Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Products
2.2. Nutritional Composition and Starch Digestibility
2.3. Micro-Imaging
2.3.1. X-ray Diffraction
2.3.2. Micro-X-ray-Tomography
2.3.3. Low-Voltage Scanning Electron Microscopy
2.4. Human Subjects and the In Vivo Study
2.5. Statistical Analysis
3. Results
3.1. Macronutrient Content
3.2. Starch Fraction Analyses
3.3. Micro-Imaging
3.3.1. X-ray Diffraction
3.3.2. Micro-Tomography
3.3.3. Electronic Microscopy
3.4. Glycemic and Insulinemic Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gibney, M.J.; Forde, C.G.; Mullally, D.; Gibney, E.R. Ultra-processed foods in human health: A Critical appraisal. Am. J. Clin. Nutr. 2017, 106, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019, 30, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibney, M.J. Ultra-processed foods: Definitions and policy issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.; Ryoo, N.; Hahn, T.; Walia, H.; Nakamura, Y. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 2010, 48, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Bergthaller, W.; Hollmann, J. Starch. In Comprehensive Glycoscience-Volume 2: Polysaccharide Functional Properties; Kamerling, J.P., Ed.; Elsevier: Utrecht, The Netherlands, 2014; Volume 2, pp. 579–612. [Google Scholar]
- Hoover, R.; Senanayake, S.P.J.N. Composition and physicochemical properties of oat starches. Food Res. Int. 1996, 29, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Punia, S. Barley starch: Structure, properties and in vitro digestibility-A review. Int. J. Biol. Macromol. 2020, 155, 868–875. [Google Scholar] [CrossRef]
- Lehmann, U.; Robin, F. Slowly digestible starch–its structure and health implications: A review. Trends Food Sci. Tech. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Delcour, J.A.; Bruneel, C.; Derde, L.J.; Gomand, S.V.; Pareyt, B.; Putseys, J.A.; Wilderjans, E.; Lamberts, L. Fate of starch in food processing: From raw materials to final food products. Annu. Rev. Food Sci. Technol. 2010, 1, 87–111. [Google Scholar] [CrossRef]
- Stamataki, N.S.; Yanni, A.E.; Karathanos, V.T. Bread making technology influences postprandial glucose response: A review of the clinical evidence. Br. J. Nutr. 2017, 117, 1001–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.; Kong, L. Starch-Guest inclusion complexes: Formation, structure, and enzymatic digestion. Crit. Rev. Food Sci. Nutr. 2020, 60, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Monro, J. Wholeness and primary and secondary food structure effects on in vitro digestion patterns determine nutritionally distinct carbohydrate fractions in cereal foods. Food Chem. 2012, 135, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Edwards, C.H.; de Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englyst, K.; Goux, A.; Meynier, A.; Quigley, M.; Englyst, H.; Brack, O.; Vinoy, S. Inter-Laboratory validation of the starch digestibility method for determination of rapidly digestible and slowly digestible starch. Food Chem. 2018, 245, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Veenstra, J.; Hudson, G.J. Measurement of rapidly available glucose (RAG) in plant foods: A Potential in vitro predictor of the Glycaemic response. Br. J. Nutr. 1996, 75, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Bornhorst, G.M.; Paul Singh, R. Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Annu. Rev. Food Sci. Technol. 2014, 5, 111–132. [Google Scholar] [CrossRef]
