Association between Water and Energy Requirements with Physical Activity and Fat-Free Mass in Preschool Children in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Doubly Labeled Water
2.3. Physical Activity
2.4. Statistical Analyses
3. Results
3.1. Physical Characteristics
3.2. Sex Differences
3.3. Determinants of TEE
3.4. Determinants of WT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pontzer, H.; Brown, M.H.; Wood, B.M.; Raichlen, D.A.; Mabulla, A.Z.P.; Harris, J.A.; Dunsworth, H.; Hare, B.; Walker, K.; Luke, A.; et al. Evolution of water conservation in humans. Curr. Biol. CB 2021, 31, 1804–1810.e1805. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Plasqui, G.; Goris, A.H. Water loss as a function of energy intake, physical activity and season. Br. J. Nutr. 2005, 93, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Rosinger, A.Y. Biobehavioral variation in human water needs: How adaptations, early life environments, and the life course affect body water homeostasis. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2020, 32, e23338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. The Double Burden of Malnutrition. Policy Brief; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Raman, A.; Schoeller, D.A.; Subar, A.F.; Troiano, R.P.; Schatzkin, A.; Harris, T.; Bauer, D.; Bingham, S.A.; Everhart, J.E.; Newman, A.B.; et al. Water turnover in 458 American adults 40–79 year of age. Am. J. Physiol. Ren. Physiol. 2004, 286, F394–F401. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Yamada, Y.; Ainslie, P.N. Adopting a standard calculation for human doubly labeled water studies. Cell Rep Med. 2021, 2, 100203. [Google Scholar] [CrossRef]
- Miyachi, M. Measures of physical activity and exercise for health promotion by the Ministry of Health, Labour and Welfare. J. Phys. Fit. Sports Med. 2012, 1, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Sagayama, H.; Itoi, A.; Nishimura, M.; Fujisawa, K.; Higaki, Y.; Kimura, M.; Aoki, Y. Total Energy Expenditure, Body Composition, Physical Activity, and Step Count in Japanese Preschool Children: A Study Based on Doubly Labeled Water. Nutrients 2020, 12, 1223. [Google Scholar] [CrossRef]
- Komura, K.; Nakae, S.; Hirakawa, K.; Ebine, N.; Suzuki, K.; Ozawa, H.; Yamada, Y.; Kimura, M.; Ishii, K. Total energy expenditure of 10- to 12-year-old Japanese children measured using the doubly labeled water method. Nutr. Metab. 2017, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Hashii-Arishima, Y.; Yokoyama, K.; Itoi, A.; Adachi, T.; Kimura, M. Validity of a triaxial accelerometer and simplified physical activity record in older adults aged 64-96 years: A doubly labeled water study. Eur. J. Appl. Physiol. 2018, 118, 2133–2146. [Google Scholar] [CrossRef]
- Yamada, Y.; Yokoyama, K.; Noriyasu, R.; Osaki, T.; Adachi, T.; Itoi, A.; Naito, Y.; Morimoto, T.; Kimura, M.; Oda, S. Light-intensity activities are important for estimating physical activity energy expenditure using uniaxial and triaxial accelerometers. Eur. J. Appl. Physiol. 2009, 105, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Racette, S.B.; Schoeller, D.A.; Luke, A.H.; Shay, K.; Hnilicka, J.; Kushner, R.F. Relative dilution spaces of 2H- and 18O-labeled water in humans. Am. J. Physiol. Endocrinol. Metab. 1994, 267, E585–E590. [Google Scholar] [CrossRef]
- Sagayama, H.; Yamada, Y.; Racine, N.M.; Shriver, T.C.; Schoeller, D.A. Dilution space ratio of 2H and 18O of doubly labeled water method in humans. J. Appl. Physiol. 2016, 120, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Schoeller, D.A.; Ravussin, E.; Schutz, Y.; Acheson, K.J.; Baertschi, P.; Jequier, E. Energy expenditure by doubly labeled water: Validation in humans and proposed calculation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1986, 250, R823–R830. [Google Scholar] [CrossRef]
