Role of Cachexia and Fragility in the Patient Candidate for Cardiac Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
3. Frailty Definition and Quantification
4. Sarcopenia as Biological Substrate of Physical Frailty
5. Sarcopenia Diagnosis
6. Role of Frailty and Sarcopenia in Cardiovascular Disease
7. Crosstalk between Frailty and Cardiovascular Diseases in Molecular Mechanisms Level
8. Clinical Impact of Frailty and Sarcopenia
9. Dietary Intake to Prevent Sarcopenia in Patients Undergoing Cardiac Surgery
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malaguarnera, M.; Vacante, M.; Frazzetto, P.M.; Motta, M. What is the frailty in elderly? Value and significance of the multidimensional assessments. Arch. Gerontol. Geriatr. 2013, 56, 23–26. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Rockwood, K.; Mitnitski, A. Frailty defined by deficit accumulation and geriatric medicine defined by Frailty. Clin. Geriatr. Med. 2011, 27, 17–26. [Google Scholar] [CrossRef]
- Gobbens, R.J.; Luijkx, K.G.; Wijnen-Sponselee, M.T.; Schols, J.M. In search of an integral conceptual definition of frailty: Opinions of experts. J. Am. Med. Dir. Assoc. 2010, 11, 338–343. [Google Scholar] [CrossRef]
- Chang, S.F.; Yang, R.S.; Lin, T.C.; Chiu, S.C.; Chen, M.L.; Lee, H.C. The discrimination of using the short physical performance battery to screen frailty for community-dwelling older people. J. Nurs. Scholarsh. 2014, 46, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Gray, S.R.; Pell, J.P.; Ho, F.K.; Celis-Morales, C. The joint association of sarcopenia and frailty with incidence and mortality healthoutcomes: A prospective study. Clin. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Alves, I.; Singh, P.; Palade, P.T.; Carvalho, E.; Børsheim, E.; Jun, S.R.; Cheema, A.; Boerma, M.; Awasthi, S.; et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 2020, 19, e13261. [Google Scholar] [CrossRef]
- Inoue, T.; Maeda, K.; Nagano, A.; Shimizu, A.; Ueshima, J.; Murotani, K.; Sato, K.; Tsubaki, A. Undernutrition, Sarcopenia, and Frailty in Fragility Hip Fracture: Advanced Strategies for Improving Cliniccal Outcomes. Nutrients 2020, 12, 3743. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Ebner, N.; Dos Santos, M.R.; Ishida, J.; Hasenfuss, G.; von Haehling, S. Cachexia, muscle wasting, and frailty in cardiovascular disease. Eur. J. Heart Fail. 2020. [Google Scholar] [CrossRef] [PubMed]
- Krysztofiak, H.; Wleklik, M.; Migaj, J.; Dudek, M.; Uchmanowicz, I.; Lisiak, M.; Kubiela, G.; Straburzyńska-Migaj, E.; Lesiak, M.; Kałużna-Oleksy, M. Cardiac Cachexia: A Well- Known but Challenging Complication of Heart Failure. Clin. Interv. Aging 2020, 15, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Lu, X.; Qian, Z.; Xu, W.; Zhou, X. New insights into the pathogenesis and treatment of sarcopenia in chronic heart failure. Theranostics 2019, 9, 4019–4029. [Google Scholar] [CrossRef]
- Lena, A.; Anker, M.S.; Springer, J. Muscle Wasting and Sarcopenia in Heart Failure- The Current State of Science. Int. J. Mol. Sci. 2020, 21, 6549. [Google Scholar] [CrossRef]
