Plasma Vitamin B12 and Folate Alter the Association of Blood Lead and Cadmium and Total Urinary Arsenic Levels with Chronic Kidney Disease in a Taiwanese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Interviews
2.2. Measurements of Urinary Arsenic Levels
2.3. Measurements of Blood Lead and Cadmium Levels
2.4. Measurements of Plasma Folate and Vitamin B12 Levels
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Kidney Foundation. K/DOQI Clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Levey, A.S.; Atkins, R.; Coresh, J.; Cohen, E.P.; Collins, A.J.; Eckardt, K.U.; Nahas, M.E.; Jaber, B.L.; Jadoul, M.; Levin, A.; et al. Chronic kidney disease as a global public health problem: Approaches and initiatives—A position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007, 72, 247–259. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.P.; Cheng, T.Y.; Tsai, M.K.; Chang, Y.C.; Chan, H.T.; Tsai, S.P.; Chiang, P.H.; Hsu, C.C.; Sung, P.K.; Hsu, Y.H.; et al. All-cause mortality attributable to chronic kidney disease: A prospective cohort study based on 462 293 adults in Taiwan. Lancet 2008, 371, 2173–2182. [Google Scholar] [CrossRef]
- USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease: Bethesda, MD, USA, 2016.
- Wu, C.Y.; Wong, C.S.; Chung, C.J.; Wu, M.Y.; Huang, Y.L.; Ao, P.L.; Lin, Y.F.; Lin, Y.C.; Shiue, H.S.; Su, C.T.; et al. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. J. Hazard. Mater. 2019, 375, 224–232. [Google Scholar] [CrossRef]
- Satarug, S.; Boonprasert, K.; Gobe, G.C.; Ruenweerayut, R.; Johnson, D.W.; Na-Bangchang, K.; Vesey, D.A. Chronic exposure to cadmium is associated with a marked reduction in glomerular filtration rate. Clin. Kidney J. 2019, 12, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, Y.; Xiao, Y.; Li, Y.; Yu, Y.; Mo, T.; Jiang, H.; Li, X.; Yang, H.; Xu, C.; et al. Associations of plasma metal concentrations with the decline in kidney function: A longitudinal study of Chinese adults. Ecotoxicol. Environ. Saf. 2020, 189, 110006. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.N.; Tangpong, J.; Rahman, M.A. Xanthones protects lead-induced chronic kidney disease (CKD) via activating Nrf-2 and modulating NF-kB, MAPK pathway. Biochem. Biophys. Rep. 2020, 21, 100718. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.J.; Hung, C.H.; Wang, C.W.; Tu, H.P.; Li, C.H.; Tsai, C.C.; Lin, W.Y.; Chen, S.C.; Kuo, C.H. Associations among Heavy Metals and Proteinuria and Chronic Kidney Disease. Diagnostics 2021, 11, 282. [Google Scholar] [CrossRef]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Spence, J.D.; Wang, X.; Huo, Y.; Xu, X.; Qin, X. Effect of Vitamin B12 Levels on the Association Between Folic Acid Treatment and CKD Progression: A Post Hoc Analysis of a Folic Acid Interventional Trial. Am. J. Kidney Dis. 2020, 75, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Capelli, I.; Cianciolo, G.; Gasperoni, L.; Zappulo, F.; Tondolo, F.; Cappuccilli, M.; La, M.G. Folic Acid and Vitamin B12 Administration in CKD, Why Not? Nutrients. 