- Vallons, K.J.R.; Ryan, L.A.M.; Arendt, E.K. Pressure-induced gelatinization of starch in excess water. Crit. Rev. Food Sci. Nutr. 2014, 54, 399–409. [Google Scholar] [CrossRef]
- Bornet, F. Technological treatments of cereals. Repercussions on the physiological properties of starch. Carbohydr. Polym. 1993, 21, 195–203. [Google Scholar] [CrossRef]
- Englyst, K.N.; Vinoy, S.; Englyst, H.N.; Lang, V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 2003, 89, 329–340. [Google Scholar] [CrossRef]
- Vinoy, S.; Laville, M.; Feskens, E.J.M. Slow-release carbohydrates: Growing evidence on metabolic responses and public health interest. Summary of the Symposium Held at the 12th European Nutrition Conference (FENS 2015). Food Nutr. Res. 2016, 60, 31662. [Google Scholar] [CrossRef] [Green Version]
- Meynier, A.; Goux, A.; Atkinson, F.; Brack, O.; Vinoy, S. Postprandial glycaemic response: How is it influenced by characteristics of cereal products? Br. J. Nutr. 2015, 113, 1931–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babin, P.; Della Valle, G.; Dendievel, R.; Lourdin, D.; Salvo, L. X-ray tomography study of the cellular structure of extruded starches and its relations with expansion phenomenon and foam mechanical properties. Carbohydr. Polym. 2007, 68, 329–340. [Google Scholar] [CrossRef]
- Rewthong, O.; Soponronnarit, S.; Taechapairoj, C.; Tungtrakul, P.; Prachayawarakorn, S. Effects of Cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. J. Food Eng. 2011, 103, 258–264. [Google Scholar] [CrossRef]
- Dharmaraj, U.; Parameswara, P.; Somashekar, R.; Malleshi, N.G. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy. J. Food Sci. Technol. 2014, 51, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srichuwong, S.; Isono, N.; Mishima, T.; Hisamatsu, M. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int. J. Biol. Macromol. 2005, 37, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ma, F.; Kong, F.; Gao, Q.; Yu, S. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chem. 2015, 172, 92–98. [Google Scholar] [CrossRef]
- Blaak, E.E.; Antoine, J.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial Glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 699–706. [Google Scholar] [CrossRef]
- Björck, I.; Elmståhl, H.L. The Glycaemic index: Importance of dietary fibre and other food properties. Proc. Nutr. Soc. 2003, 62, 201–206. [Google Scholar] [CrossRef]
- Chanson-Rolle, A.; Meynier, A.; Aubin, F.; Lappi, J.; Poutanen, K.; Vinoy, S.; Braesco, V. Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PLoS ONE 2015, 10, e0131377. [Google Scholar]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [PubMed] [Green Version]
- Hall, K.D. A review of the carbohydrate-insulin model of obesity. Eur. J. Clin. Nutr. 2017, 71, 323–326. [Google Scholar] [PubMed]
- Kroemer, G.; López-Otín, C.; Madeo, F.; de Cabo, R. Carbotoxicity-noxious effects of carbohydrates. Cell 2018, 175, 605–614. [Google Scholar] [PubMed] [Green Version]
- Pfeiffer, A.F.H.; Keyhani-Nejad, F. High glycemic index metabolic damage-a pivotal role of GIP and GLP-1. Trends Endocrinol. Metab. 2018, 29, 289–299. [Google Scholar] [PubMed] [Green Version]
- Nazare, J.; de Rougemont, A.; Normand, S.; Sauvinet, V.; Sothier, M.; Vinoy, S.; Désage, M.; Laville, M. Effect of Postprandial modulation of glucose availability: Short- and long-term analysis. Br. J. Nutr. 2010, 103, 1461–1470. [Google Scholar]