- Abe, K.; Yano, T.; Katano, S.; Ohori, K.; Ishigo, T.; Kouzu, H.; Moniwa, N.; Miura, T. Reply to the comments on “Utility of the sarcopenia index for assessment of muscle mass and nutritional status in patients with chronic heart failure: Comparison with anthropometric parameters”. Geriatr. Gerontol. Int. 2020, 20, 998–999. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, F.; Hu, L.; Fang, H.; An, Y. Revisiting: “prevalence of and factorsassociated with sarcopenia among multi-ethnic ambulatory older Asians with type 2 diabetes mellitus in a primary care setting”. BMC Geriatr. 2020, 20, 415. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.Y.; Beaudart, C.; Al-Daghri, N.; Avouac, B.; Bauer, J.; Bere, N.; Bruyère, O.; Cerreta, F.; Cesari, M.; Rosa, M.M.; et al. Update on the ESCEO recommendation for the conduct of clinical trials for drugs aiming at the treatment of sarcopenia in older adults. Aging Clin. Exp. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Izumida, T.; Imamura, T. Sarcopenia in patients with cardiovascular disease. J. Cardiol. 2020, 76, 636. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afilalo, J.; Alexander, K.P.; Mack, M.J.; Maurer, M.S.; Green, P.; Allen, L.A.; Popma, J.J.; Ferrucci, L.; Forman, D.E. Frailty assessment in the cardiovascular care of older adults. J. Am. Coll. Cardiol. 2014, 63, 747–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, K.; Mitnitski, A.; Howlett, S.E. Frailty: Scaling from Cellular Deficit Accumulation? Interdiscip. Top. Gerontol. Geriatr. 2015, 41, 1–14. [Google Scholar] [CrossRef]
- Vigorito, C.; Abreu, A.; Ambrosetti, M.; Belardinelli, R.; Corrà, U.; Cupples, M.; Davos, C.H.; Hoefer, S.; Iliou, M.C.; Schmid, J.P.; et al. Frailty and cardiac rehabilitation: A call to action from the EAPC Cardiac Rehabilitation Section. Eur. J. Prev. Cardiol. 2017, 24, 577–590. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, L.W.; Hao, Y.; Sim, E.Y.; Ng, K.L.; Lee, R.; Lim, M.S.; Poopalalingam, R.; Abdullah, H.R. Assessment of predictive validity and feasibility of Edmonton Frail Scale in identifying postoperative complications among elderly patients: A prospective observational study. Sci. Rep. 2020, 10, 14682. [Google Scholar] [CrossRef]
- Saczynski, J.S.; Inouye, S.K.; Guess, J.; Jones, R.N.; Fong, T.G.; Nemeth, E. The Montreal Cognitive Assessment: Creating a Crosswalk with the Mini-Mental State Examination. J. Am. Geriatr. Soc. 2015, 63, 2370–2374. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Bird, V.; Rizzo, M.; Meader, N. Diagnostic validity and added value of the Geriatric Depression Scale for depression in primary care: A meta- analysis of GDS30 and GDS15. J. Affect. Disord. 2010, 125, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Hollocks, M.J.; Lawrence, A.J.; Brookes, R.L.; Barrick, T.R.; Morris, R.G.; Husain, M.; Markus, H.S. Differential relationships between apathy and depression with white matter microstructural changes and functional outcomes. Brain 2015, 138, 3803–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Vélez, R.; Sáez de Asteasu, M.L.; Martínez-Velilla, N.; Zambom-Ferraresi, F.; García-Hermoso, A.; Izquierdo, M. Handgrip Strength as a Complementary Test for Mobility Limitations Assessment in Acutely Hospitalized Oldest Old. Rejuvenation Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Martone, A.M.; Salini, S.; Zazzara, M.B.; Candeloro, M.; Coelho-Junior, H.J.; Tosato, M.; Picca, A.; Marzetti, E. Normative values of muscle strength across ages in a ‘real world’ population: Results from the longevity check-up 7+ project. J. Cachexia Sarcopenia Muscle 2020, 11, 1562–1569. [Google Scholar] [CrossRef]