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A.; Noce, A.; Di, G.G.; De, S.A.; Calla, C.; Zenobi, R.; Dessi, M.; Di, D.N. Homocysteine, cysteine, folate and vitamin B(1)(2) status in type 2 diabetic patients with chronic kidney disease. J. Nephrol. 2015, 28, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.L.; Lin-Tan, D.T.; Li, Y.J.; Chen, K.H.; Huang, Y.L. Low-level environmental exposure to lead and progressive chronic kidney diseases. Am. J. Med. 2006, 119, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Huang, Y.L.; Shiue, H.S.; Chen, T.W.; Lin, Y.F.; Huang, C.Y.; Lin, Y.C.; Han, B.C.; Hsueh, Y.M. Renin-angiotensin-aldosterone system related gene polymorphisms and urinary total arsenic is related to chronic kidney disease. Toxicol. Appl. Pharmacol. 2014, 279, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.M.; Huang, Y.L.; Huang, C.C.; Wu, W.L.; Chen, H.M.; Yang, M.H.; Lue, L.C.; Chen, C.J. Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J. Toxicol. Environ. Health A 1998, 54, 431–444. [Google Scholar] [PubMed]
- Peng, L.; Wang, X.; Huo, X.; Xu, X.; Lin, K.; Zhang, J.; Huang, Y.; Wu, K. Blood cadmium burden and the risk of nasopharyngeal carcinoma: A case-control study in Chinese Chaoshan population. Environ. Sci. Pollut. Res. Int. 2015, 22, 12323–12331. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, R.L.; Huang, Y.L.; Shiue, H.S.; Huang, S.R.; Lin, M.I.; Mu, S.C.; Chung, C.J.; Hsueh, Y.M. Arsenic methylation capacity and developmental delay in preschool children in Taiwan. Int. J. Hyg. Environ. Health 2014, 217, 678–686. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chung, C.J.; Huang, Y.L.; Hsieh, R.L.; Huang, P.T.; Wu, M.Y.; Ao, P.L.; Shiue, H.S.; Huang, S.R.; Su, C.T.; et al. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan. Arch. Toxicol. 2019, 93, 2535–2544. [Google Scholar] [CrossRef]
- Szklo, M.; Nieto, F.J. Epidemiology Beyong the Basics, 4th ed.; Jones & Bartlett Publishers: Burlington, VT, USA, 2019; pp. 509–512. [Google Scholar]
- Rothman, K.J. Modern Epidemiology; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1986; pp. 322–326. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Confidence interval estimation of interaction. Epidemiology 1992, 3, 452–456. [Google Scholar] [CrossRef]
- Kakitapalli, Y.; Ampolu, J.; Madasu, S.D.; Sai Kumar, M.L.S. Detailed Review of Chronic Kidney Disease. Kidney Dis. 2020, 6, 85–91. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Chung, C.J.; Shiue, H.S.; Chen, J.B.; Chiang, S.S.; Yang, M.H.; Tai, C.W.; Su, C.T. Urinary arsenic species and CKD in a Taiwanese population: A case-control study. Am. J. Kidney Dis. 2009, 54, 859–870. [Google Scholar] [CrossRef]
