griffiths Scales. Arch. Dis. Child. 2002, 87, 109–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luiz, D.M.; Faragher, B.; Barnard, A.; Knoesen, N.; Kotras, N.; Burns, L.E.; Challis, D. GMDS-ER: Griffiths Mental Development Scales—Extended Revised Analysis Manual; Hogrefe—The Test Agency Ltd.: Oxford, UK, 2006. [Google Scholar]
- Tables LARN 2014. Available online: https://sinu.it/tabelle-larn-2014/ (accessed on 29 July 2021). (In Italian).
- Khan, N.A.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Kramer, A.F.; Hillman, C.H. Dietary fiber is positively associated with cognitive control among prepubertal children. J. Nutr. 2015, 145, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapala, E.A.; Eloranta, A.E.; Venäläinen, T.; Jalkanen, H.; Poikkeus, A.M.; Ahonen, T.; Lindi, V.; Lakka, T.A. Diet quality and academic achievement: A prospective study among primary school children. Eur. J. Nutr. 2017, 56, 2299–2308. [Google Scholar] [CrossRef] [PubMed]
- Dauncey, M.J.; Bicknell, R.J. Nutrition and neurodevelopment: Mechanisms of developmental dysfunction and disease in later life. Nutr. Res. Rev. 1999, 12, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Martínez García, R.M.; Jiménez Ortega, A.I.; López Sobaler, A.M.; Ortega, R.M. Nutrition strategies that improve cognitive function. Nutr. Hosp. 2018, 35, 16–19. [Google Scholar]
- Zeisel, S.H. Dietary influences on neurotransmission. Adv. Pediatr. 1986, 33, 23–47. [Google Scholar]
- Ceppa, F.; Mancini, A.; Tuohy, K. Current evidence linking diet to gut microbiota and brain development and function. Int. J. Food Sci. Nutr. 2019, 70, 1–19. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Pearce, A.L.; Leonhardt, C.A.; Vaidya, C.J. Executive and Reward-Related Function in Pediatric Obesity: A Meta-Analysis. Child Obes. 2018, 14, 265–279. [Google Scholar] [CrossRef]
- Reinert, K.R.S.; Po’e, E.K.; Barkin, S.L. The relationship between executive function and obesity in children and adolescents: A systematic literature review. J. Obes. 2013, 2013, 820956. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Matheson, B.E.; Kaye, W.H.; Boutelle, K.N. Neurocognitive correlates of obesity and obesity-related behaviors in chil-dren and adolescents. Int. J. Obes. 2014, 38, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Thompson, F.E.; Byers, T. Dietary assessment resource manual. J. Nutr. 1994, 124 (Suppl. 11), 2245S–2317S. [Google Scholar] [PubMed]
Variable | N | Descriptive Results |
---|---|---|
Boys/girls, N (%) | 54 | 30 (55.6)/24 (44.4) |
Breastfeeding (exclusively/non-exclusively), N (%) | 54 | 25 (46.3)/29 (53.7) |
Weight at 5 years (kg), mean ± SD | 54 | 20.6 ± 3.7 |
BMI at 5 years (kg/m2), mean ± SD | 54 | 17.1 ± 2.4 |