- Valdes, K.; Blausey, J.; Campbell, J.; Duran, R.; Giles, A.; Matthys, C.; Miesner, S.; Schroeder, B.; Smolyansky, D. Certified hand therapists membership in the American Society of Hand Therapists: A survey study. J. Hand Ther. 2020. [Google Scholar] [CrossRef]
- Schrader, E.; Baumgartel, C.; Gueldenzoph, H.; Stehle, P.; Uter, W.; Sieber, C.C.; Volkerf, D. Nutritional status according to Mini Nutritional Assessment is related to functional status in geriatric patients—Independent of health status. J. Nutr. Health Aging 2014, 18, 257–263. [Google Scholar] [CrossRef]
- Kirk, B.; Phu, S.; Brennan-Olsen, S.L.; Bani Hassan, E.; Duque, G. Associations between osteoporosis, the severity of sarcopenia and fragility fractures in community- dwelling older adults. Eur. Geriatr. Med. 2020, 11, 443–450. [Google Scholar] [CrossRef]
- Tsourdi, E.; Nees, J.A.; Hofbauer, L.C. Osteoporosis in the geriatric population. Dtsch. Med. Wochenschr. 2020, 145, 728–732. [Google Scholar]
- Seng, W.R.; Belani, M.H.; Ramason, R.; Naidu, G.; Doshi, H.K. Functional Improvement in Geriatric Hip Fractures: Does Vitamin D Deficiency Affect the Functional Outcome of Patients With Surgically Treated Intertrochanteric Hip Fractures. Geriatr. Orthop. Surg. Rehabil. 2015, 6, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Romero-Ortuno, R.; Walsh, C.D.; Lawlor, B.A.; Kenny, R.A. A frailty instrument for primary care: Findings from the Survey of Health, Ageing and Retirement in Europe (SHARE). BMC Geriatr. 2010, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Lauretani, F.; Ticinesi, A.; Gionti, L.; Prati, B.; Nouvenne, A.; Tana, C.; Meschi, T.; Maggio, M. Short-Physical Performance Battery (SPPB) score is associated with falls in older outpatients. Aging Clin. Exp. Res. 2019, 31, 1435–1442. [Google Scholar] [CrossRef]
- Afilalo, J.; Lauck, S.; Kim, D.H.; Lefèvre, T.; Piazza, N.; Lachapelle, K.; Martucci, G.; Lamy, A.; Labinaz, M.; Peterson, M.D.; et al. Frailty in Older Adults Undergoing Aortic Valve Replacement: The FRAILTY-AVR Study. J. Am. Coll. Cardiol. 2017, 70, 689–700. [Google Scholar] [CrossRef]
- Sündermann, S.; Dademasch, A.; Praetorius, J.; Kempfert, J.; Dewey, T.; Falk, V.; Mohr, F.W.; Walther, T. Comprehensive assessment of frailty for elderly high-risk patients undergoing cardiac surgery. Eur. J. Cardiothorac. Surg. 2011, 39, 33–37. [Google Scholar] [CrossRef]
- Sündermann, S.; Dademasch, A.; Rastan, A.; Praetorius, J.; Rodriguez, H.; Walther, T.; Mohr, F.W.; Falk, V. One-year follow-up of patients undergoing elective cardiac surgery assessed with the Comprehensive Assessment of Frailty test and its simplified form. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 119–123; discussion 123. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Morley, J.E. Sarcopenia Is Recognized as an Independent Condition by an International Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code. J. Am. Med. Dir. Assoc. 2016, 17, 675–677. [Google Scholar] [CrossRef]
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef]
- Yamada, M.; Nishiguchi, S.; Fukutani, N.; Tanigawa, T.; Yukutake, T.; Kayama, H.; Aoyama, T.; Arai, H. Prevalence of sarcopenia in community-dwelling Japanese older adults. J. Am. Med. Dir. Assoc. 2013, 14, 911–915. [Google Scholar] [CrossRef]
- Edwards, M.H.; Dennison, E.M.; Aihie Sayer, A.; Fielding, R.; Cooper, C. Osteoporosis and sarcopenia in older age. Bone 2015, 80, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Ham, D.J.; Börsch, A.; Lin, S.; Thürkauf, M.; Weihrauch, M.; Reinhard, J.R.; Delezie, J.; Battilana, F.; Wang, X.; Kaiser, M.S.; et al. The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat. Commun. 2020, 11, 4510. [Google Scholar] [CrossRef]