- Vinoy, S.; Normand, S.; Meynier, A.; Sothier, M.; Louche-Pelissier, C.; Peyrat, J.; Maitrepierre, C.; Nazare, J.; Brand-Miller, J.; Laville, M.; et al. Cereal processing influences postprandial glucose metabolism as well as the GI effect. J. Am. Coll. Nutr. 2013, 32, 79–91. [Google Scholar]
- Péronnet, F.; Meynier, A.; Sauvinet, V.; Normand, S.; Bourdon, E.; Mignault, D.; St-Pierre, D.H.; Laville, M.; Rabasa-Lhoret, R.; Vinoy, S.; et al. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: Effect of starch digestibility. Eur. J. Clin. Nutr. 2015, 69, 740–745. [Google Scholar]
- Gourineni, V.; Stewart, M.L.; Skorge, R.; Sekula, B.C. Slowly digestible carbohydrate for balanced energy: In vitro and in vivo evidence. Nutrients 2017, 9, 1230. [Google Scholar]
- Gallant, D.J.; Bouchet, B.; Baldwin, P.M. Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, 177–191. [Google Scholar]
- Zobel, H.F.; Young, S.N.; Rocca, L.A. Starch gelatinization: An X-ray diffraction study. Cereal Chem. 1988, 65, 443–446. [Google Scholar]
- International Standards Organisation. ISO 26642:2010: Food Products–Determination of the Glycaemic Index (GI) and Recommendation for Food Classification, 1st ed.; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [PubMed]
- Garcia, M.C.; Pereira-da-Silva, M.A.; Taboga, S.; Franco, C.M.L. Structural characterization of complexes prepared with glycerol monoestearate and maize starches with different amylose contents. Carbohydr. Polym. 2016, 148, 371–379. [Google Scholar]
- Guo, Z.; Jia, X.; Miao, S.; Chen, B.; Lu, X.; Zheng, B. Structural and thermal properties of amylose–fatty acid complexes prepared via high hydrostatic pressure. Food Chem. 2018, 264, 172–179. [Google Scholar] [PubMed]
- Della Valle, G.; Buleon, A.; Carreau, P.J.; Lavoie, P.; Vergnes, B. Relationship between structure and viscoelastic behavior of plasticized starch. J. Rheol. 1998, 42, 507–525. [Google Scholar]
- Le-Bail, P.; Hesso, N.; Le-Bail, A. Starch in baked products. In Starch in Food, 2nd ed.; Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing: Duxford, UK, 2018; pp. 595–632. [Google Scholar]
- Chen, J.; Tian, J.; Deng, Z.; Zhang, Y.; Feng, S.; Yan, Z.; Zhang, X.; Yuan, H. Effects of papain hydrolysis on the pasting properties of wheat flour. J. Integr. Agric. 2012, 11, 1948–1957. [Google Scholar]
- Castro, L.M.G.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Impact of high pressure on starch properties: A review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar]
- Scazzina, F.; Siebenhandl-Ehn, S.; Pellegrini, N. The effect of dietary fibre on reducing the glycaemic index of bread. Br. J. Nutr. 2013, 109, 1163–1174. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Vuksan, V. High-complex carbohydrate or lente carbohydrate foods? Am. J. Med. 2002, 113, 30S–37S. [Google Scholar]
- Barazzoni, R.; Deutz, N.E.P.; Biolo, G.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cuerda, C.; Delzenne, N.; Leon Sanz, M.; Ljungqvist, O.; et al. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clin. Nutr. 2017, 36, 355–363. [Google Scholar]
- Wu, W.; Qiu, J.; Wang, A.; Li, Z. Impact of whole cereals and processing on type 2 diabetes mellitus: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1447–1474. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Colagiuri, S.; Gerich, J.; Tuomilehto, J. Guideline for management of postmeal glucose. Nutr. Metab. Cardiovasc. Dis. 2008, 18, S17–S33. [Google Scholar] [CrossRef]