BMI UW/NW/OW/OB at 5 years, N (%) | 54 | 27 (50)/18 (33.3)/9 (16.7)/0 |
BMI UW/NW/OW/OB at 5 years (kg/m2), mean ± SD | 54 | 15.3 ± 0.9/17.6 ± 0.5/21.1 ± 0.5/0 |
Mothers’ BMI in pregnancy | 51 | 29.4 ± 4.9 |
Mother’s age (years), mean ± SD | 54 | 39.1 ± 4.2 |
Father’s age (years), mean ± SD | 54 | 41.7 ± 4.6 |
Mothers’ ESeC WK/IN/SA, N (%) | 53 | 18 (33.3)/21 (38.9)/14 (25.9) |
Fathers’ ESeC WK/IN/SA, N (%) | 48 | 19 (35.2)/19 (35.2)/10 (18.5) |
Mothers’ IQ estimate, mean ± SD | 48 | 114.9 ± 9.5 |
Actual age at cognitive assessment | 54 | 5.2 ± 0.1 |
Locomotor score, mean ± SD | 54 | 103.8 ± 7.3 |
Personal–social score, mean ± SD | 54 | 104.8 ± 8.6 |
Hearing and speech score, mean ± SD | 54 | 101.6 ± 10.0 |
Hand–eye coordination score, mean ± SD | 54 | 99.2 ± 10.0 |
Performance score, mean ± SD | 54 | 112.0 ± 7.1 |
Practical reasoning score, mean ± Practical SD | 54 | 95.7 ± 9.2 |
MD scores, mean ± SD | 54 | 4.3 ± 1.6 |
MD score 0–2/3–4/5–6/7–9 categories, N (%) | 54 | 8 (14.8)/20 (37)/20 (37)/6 (11.1) |
Dietary Variable | N | Children’s Intake |
---|---|---|
Cereals (g/week) | 53 | 1110.8 ± 484.0 |
Potatoes (g/week) | 53 | 173.1 ± 124.9 |
Legumes (g/week) | 53 | 41.5 ± 38.9 |
Eggs (g/week) | 53 | 49.5 ± 47.4 |
Red and processed meats (g/week) | 54 | 140.6 ± 96.6 |
White meat (g/week) | 54 | 120.8 ± 70.1 |
Fish (g/week) | 54 | 137.5 ± 104.0 |
Dairy products (g/week) | 54 | 582.3 ± 486.5 |
Vegetables (g/week) | 54 | 492.5 ± 447.1 |
Fruit and nuts (g/week) | 54 | 1152.5 ± 868.8 |
Cakes and snacks (g/week) | 54 | 406.8 ± 358.7 |
Sugar-sweetened drinks | 53 | 865.5 ± 644.3 |
Unsaturated/saturated fats ratio | 54 | 4.7/1 ± 1.1 |
Daily calorie (kcal/day) | 54 | 1569.0 ± 394.7 |
Proteins (g/day) | 54 | 48.3 ± 13.4 |
Lipids (g/day) | 54 | 60.4 ± 13.9 |
Carbohydrates (g/day) | 54 | 202.4 ± 61.5 |
Fibres (g/day) | 54 | 11.0 ± 3.7 |
Retinol (mg/day) | 54 | 414.1 ± 163.6 |
Vitamin B1 (mg/day) | 54 | 0.5 ± 0.1 |
Vitamin B6 (mg/day) | 54 | 0.9 ± 0.2 |
Folate (μg/day) | 54 | 144.4 ± 48.2 |
Vitamin C (mg/day) | 54 | 75.5 ± 48.7 |
Vitamin D (μg/day) | 54 | 0.6 ± 0.3 |
Vitamin E (mg/day) | 54 | 7.9 ± 1.6 |
Iron (mg/day) | 54 | 5.2 ± 1.5 |
Calcium (mg/day) | 54 | 649.1 ± 245.0 |
Sodium (mg/day) | 54 | 1264.0 ± 468.6 |
Potassium (mg/day) | 54 | 1728.2 ± 481.7 |
Phosphorous (mg/day) | 54 | 797.8 ± 241.4 |
Zinc (mg/day) | 54 | 5.4 ± 1.5 |
Variables | Regression Model | BMI | Locomotor | Personal–Social | Hearing and Language | Hand–Eye Coordination | Performance | Practical Reasoning |
---|---|---|---|---|---|---|---|---|
Cereals (g/week) | Bivariate | −0.188 | 0.029 | 0.208 | −0.010 | 0.032 | −0.030 | 0.137 |
Adjusted | −0.042 | 0.004 | 0.274 | 0.109 | 0.035 | −0.055 | 0.227 | |