- Bano, G.; Trevisan, C.; Carraro, S.; Solmi, M.; Luchini, C.; Stubbs, B.; Manzato, E.; Sergi, G.; Veronese, N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas 2017, 96, 10–15. [Google Scholar] [CrossRef]
- Thoma, A.; Lightfoot, A.P. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv. Exp. Med. Biol. 2018, 1088, 267–279. [Google Scholar]
- Rong, Y.D.; Bian, A.L.; Hu, H.Y.; Ma, Y.; Zhou, X.Z. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018, 18, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurcay, E.; Kara, M. Is sarcopenia primarily an age-related or renin-angiotensin system-related disorder? Geriatr. Gerontol. Int. 2020, 20, 997. [Google Scholar] [CrossRef]
- Ekiz, T.; Kara, M.; Özcan, F.; Ricci, V.; Özçakar, L. Sarcopenia and COVID-19: A Manifold Insight on Hypertension and the Renin Angiotensin System. Am. J. Phys. Med. Rehabil. 2020, 99, 880–882. [Google Scholar] [CrossRef]
- Bao, Z.; Cui, C.; Chow, S.K.; Qin, L.; Wong, R.M.Y.; Cheung, W.H. AChRs Degeneration at NMJ in Aging-Associated Sarcopenia-A Systematic Review. Front. Aging Neurosci. 2020, 12, 5978. [Google Scholar] [CrossRef] [PubMed]
- Uezumi, A.; Ikemoto-Uezumi, M.; Zhou, H.; Kurosawa, T.; Yoshimoto, Y.; Nakatani, M.; Hitachi, K.; Yamaguchi, H.; Wakatsuki, S.; Araki, T.; et al. Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. J. Clin. Investig. 2021, 131, e139617. [Google Scholar] [CrossRef]
- Marini, E.; Buffa, R.; Saragat, B.; Coin, A.; Toffanello, E.D.; Berton, L.; Manzato, E.; Sergi, G. The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clin. Interv. Aging 2012, 7, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Bahat, G.; Kilic, C.; Altinkaynak, M.; Akif Karan, M. Comparison of standard “versus” population-specific handgrip strength cut-off points in the detection of probable sarcopenia after launch of EWGSOP2. Aging Male 2021, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zanker, J.; Patel, S.; Blackwell, T.; Duchowny, K.; Brennan-Olsen, S.; Cummings, S.R.; Evans, W.J.; Orwoll, E.S.; Scott, D.; Vogrin, S.; et al. Walking Speed and Muscle Mass Estimated by the D3-Creatine Dilution Method Are Important Components of Sarcopenia Associated With Incident Mobility Disability in Older Men: A Classification and Regression Tree Analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1997–2002. [Google Scholar] [CrossRef]
- Poggiogalle, E.; Parrinello, E.; Barazzoni, R.; Busetto, L.; Donini, L.M. Therapeutic strategies for sarcopenic obesity: A systematic review. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 33–41. [Google Scholar] [CrossRef]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and Cachexia in Heart Failure. JPEN J. Parenter. Enter. Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef]
- Woods, N.F.; LaCroix, A.Z.; Gray, S.L.; Aragaki, A.; Cochrane, B.B.; Brunner, R.L.; Masaki, K.; Murray, A.; Newman, A.B. Women’s Health Initiative. Frailty: Emergence and consequences in women aged 65 and older in the Women’s Health Initiative Observational Study. J. Am. Geriatr. Soc. 2005, 53, 1321–1330, Erratum in 2017, 65, 1631–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gary, R. Evaluation of frailty in older adults with cardiovascular disease: Incorporating physical performance measures. J. Cardiovasc. Nurs. 2012, 27, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Alonso-, C.; Carcaillon, L.; García-García, F.J.; Amor-Andrés, M.S.; El Assar, M.; Rodríguez-Mañas, L. Association between endothelial dysfunction and frailty: The Toledo Study for Healthy Aging. Age 2014, 36, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Ricci, N.A.; Pessoa, G.S.; Ferriolli, E.; Dias, R.C.; Perracini, M.R. Frailty andcardiovascular risk in community-dwelling elderly: A population-based study. Clin. Interv. Aging 2014, 9, 1677–1685. [Google Scholar] [CrossRef] [Green Version]
- Cacciatore, F.; Testa, G.; Galizia, G.; Della-Morte, D.; Mazzella, F.; Langellotto, A.; Pirozzi, G.; Ferro, G.; Gargiulo, G.; Ferrara, N.; et al. Clinical frailty and long-term mortality in elderly subjects with diabetes. Acta Diabetol. 2013, 50, 251–260. [Google Scholar] [CrossRef]
- Hubbard, R.E.; Lang, I.A.; Llewellyn, D.J.; Rockwood, K. Frailty, body mass index, and abdominal obesity in older people. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J.; Vallejo, S.; El Assar, M.; García-Septiem, J.; Sánchez-Ferrer, C.F.; Rodríguez-Mañas, L. Age-related differences in the effects of α and γ peroxisome proliferator-activated receptor subtype agonists on endothelial vasodilation in human microvessels. Exp. Gerontol. 2012, 47, 734–740. [Google Scholar] [CrossRef]
- Liberale, L.; Montecucco, F.; Tardif, J.C.; Libby, P.; Camici, G.G. Inflamm-ageing: The role of inflammation in age-dependent cardiovascular disease. Eur. Heart J. 2020, 41, 2974–2982. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Hildebrand, B.A.; Sun, M.; Rockwood, M.R.; Rose, R.A.; Rockwood, K.; Howlett, S.E. A clinical frailty index in aging mice: Comparisons with frailty index data in humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, A.L.; Fernandes, A.; Aguilar-Pimentel, J.A.; de Angelis, M.H.; Guedes, J.R.; Brito, M.A.; Ortolano, S.; Pani, G.; Athanasopoulou, S.; Gonos, E.S.; et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res. Rev. 2018, 47, 214–277. [Google Scholar] [CrossRef]
- Monti, D.; Ostan, R.; Borelli, V.; Castellani, G.; Franceschi, C. Inflammaging and human longevity in the omics era. Mech. Ageing Dev. 2017, 165, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.J.; Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; van de Sluis, B.; Kirkland, J.L.; van Deursen, J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479, 232–236. [Google Scholar] [CrossRef]
- Yoshida, N.; Yamamoto, H.; Shinke, T.; Otake, H.; Kuroda, M.; Terashita, D.; Takahashi, H.; Sakaguchi, K.; Hirota, Y.; Emoto, T.; et al. Impact of CD14(+ +)CD16(+) monocytes on plaque vulnerability in diabetic and non-diabetic patients with asymptomatic coronary artery disease: A cross-sectional study. Cardiovasc. Diabetol. 2017, 16, 96. [Google Scholar] [CrossRef] [Green Version]
- Verschoor, C.P.; Johnstone, J.; Millar, J.; Parsons, R.; Lelic, A.; Loeb, M.; Bramson, J.L.; Bowdish, D.M. Alterations to the frequency and function of peripheral blood monocytes and associations with chronic disease in the advanced-age, frail elderly. PLoS ONE 2014, 9, e104522. [Google Scholar] [CrossRef]
- Shah, R.; Matthews, G.J.; Shah, R.Y.; McLaughlin, C.; Chen, J.; Wolman, M.; Master, S.R.; Chai, B.; Xie, D.; Rader, D.J.; et al. Serum Fractalkine (CX3CL1) and Cardiovascular Outcomes and Diabetes: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2015, 66, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Anuurad, E.; Enkhmaa, B.; Gungor, Z.; Zhang, W.; Tracy, R.P.; Pearson, T.A.; Kim, K.; Berglund, L. Age as a modulator of inflammatory cardiovascular risk factors. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2151–2156. [Google Scholar] [CrossRef] [Green Version]