- Mujaj, B.; Yang, W.Y.; Zhang, Z.Y.; Wei, F.F.; Thijs, L.; Verhamme, P.; Staessen, J.A. Renal function in relation to low-level environmental lead exposure. Nephrol. Dial. Transplant. 2019, 34, 941–946. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Groothof, D.; Vodegel, J.J.; Gacitua, T.A.; Gomes-Neto, A.W.; Oste, M.C.J.; Pol, R.A.; Ferreccio, C.; Berger, S.P.; Chong, G.; et al. Circulating Arsenic is Associated with Long-Term Risk of Graft Failure in Kidney Transplant Recipients: A Prospective Cohort Study. J. Clin. Med. 2020, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Satarug, S.; Gobe, G.C.; Ujjin, P.; Vesey, D.A. A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead. Toxics 2020, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.B. Co-exposures to toxic metals cadmium, lead, and mercury and their impact on unhealthy kidney function. Environ. Sci. Pollut. Res. Int. 2019, 26, 30112–30118. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Groothof, D.; Vodegel, J.J.; Eisenga, M.F.; Knobbe, T.J.; IJmker, J.; Lammerts, R.G.M.; de Borst, M.H.; Berger, S.P.; Nolte, I.M.; et al. Plasma cadmium is associated with increased risk of long-term kidney graft failure. Kidney Int. 2021, 99, 1213–1224. [Google Scholar] [CrossRef]
- Orr, S.E.; Bridges, C.C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, M.N.; Tangpong, J.; Rahman, M.M. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol. Rep. 2018, 5, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Ma, J.Q.; Sun, Y.Z. Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol. Appl. Pharmacol. 2012, 258, 330–342. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, A.; Lal, A.; Pant, M. Cellular mechanisms of cadmium-induced toxicity: A review. Int. J. Environ. Health Res. 2014, 24, 378–399. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.P.; Tsai, K.S.; Chen, Y.W.; Huang, C.F.; Yang, R.S.; Liu, S.H. Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch. Toxicol. 2012, 86, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.M.; El-Toweissy, M.Y.; Ali, A.M.; Awad Allah, A.A.; Darwish, H.S.; Sadek, I.A. Curcumin Ameliorates Lead (Pb(2+))-Induced Hemato-Biochemical Alterations and Renal Oxidative Damage in a Rat Model. Biol. Trace Elem. Res. 2015, 168, 206–220. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Z.K.; Wang, Z.Y.; Yang, D.B.; Liu, Z.P.; Wang, L. Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch. Toxicol. 2016, 90, 1193–1209. [Google Scholar] [CrossRef]
- Flores-Guerrero, J.L.; Minovic, I.; Groothof, D.; Gruppen, E.G.; Riphagen, I.J.; Kootstra-Ros, J.; Muller, K.A.; Hak, E.; Navis, G.; Gansevoort, R.T.; et al. Association of Plasma Concentration of Vitamin B12 With All-Cause Mortality in the General Population in the Netherlands. JAMA Netw. Open. 2020, 3, e1919274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendonca, N.; Jagger, C.; Granic, A.; Martin-Ruiz, C.; Mathers, J.C.; Seal, C.J.; Hill, T.R. Elevated Total Homocysteine in All Participants and Plasma Vitamin B12 Concentrations in Women Are Associated With All-Cause and Cardiovascular Mortality in the Very Old: The Newcastle 85+ Study. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1258–1264. [Google Scholar] [CrossRef]