- Parada, J.; Santos, J.L. Interactions between starch, lipids, and proteins in foods: Microstructure control for glycemic response modulation. Crit. Rev. Food Sci. 2016, 56, 2362–2369. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Hughes, T.; Chung, H.J.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- Vinoy, S.; Meynier, A.; Goux, A.; Jourdan-Salloum, N.; Normand, S.; Rabasa-Lhoret, R.; Brack, O.; Nazare, J.; Péronnet, F.; Laville, M.; et al. The effect of a breakfast rich in slowly digestible starch on glucose metabolism: A statistical meta-analysis of randomized controlled trials. Nutrients 2017, 9, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godet, M.C.; Buléon, A.; Tran, V.; Colonna, P. Structural Features of fatty acid-amylose complexes. Carbohydr. Polym. 1993, 21, 91–95. [Google Scholar] [CrossRef]
- Cheetham, N.W.; Tao, L. Solid state NMR studies on the structural and conformational properties of natural maize starches. Carbohydr. Polym. 1998, 36, 285–292. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food Funct. 2013, 4, 1564–1580. [Google Scholar] [CrossRef]
Technology | Ingredients | Mixing and Forming Steps | Cooking |
---|---|---|---|
Rotary-molded | With Bran (RB): Wheat flour 55%, wheat bran 6% | All of the ingredients were combined, and the resulting dough was passed through a rotary molder to form individual 15-g raw biscuits. | Convection tunnel oven for 9 min (150–190 °C). |
Without Bran (RnB): Wheat flour 61%, wheat bran 0% | |||
Common ingredients: Sugar 18%, rapeseed oil 12%, water 7%, salt 0.3% | |||
Soft-baked | With Bran (SB): Wheat flour 39%, wheat bran 4% | All of the ingredients were combined, and then 34 g of the resulting batter was piped into individual molds using a pastry bag. | Static convection oven for 15 min at 170 °C. |
Without Bran (SnB): Wheat flour 43%, wheat bran 0% | |||
Common ingredients: Sugar 17%, rapeseed oil 9%, water 12%, whole eggs 12%, glycerin 6%, salt 0.2% | |||
Extrusion | With Bran (EB): Wheat flour 59%, wheat bran 7% | The flour and sugar were added to the extruder (BC45) (along with the bran for the wholegrain version). A filling made from sugar and fat was pumped into the formed product as it exited the extruder. The resulting products were shaped into bite-size portions using a crimper. | Static oven at 180 °C for 1.5 min to dry the products. |
Without Bran (EnB): Wheat flour 66%, wheat bran 0% | |||
Common ingredients: Sugar 20%, rapeseed oil 14%, salt 0.3% | |||
Rusk (Bread Substitute) (Rk) | Wheat flour 44%, sugar 19%, rapeseed oil 9%, water 21%, salt 0.3%, yeast 6% | All of the ingredients were combined, and the dough was kneaded for 15 min using a mechanical kneader. Because of its consistency, 400-g portions of dough were transferred to individual molds. The dough was then left to proof for 15 min. | Static convection oven for 40 min (150 to 200 °C). Once out of the oven, the loaves were allowed to cool overnight in a fridge set at 8 °C. They were then sliced and toasted at 160 °C for 13 min to obtain the final rusk products. |
Nutritional Composition of Products | Reference Food Glucose | Rotary- Molded Biscuit with Bran RB | Rotary- Molded Biscuit without Bran RnB | Soft-Baked Cake with Bran SB | Soft-Baked Cake without Bran SnB | Rusk Rk | Extruded Product with Bran EB | Extruded Product without Bran EnB |