- Pavanello, S.; Stendardo, M.; Mastrangelo, G.; Bonci, M.; Bottazzi, B.; Campisi, M.; Nardini, M.; Leone, R.; Mantovani, A.; Boschetto, P. Inflammatory long pentraxin 3 is associated with leukocyte telomere length in night-shift workers. Front. Immunol. 2017, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Tobias, D.K.; Akinkuolie, A.O.; Chandler, P.D.; Lawler, P.R.; Manson, J.E.; Buring, J.E.; Ridker, P.M.; Wang, L.; Lee, I.M.; Mora, S. Markers of inflammation and in- cident breast Cancer risk in the women’s health study. Am. J. Epidemiol. 2018, 187, 705–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Ma, R.; Sharma, A.; He, M.; Xue, J.; Wu, J.; Dun, B.; Li, G.; Wang, X.; Ji, M.; et al. Inflammatory serum proteins are severely altered in metastatic gastric adenocarcinoma patients from the Chinese population. PLoS ONE 2015, 10, e0123985. [Google Scholar] [CrossRef] [PubMed]
- Tung, B.T.; Rodriguez-Bies, E.; Talero, E.; Gamero-Estevez, E.; Motilva, V.; Navas, P.; Lopez-Lluch, G. Anti-inflammatory effect of resveratrol in old mice liver. Exp. Gerontol. 2015, 64, 1–7. [Google Scholar] [CrossRef]
- Zhuang, P.Y.; Zhang, K.W.; Wang, J.D.; Zhou, X.P.; Liu, Y.B.; Quan, Z.W.; Shen, J. Effect of TALEN-mediated IL-6 knockout on cell proliferation, apoptosis, invasion and anti-cancer therapy in hepatocellular carcinoma (HCC-LM3) cells. Oncotarget 2017, 8, 77915–77927. [Google Scholar] [CrossRef] [Green Version]
- Trott, D.W.; Lesniewski, L.A.; Donato, A.J. Selected life-extending interventions reduce arterial CXCL10 and macrophage colony-stimulating factor in aged mouse arteries. Cytokine 2017, 96, 102–106. [Google Scholar] [CrossRef]
- Jin, T.; Sun, Z.; Chen, X.; Wang, Y.; Li, R.; Ji, S.; Zhao, Y. Serum human Beta- Defensin-2 is a possible biomarker for monitoring response to JAK inhibitor in psoriasis patients. Dermatology 2017, 233, 164–169. [Google Scholar] [CrossRef]
- Szczepanowska, K.; Trifunovic, A. Origins of mtDNA mutations in ageing. Essays Biochem. 2017, 61, 325–337. [Google Scholar] [PubMed]
- Corre, J.; Hebraud, B.; Bourin, P. Concise review: Growth differentiation factor 15 in pathology: A clinical role? Stem Cells Transl. Med. 2013, 2, 946–952. [Google Scholar] [CrossRef]
- Fujita, Y.; Taniguchi, Y.; Shinkai, S.; Tanaka, M.; Ito, M. Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr. Gerontol. Int. 2016, 16 (Suppl. S1), 17–29. [Google Scholar] [CrossRef] [PubMed]
- Dogan, S.; Ray, A.; Cleary, M.P. The influence of different calorie restriction protocols on serum pro-inflammatory cytokines, adipokines and IGF-I levels in female C57BL6 mice: Short term and long term diet effects. Meta Gene 2017, 12, 22–32. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Barallat, J.; de Antonio, M.; Domingo, M.; Zamora, E.; Vila, J.; Subirana, I.; Gastelurrutia, P.; Pastor, M.C.; Januzzi, J.L.; et al. Bloodstream amyloid-beta (1-40) peptide, cognition, and outcomes in heart failure. Rev. Esp. Cardiol. 2017, 70, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Diem, S.; Kasenda, B.; Spain, L.; Martin-Liberal, J.; Marconcini, R.; Gore, M.; Larkin, J. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br. J. Cancer 2016, 114, 256–261. [Google Scholar] [CrossRef]