Potatoes (g/week) | Bivariate | −0.077 | 0.078 | −0.012 | −0.021 | 0.037 | −0.057 | 0.116 |
Adjusted | −0.307 | 0.114 | −0.049 | −0.210 | 0.008 | −0.010 | 0.158 | |
Legumes (g/week) | Bivariate | 0.096 | 0.011 | 0.061 | 0.002 | −0.093 | 0.103 | −0.105 |
Adjusted | 0.113 | 0.079 | 0.104 | −0.009 | −0.044 | 0.188 | −0.146 | |
Eggs (g/week) | Bivariate | −0.162 | −0.085 | 0.068 | −0.130 | 0.229 | 0.188 | −0.028 |
Adjusted | −0.059 | −0.089 | −0.049 | −0.213 | 0.380 | 0.199 | −0.113 | |
Red and processed meats (g/week) | Bivariate | 0.237 | 0.033 | 0.097 | 0.121 | 0.012 | −0.007 | −0.006 |
Adjusted | 0.319 | 0.185 | 0.217 | 0.188 | 0.059 | 0.057 | 0.056 | |
White meat (g/week) | Bivariate | 0.377 ** | 0.081 | 0.084 | 0.054 | 0.009 | −0.111 | −0.080 |
Adjusted | 0.440 ** | 0.267 | 0.303 | 0.067 | 0.089 | 0.023 | −0.015 | |
Vegetables (g/week) | Bivariate | −0.067 | 0.242 | 0.295 * | 0.067 | 0.037 | 0.101 | 0.030 |
Adjusted | 0.073 | 0.285 | 0.315 | −0.009 | 0.051 | 0.005 | −0.006 | |
Fruit and nuts (g/week) | Bivariate | −0.030 | 0.059 | 0.044 | −0.168 | 0.018 | −0.124 | −0.032 |
Adjusted | 0.085 | 0.053 | 0.046 | −0.088 | 0.199 | −0.102 | 0.181 | |
Dairy products (g/week) | Bivariate | −0.232 | 0.030 | −0.015 | 0.053 | 0.101 | 0.275 * | 0.233 |
Adjusted | −0.177 | −0.021 | −0.093 | 0.024 | 0.027 | 0.272 | 0.233 | |
Unsaturated/saturated fats ratio | Bivariate | −0.023 | −0.078 | −0.018 | −0.037 | 0.369 ** | 0.254 | 0.212 |
Adjusted | −0.009 | −0.282 | −0.224 | −0.086 | 0.295 | 0.222 | −0.002 | |
BMI categories | Bivariate | 0.792 ** | −0.131 | −0.083 | −0.115 | −0.005 | −0.100 | −0.358 ** |
Adjusted | 0.811 ** | −0.122 | 0.084 | −0.126 | 0.100 | 0.063 | −0.329 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granziera, F.; Guzzardi, M.A.; Iozzo, P. Associations between the Mediterranean Diet Pattern and Weight Status and Cognitive Development in Preschool Children. Nutrients 2021, 13, 3723. https://doi.org/10.3390/nu13113723
Granziera F, Guzzardi MA, Iozzo P. Associations between the Mediterranean Diet Pattern and Weight Status and Cognitive Development in Preschool Children. Nutrients. 2021; 13(11):3723. https://doi.org/10.3390/nu13113723
Chicago/Turabian StyleGranziera, Federico, Maria Angela Guzzardi, and Patricia Iozzo. 2021. "Associations between the Mediterranean Diet Pattern and Weight Status and Cognitive Development in Preschool Children" Nutrients 13, no. 11: 3723. https://doi.org/10.3390/nu13113723
APA StyleGranziera, F., Guzzardi, M. A., & Iozzo, P. (2021). Associations between the Mediterranean Diet Pattern and Weight Status and Cognitive Development in Preschool Children. Nutrients, 13(11), 3723. https://doi.org/10.3390/nu13113723