- Andres, E.; Serraj, K.; Zhu, J.; Vermorken, A.J. The pathophysiology of elevated vitamin B12 in clinical practice. QJM 2013, 106, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.M.; Lee, M.K.; Bae, S.G.; Lee, S.H.; Kim, S.Y.; Lee, D.H. Association of homocysteine levels with blood lead levels and micronutrients in the US general population. J. Prev. Med. Public Health 2012, 45, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Nie, J. Homocysteine in Renal Injury. Kidney Dis. 2016, 2, 80–87. [Google Scholar] [CrossRef]
Variables | CKD Cases (n = 220) | Controls (n = 438) | p Value |
---|---|---|---|
Age (years) | 65.1 ± 13.5 66.0 (19.0) | 64.2 ± 12.5 65.0 (18.0) | 0.3796 |
Sex | |||
Male | 135 (61.4%) | 270 (61.6%) | 0.9444 |
Female | 85 (38.6%) | 168 (38.4%) | |
eGFR (mL/min/1.73 m2) | 31.6 ± 14.6 32.2 (25.2) | 84.3 ± 15.7 81.0 (19.3) | <0.0001 |
Educational level | |||
Illiterate/elementary school | 92 (41.8%) | 100 (22.8%) | <0.0001 |
Junior/senior high school | 72 (32.7%) | 152 (34.7%) | |
College and above | 56 (25.5%) | 186 (42.5%) | |
Cigarette smoking | |||
Nonsmoker | 162 (73.6%) | 319 (72.8%) | 0.7197 |
Former smoker | 33 (15.0%) | 75 (17.1%) | |
Current smoker | 25 (11.4%) | 44 (10.1%) | |
Alcohol consumption | |||
Never | 181 (82.3%) | 279 (63.7%) | <0.0001 |
Occasional or frequently | 39 (17.7%) | 159 (36.3%) | |
Coffee consumption | |||
Never | 171 (77.7%) | 225 (51.4%) | |
Occasional or frequently | 49 (22.3%) | 213 (48.6%) | <0.0001 |
Tea consumption | |||
Never | 124 (56.4%) | 157 (35.8%) | <0.0001 |
Occasional or frequently | 96 (43.6%) | 281 (64.2%) | |
Analgesic use | |||
No/yes as needed | 192 (87.3%) | 419 (95.7%) | <0.0001 |
Yes, routinely | 28 (12.7%) | 19 (4.3%) | |
Diabetes | |||
No | 134 (60.9%) | 393 (89.7%) | <0.0001 |
Yes | 86 (39.1%) | 45 (10.3%) | |
Hypertension | |||
No | 96 (43.6%) | 306 (69.9%) | <0.0001 |
Yes | 124 (56.4%) | 132 (30.1%) |
Variables | CKD Cases (n = 220) | Controls (n = 438) | Age–Sex Adjusted OR (95% CI) | Multivariate Adjusted OR (95% CI) |
---|---|---|---|---|
Total urinary arsenic (μg/g creatinine) | 27.3 ± 21.7 22.5 (18.8) | 19.9 ± 13.8 # 16.0 (15.9) | ||
≤12.07 | 36 (16.4%) | 146 (33.3%) | 1.00 § | 1.00 §,a |
>12.07–21.90 | 70 (31.8%) | 146 (33.3%) | 1.95 (1.23–3.11) ** | 1.80 (0.98–3.31) |
>21.90 | 114 (51.8%) | 146 (33.3%) | 3.22 (2.06–5.05) ** | 2.65 (1.45–4.82) ** |
Red blood cell lead (μg/L) | 69.0 ± 38.9 63.7 (46.6) | 41.8 ± 22.8 # 37.4 (27.0) | ||
≤27.94 | 19 (8.6%) | 146 (33.3%) | 1.00 § | 1.00 §,b |
>27.94–46.36 | 46 (20.9%) | 136 (31.1%) | 2.65 (1.47–4.77) ** | 2.56 (1.20–5.45) * |
>46.36 | 155 (70.5%) | 156 (35.6%) | 7.87 (4.61–13.44) ** | 4.92 (2.42–9.99) ** |
Red blood cell cadmium (μg/L) | 2.4 ± 3.5 1.7 (1.5) | 1.2 ± 0.9 # 1.0 (0.8) | ||
≤0.80 | 20 (9.1%) | 149 (34.0%) | 1.00 § | 1.00 §,b |
>0.80–1.30 | 47 (21.4%) | 147 (33.6%) | 2.57 (1.44–4.60) ** | 2.30 (1.07–4.98) * |
>1.30 | 153 (69.6%) | 142 (32.4%) | 8.77 (5.13–14.98) ** | 6.48 (3.02–13.90) ** |
Plasma vitamin B12 (pg/mL) | 15.6 ± 13.2 8.6 (21.9) | 8.7 ± 5.0 # 7.8 (5.1) | ||
≤6.27 | 68 (30.9%) | 158 (36.1%) | 1.0 § | 1.0 §,c |
>6.27–9.54 | 52 (23.6%) | 140 (32.0%) | 0.87 (0.56–1.34) | 0.87 (0.48–1.57) |