- Bluhm, B.; Laffer, B.; Hirnet, D.; Rothermundt, M.; Ambree, O.; Lohr, C. Normal cerebellar development in S100B-deficient mice. Cerebellum 2015, 14, 119–127. [Google Scholar] [CrossRef]
- Yamaguchi, M. Regulatory role of regucalcin in heart calcium signaling: Insight into cardiac failure (Review). Biomed. Rep. 2014, 2, 303–308. [Google Scholar] [CrossRef]
- Fischer, C.R.; Mikami, M.; Minematsu, H.; Nizami, S.; Goo Lee, H.; Stamer, D.; Patel, N.; Yu Soung, D.; Back, J.H.; Song, L.; et al. Calreticulin inhibits inflammation-induced osteoclastogenesis and bone resorption. J. Orthop. Res. 2017, 35, 2658–2666. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeisberg, M.; Kalluri, R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 2013, 304, C216–C225. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Rai, R.; Park, K.E.; Eren, M.; Miyata, T.; Wilsbacher, L.D.; Vaughan, D.E. A small molecule inhibitor of PAI-1 protects against doxorubicin-induced cellular senescence. Oncotarget 2016, 7, 72443–72457. [Google Scholar] [CrossRef] [Green Version]
- Sudol, M. From Rous sarcoma virus to plasminogen activator, src oncogene and cancer management. Oncogene 2011, 30, 3003–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musial, K.; Bargenda, A.; Zwolinska, D. Urine matrix metalloproteinases and their extracellular inducer EMMPRIN in children with chronic kidney disease. Ren. Fail. 2015, 37, 980–984. [Google Scholar] [CrossRef]
- Szondy, Z.; Korponay-Szabo, I.; Kiraly, R.; Sarang, Z.; Tsay, G.J. Transglutaminase 2 in human diseases. BioMedicine 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Izumiya, Y.; Hanatani, S.; Yamamoto, E.; Kusaka, H.; Tokitsu, T.; Takashio, S.; Sakamoto, K.; Tsujita, K.; Tanaka, T.; et al. High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction. Heart Vessels 2016, 31, 52–59. [Google Scholar] [CrossRef]
- Miranda, A.S.; Simoes, E.S.A.C. Serum levels of angiotensin converting enzyme as a biomarker of liver fibrosis. World J. Gastroenterol. 2017, 23, 8439–8442. [Google Scholar] [CrossRef]
- Maggio, M.; Cattabiani, C.; Lauretani, F.; Ferrucci, L.; Luci, M.; Valenti, G.; Ceda, G. The concept of multiple hormonal dysregulation. Acta Bio-Medica Atenei Parm. 2010, 81 (Suppl. S1), 19–29. [Google Scholar]
- Rajabali, N.; Rolfson, D.; Bagshaw, S.M. Assessment and Utility of Frailty Measures in Critical Illness, Cardiology, and Cardiac Surgery. Can. J. Cardiol. 2016, 32, 1157–1165. [Google Scholar] [CrossRef]
- Graham, M.M.; Galbraith, P.D.; O’Neill, D.; Rolfson, D.B.; Dando, C.; Norris, C.M. Frailty and outcome in elderly patients with acute coronary syndrome. Can. J. Cardiol. 2013, 29, 1610–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekerstad, N.; Swahn, E.; Janzon, M.; Alfredsson, J.; Löfmark, R.; Lindenberger, M.; Carlsson, P. Frailty is independently associated with short-term outcomes for elderly patients with non-ST-segment elevation myocardial infarction. Circulation 2011, 124, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, J.; Núñez, E.; Ruiz, V.; Bonanad, C.; Fernández, J.; Cauli, O.; García-Blas, S.; Mainar, L.; Valero, E.; Rodríguez-Borja, E.; et al. Usefulness of Clinical Data and Biomarkers for the Identification of Frailty After Acute Coronary Syndromes. Can. J. Cardiol. 2015, 31, 1462–1468. [Google Scholar] [CrossRef]