---|---|---|---|---|---|---|---|---|
Portion size (g) | 51-g glucose solution | 69 | 66 | 93 | 89 | 69 | 75 | 72 |
Moisture (g) | - | 0.5 | 0.9 | 16.4 | 12.5 | 1.1 | 4.4 | 4.4 |
Protein (g) | 0.0 | 4.6 | 4.2 | 6.1 | 5.2 | 5.7 | 4.8 | 4.4 |
Fat (g) | 0.0 | 9.6 | 10.9 | 11.7 | 12.0 | 10.0 | 10.9 | 10.1 |
Sugar (g) | 50.0 | 15.2 | 15.9 | 19.7 | 17.0 | 16.5 | 15.4 | 13.9 |
Available Starch (g) | 0.0 | 31.7 | 29.7 | 28.8 | 28.4 | 30.7 | 30.9 | 33.3 |
Available carbohydrate (g) | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |
Fiber (g) | 0.0 | 4.0 | 1.4 | 4.2 | 1.9 | 1.9 | 4.1 | 1.8 |
Calculated energy (kJ) | 800 | 1265 | 1286 | 1369 | 1348 | 1283 | 1319 | 1261 |
Starch Fractions in Products | Rotary-Molded Biscuit with Bran RB | Rotary-Molded Biscuit without Bran RnB | Soft-Baked Cakes with Bran SB | Soft-Baked Cakes without Bran SnB | Rusk Rk | Extruded Product with Bran EB | Extruded Product without Bran EnB |
---|---|---|---|---|---|---|---|
SDS (g/100 g) | 23.9 | 27.5 | 1.5 | 1.5 | 1.1 | 0.1 | 0.1 |
RDS (g/100 g) | 26.7 | 24.1 | 32.4 | 35.7 | 47.4 | 46.0 | 53.1 |
RS (g/100 g) | 0.5 | 0.4 | 0.3 | 0.4 | 0.6 | 0.4 | 0.7 |
Blood Glucose and Insulin Parameters | Reference Food Glucose | Rotary-Molded Biscuit with Bran RB | Rotary-Molded Biscuit without Bran RnB | Soft-Baked Cakes with Bran SB | Soft-Baked Cakes without Bran SnB | Rusk Rk | Extruded Product with Bran EB | Extruded Product without Bran EnB |
---|---|---|---|---|---|---|---|---|
Glucose parameters | ||||||||
Baseline blood glucose level (mmol/l) | 5.1 ± 0.1 | 5.1 ± 0.1 | 5.1 ± 0.1 | 5.1 ± 0.1 | 5.0 ± 0.1 | 5.0 ± 0.1 | 5.1 ± 0.1 | 5.1 ± 0.1 |
Cmax(g) (mmol/l)) | 7.5 ± 0.2 a | 6.0 ± 0.1 cd | 5.8 ± 0.1 d | 6.2 ± 0.2 b | 6.1 ± 0.2 ab | 6.5 ± 0.2 ab | 6.4 ± 0.2 b | 6.2 ± 0.2 bc |
iAUC(g) (mmol × min/l) | 186 ± 13 a | 91 ± 16 cd | 79 ± 8 d | 117 ± 8 bc | 142 ± 13 ab | 113 ± 14 ab | 124 ± 14 bc | 114 ± 12 bcd |
GI (%) | 100 ± 0 | 47 ± 5 d | 43 ± 3 d | 66 ± 4 abc | 77 ± 4 a | 63 ± 6 bc | 66 ± 5 abc | 61 ± 4 bc |
Insulin parameters | ||||||||
Baseline insulin level (pmol/l) | 33.7 ± 1.7 | 35.5 ± 2.3 | 37.3 ± 2.1 | 37.4 ± 2.8 | 35.6 ± 2.5 | 36.8 ± 2.1 | 36.2 ± 2.2 | 35.5 ± 1.5 |
Cmax(ins) (pmol/l) | 383 ± 25 a | 240 ± 24 cd | 231 ± 21 d | 312 ± 28 abcd | 338 ± 37 ab | 325 ± 30 abc | 326 ± 34 ab | 299 ± 24 bcd |
iAUC(ins) (pmol × min/l) | 2525 ± 197 a | 1438 ± 183 cd | 1350 ± 122 d | 2055 ± 214 abcd | 2252 ± 228 ab | 2177 ± 277 abc | 2073 ± 260 ab | 1593 ± 111 bcd |
II (%) | 100 ± 0 | 56 ± 4 d | 54 ± 4 d | 76 ± 4 abc | 85 ± 6 bc | 79 ± 4 bc | 80 ± 6 bc | 65 ± 4 ad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesbron-Lavau, G.; Goux, A.; Atkinson, F.; Meynier, A.; Vinoy, S. Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response. Nutrients 2021, 13, 381. https://doi.org/10.3390/nu13020381
Cesbron-Lavau G, Goux A, Atkinson F, Meynier A, Vinoy S. Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response. Nutrients. 2021; 13(2):381. https://doi.org/10.3390/nu13020381
Chicago/Turabian StyleCesbron-Lavau, Gautier, Aurélie Goux, Fiona Atkinson, Alexandra Meynier, and Sophie Vinoy. 2021. "Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response" Nutrients 13, no. 2: 381. https://doi.org/10.3390/nu13020381
APA StyleCesbron-Lavau, G., Goux, A., Atkinson, F., Meynier, A., & Vinoy, S. (2021). Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response. Nutrients, 13(2), 381. https://doi.org/10.3390/nu13020381