>9.54 | 100 (45.5%) | 140 (32.0%) | 1.66 (1.12–2.45) * | 2.02 (1.15–3.55) * |
Plasma folate (ng/mL) | 701.6 ± 856.0 465.0 (339.0) | 590.7 ± 454.4 503.0 (270.0) | ||
≤422 | 89 (40.5%) | 157 (35.8%) | 1.00 | 1.00 c |
>422–589 | 60 (27.3%) | 142 (32.4%) | 0.74 (0.50–1.11) | 1.02 (0.58–1.80) |
>589 | 71 (32.3%) | 139 (31.7%) | 0.89 (0.60–1.32) | 0.99 (0.57–1.72) |
Variables | Variables | Case/Control | Age–Sex Adjusted ORs (95% CI) | Multivariate Adjusted ORs (95% CI) |
---|---|---|---|---|
Plasma vitamin B12 (pg/mL) | Urinary arsenic (μg/g creatinine) | |||
≤7.76 | <16.01 | 27/116 | 1.00 § | 1.00 §,a |
>7.76 | <16.01 | 31/103 | 1.33 (0.74–2.39) | 1.49 (0.71–3.15) |
≤7.76 | 16.01 | 71/112 | 2.77 (1.65–4.66) ** | 2.13 (1.08–4.18) * |
>7.76 | 16.01 | 91/107 | 3.81 (2.26–6.42) ** | 4.09 (2.04–8.21) ** |
Synergistic index | 1.34 (0.64–2.81) | 1.91 (0.64–5.64) | ||
p interaction | 0.3886 | 0.7213 | ||
Plasma vitamin B12 (pg/mL) | Red blood cell lead (μg/L) | |||
≤7.76 | <37.37 | 19/108 | 1.00 § | 1.00 §,b |
>7.76 | <37.37 | 25/111 | 1.32 (0.68–2.54) | 1.53 (0.68–3.40) |
≤7.76 | 37.37 | 79/120 | 3.84 (2.17–6.80) ** | 3.18 (1.54–6.57) ** |
>7.76 | 37.37 | 97/99 | 5.84 (3.28–10.41) ** | 5.26 (2.51–11.00) ** |
Synergistic index | 1.53 (0.78–3.02) | 1.57 (0.61–4.06) | ||
p interaction | 0.9892 | 0.8834 | ||
Plasma vitamin B12 (pg/mL) | Red blood cell cadmium (μg/L) | |||
≤7.76 | <1.02 | 19/106 | 1.00 § | 1.00 §,b |
>7.76 | <1.02 | 24/110 | 1.30 (0.67–2.52) | 1.74 (0.76–4.02) |
≤7.76 | 1.02 | 79/122 | 3.90 (2.20–6.92) ** | 2.76 (1.32–5.78) ** |
>7.76 | 1.02 | 98/100 | 6.40 (3.54–11.56) ** | 4.68 (2.18–10.04) ** |
Synergistic index | 1.69 (0.85–3.35) | 1.46 (0.55–3.89) | ||
p interaction | 0.3599 | 0.5206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsueh, Y.-M.; Huang, Y.-L.; Lin, Y.-F.; Shiue, H.-S.; Lin, Y.-C.; Chen, H.-H. Plasma Vitamin B12 and Folate Alter the Association of Blood Lead and Cadmium and Total Urinary Arsenic Levels with Chronic Kidney Disease in a Taiwanese Population. Nutrients 2021, 13, 3841. https://doi.org/10.3390/nu13113841
Hsueh Y-M, Huang Y-L, Lin Y-F, Shiue H-S, Lin Y-C, Chen H-H. Plasma Vitamin B12 and Folate Alter the Association of Blood Lead and Cadmium and Total Urinary Arsenic Levels with Chronic Kidney Disease in a Taiwanese Population. Nutrients. 2021; 13(11):3841. https://doi.org/10.3390/nu13113841
Chicago/Turabian StyleHsueh, Yu-Mei, Ya-Li Huang, Yuh-Feng Lin, Horng-Sheng Shiue, Ying-Chin Lin, and Hsi-Hsien Chen. 2021. "Plasma Vitamin B12 and Folate Alter the Association of Blood Lead and Cadmium and Total Urinary Arsenic Levels with Chronic Kidney Disease in a Taiwanese Population" Nutrients 13, no. 11: 3841. https://doi.org/10.3390/nu13113841
APA StyleHsueh, Y. -M., Huang, Y. -L., Lin, Y. -F., Shiue, H. -S., Lin, Y. -C., & Chen, H. -H. (2021). Plasma Vitamin B12 and Folate Alter the Association of Blood Lead and Cadmium and Total Urinary Arsenic Levels with Chronic Kidney Disease in a Taiwanese Population. Nutrients, 13(11), 3841. https://doi.org/10.3390/nu13113841