- Black, A.E.; Prentice, A.M.; Coward, W.A. Use of food quotients to predict respiratory quotients for the doubly-labelled water method of measuring energy expenditure. Hum. Nutr. Clin. Nutr. 1986, 40, 381–391. [Google Scholar] [PubMed]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. IAEA Human Health Series No. 3. Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques; Vienna International Centre: Vienna, Austria, 2009. [Google Scholar]
- International Atomic Energy Agency. Iaea Human Health Series no. 13 Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Urine Samples by Isotope Ratio Mass Spectrometry; Vienna International Centre: Vienna, Austria, 2011; pp. 9–11. [Google Scholar]
- Health Promotion and Nutrition Division-Health Service Bureau Ministry of Health and Welfare. Recommended Dietary Allowances for the Japanese; 4th revision; Dai-ichi Shuppan: Tokyo, Japan, 1995. [Google Scholar]
- Westerterp, K.R. Physical activity and physical activity induced energy expenditure in humans: Measurement, determinants, and effects. Front. Physiol. 2013, 4, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp, K.R. Exercise, energy expenditure and energy balance, as measured with doubly labelled water. Proc. Nutr. Soc. 2018, 77, 4–10. [Google Scholar] [CrossRef]
- Sentongo, T.A.; Tershakovec, A.M.; Mascarenhas, M.R.; Watson, M.H.; Stallings, V.A. Resting energy expenditure and prediction equations in young children with failure to thrive. J. Pediatrics 2000, 136, 345–350. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar] [PubMed]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br. J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef]
- Tanaka, C.; Hikihara, Y.; Ando, T.; Oshima, Y.; Usui, C.; Ohgi, Y.; Kaneda, K.; Tanaka, S. Prediction of Physical Activity Intensity with Accelerometry in Young Children. Int. J. Environ. Res. Public Health 2019, 16, 931. [Google Scholar] [CrossRef] [Green Version]
- Hikihara, Y.; Tanaka, C.; Oshima, Y.; Ohkawara, K.; Ishikawa-Takata, K.; Tanaka, S. Prediction models discriminating between nonlocomotive and locomotive activities in children using a triaxial accelerometer with a gravity-removal physical activity classification algorithm. PLoS ONE 2014, 9, e94940. [Google Scholar] [CrossRef] [Green Version]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily energy expenditure through the human life course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Physical activity and fat-free mass during growth and in later life. Am. J. Clin. Nutr. 2021, 114, 1583–1589. [Google Scholar] [CrossRef]
- Ministry of Health Labour and Welfare Japan. Japanese Dietary Reference Intake; Daiichi Shuppan: Tokyo, Japan, 2020. [Google Scholar]
- Rush, E.C.; Chhichhia, P.; Kilding, A.E.; Plank, L.D. Water turnover in children and young adults. Eur. J. Appl. Physiol. 2010, 110, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Fusch, C.; Hungerland, E.; Scharrer, B.; Moeller, H. Water turnover of healthy children measured by deuterated water elimination. Eur. J. Pediatrics 1993, 152, 110–114. [Google Scholar] [CrossRef]
- Murakami, H.; Kawakami, R.; Nakae, S.; Yamada, Y.; Nakata, Y.; Ohkawara, K.; Sasai, H.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Accuracy of 12 Wearable Devices for Estimating Physical Activity Energy Expenditure Using a Metabolic Chamber and the Doubly Labeled Water Method: Validation Study. JMIR mHealth uHealth 2019, 7, e13938. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Yamamoto, M.; Kitado, T.; Nakamura, H.; Kidera, K.; Fujimoto, S. High-accuracy physical activity monitor utilizing three-axis accelerometer. Natl. Tech. Rep. 2008, 56, 60–66. [Google Scholar]
Characteristic | Mean | ± | SD |
---|---|---|---|
Age (years) | 5.2 | ± | 0.9 |
Height (cm) | 107.6 | ± | 6.9 |
Weight (kg) | 18.0 | ± | 2.4 |
BMI (kg/m2) | 15.5 | ± | 1.3 |
TBW (kg) | 10.4 | ± | 1.4 |
FFM (kg) | 14.3 | ± | 1.9 |
%fat (%) | 20.6 | ± | 4.3 |
TEE (kcal/day) | 1343 | ± | 170 |
WT (L/day) | 1.33 | ± | 0.22 |
BMRJapanese | 959 | ± | 129 |
BMRSchofield | 879 | ± | 60 |
PAL | 1.41 | ± | 0.12 |
Step count | 14,401 | ± | 3319 |
LPA (1.5–2.9 METs) (min/day) | 345 | ± | 54 |
MVPA (≥3.0 METs) (min/day) | 46 | ± | 14 |
Ex (≥4.0 METs) (min/day) | 22 | ± | 10 |
Characteristic | Girls (n = 22) | Boys (n = 19) | p Value | ||||
---|---|---|---|---|---|---|---|
Mean | ± | SEM | Mean | ± | SEM | ||
Height (cm) | 107.1 | ± | 0.9 | 108.3 | ± | 0.9 | 0.391 |
Weight (kg) | 17.5 | ± | 0.4 | 18.5 | ± | 0.5 | 0.118 |
BMI (kg/m2) | 15.2 | ± | 0.3 | 15.8 | ± | 0.3 | 0.164 |
TBW (kg) | 10.0 | ± | 0.2 | 10.9 | ± | 0.2 | 0.008 ** |
FFM (kg) | 13.7 | ± | 0.3 | 14.9 | ± | 0.3 | 0.008 ** |
%fat (%) | 21.6 | ± | 0.9 | 19.4 | ± | 1.0 | 0.11 |
TEE (kcal/day) | 1287 | ± | 32 | 1408 | ± | 35 | 0.019 * |
WT (L/day) | 1.25 | ± | 0.04 | 1.42 | ± | 0.05 | 0.015 * |
BMRJapanese | 910 | ± | 24 | 1016 | ± | 26 | 0.006 ** |
BMRSchofield | 840 | ± | 10 | 925 | ± | 10 | <0.001 *** |
PAL | 1.42 | ± | 0.03 | 1.39 | ± | 0.03 | 0.63 |
Step count | 12,808 | ± | 647 | 16,246 | ± | 700 | 0.001 ** |
LPA (1.5–2.9 METs) (min/day) | 348 | ± | 12 | 341 | ± | 13 | 0.706 |
MVPA (≥3.0 METs) (min/day) | 41 | ± | 3 | 52 | ± | 3 | 0.011 * |
Ex (≥4.0 METs) (min/day) | 17 | ± | 2 | 28 | ± | 2 | <0.001 *** |
Predictor Variable | B | β | p-Value | 95% CI for B |
---|---|---|---|---|
FFM (kg) | 69.4 | 0.776 | <0.001 | (54.1, 84.7) |
Step count (n/day) | 0.0114 | 0.222 | 0.013 | (0.0026, 0.0202) |
(Constant) | 190 | 0.09 | (−31, 411) |
Predictor Variable | B | β | p-Value | 95% CI for B |
---|---|---|---|---|
Body weight (kg) | 0.043 | 0.456 | 0.002 | (0.017, 0.069) |
Exercise duration (min/day) | 0.0077 | 0.348 | 0.015 | (0.002, 0.014) |
(Constant) | 0.385 | 0.068 | (−0.03, 0.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, Y.; Sagayama, H.; Yasukata, J.; Uchizawa, A.; Itoi, A.; Yoshida, T.; Watanabe, D.; Hashii-Arishima, Y.; Mitsuishi, H.; Nishimura, M.; et al. Association between Water and Energy Requirements with Physical Activity and Fat-Free Mass in Preschool Children in Japan. Nutrients 2021, 13, 4169. https://doi.org/10.3390/nu13114169
Yamada Y, Sagayama H, Yasukata J, Uchizawa A, Itoi A, Yoshida T, Watanabe D, Hashii-Arishima Y, Mitsuishi H, Nishimura M, et al. Association between Water and Energy Requirements with Physical Activity and Fat-Free Mass in Preschool Children in Japan. Nutrients. 2021; 13(11):4169. https://doi.org/10.3390/nu13114169
Chicago/Turabian StyleYamada, Yosuke, Hiroyuki Sagayama, Jun Yasukata, Akiko Uchizawa, Aya Itoi, Tsukasa Yoshida, Daiki Watanabe, Yukako Hashii-Arishima, Hisashi Mitsuishi, Makoto Nishimura, and et al. 2021. "Association between Water and Energy Requirements with Physical Activity and Fat-Free Mass in Preschool Children in Japan" Nutrients 13, no. 11: 4169. https://doi.org/10.3390/nu13114169
APA StyleYamada, Y., Sagayama, H., Yasukata, J., Uchizawa, A., Itoi, A., Yoshida, T., Watanabe, D., Hashii-Arishima, Y., Mitsuishi, H., Nishimura, M., Kimura, M., & Aoki, Y. (2021). Association between Water and Energy Requirements with Physical Activity and Fat-Free Mass in Preschool Children in Japan. Nutrients, 13(11), 4169. https://doi.org/10.3390/nu13114169