- Jha, S.R.; Ha, H.S.; Hickman, L.D.; Hannu, M.; Davidson, P.M.; Macdonald, P.S.; Newton, P.J. Frailty in advanced heart failure: A systematic review. Heart Fail. Rev. 2015, 20, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Newman, A.B.; Harris, T.B.; Rodondi, N.; Bauer, D.C.; Kritchevsky, S.B.; Butler, J. Frailty and risk for heart failure in older adults: The health, aging, and body composition study. Am. Heart J. 2013, 166, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Lupón, J.; González, B.; Santaeugenia, S.; Altimir, S.; Urrutia, A.; Más, D.; Díez, C.; Pascual, T.; Cano, L.; Valle, V. Prognostic implication of frailty and depressive symptoms in an outpatient population with heart failure. Rev. Esp. Cardiol. 2008, 61, 835–842. [Google Scholar] [CrossRef]
- Farhat, J.S.; Velanovich, V.; Falvo, A.J.; Horst, H.M.; Swartz, A.; Patton, J.H., Jr.; Rubinfeld, I.S. Are the frail destined to fail? Frailty index as predictor of surgical morbidity and mortality in the elderly. J. Trauma Acute Care Surg. 2012, 72, 1526–1530; discussion 1530–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; Han, H.S.; Jung, H.W.; Kim, K.I.; Hwang, D.W.; Kang, S.B.; Kim, C.H. Multidimensional frailty score for the prediction of postoperative mortality risk. JAMA Surg. 2014, 149, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Sepehri, A.; Beggs, T.; Hassan, A.; Rigatto, C.; Shaw-Daigle, C.; Tangri, N.; Arora, R.C. The impact of frailty on outcomes after cardiac surgery: A systematic review. J. Thorac. Cardiovasc. Surg. 2014, 148, 3110–3117. [Google Scholar] [CrossRef] [Green Version]
- Bruno, R.R.; Wolff, G.; Wernly, B.; Kelm, M.; Jung, C. Frailty Assessment in Patients Undergoing Aortic Valve Replacement: Be Quick and Be Sure. JACC Cardiovasc. Interv. 2020, 13, 1965–1967. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, A.; Goel, N.; Kelly, J.J.; Han, J.; Brown, C.R.; Khurshan, F.; Chen, Z.; Desai, N. Effects of Frailty on Outcomes and 30-day Readmissions After Surgical Mitral Valve Replacement. Ann. Thorac. Surg. 2020, 109, 1120–1126. [Google Scholar] [CrossRef]
- Tran, D.T.T.; Tu, J.V.; Dupuis, J.Y.; Bader Eddeen, A.; Sun, L.Y. Association of Frailty and Long-Term Survival in Patients Undergoing Coronary Artery Bypass Grafting. J. Am. Heart Assoc. 2018, 7, e009882. [Google Scholar] [CrossRef] [Green Version]
- Lindman, B.R.; Patel, J.N. Multimorbidity in Older Adults with Aortic Stenosis. Clin. Geriatr. Med. 2016, 32, 305–314. [Google Scholar] [CrossRef]
- Stortecky, S.; Schoenenberger, A.W.; Moser, A.; Kalesan, B.; Jüni, P.; Carrel, T.; Bischoff, S.; Schoenenberger, C.M.; Stuck, A.E.; Windecker, S.; et al. Evaluation of multidimensional geriatric assessment as a predictor of mortality and cardiovascular events after transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 2012, 5, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutz, N.E.; Pereira, S.L.; Hays, N.P.; Oliver, J.S.; Edens, N.K.; Evans, C.M.; Wolfe, R.R. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 2013, 32, 704–712. [Google Scholar] [CrossRef]
- Hoffer, L.J.; Bistrian, B.R. Appropriate protein provision in critical illness: A systematic and narrative review. Am. J. Clin. Nutr 2012, 96, 591–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of critical care medicine (SCCM) and American society for parenteral and enteral nutrition (A.S.P.E.N.). JPEN J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Singer, P.; Berger, M.M.; Van den Berghe, G.; Biolo, G.; Calder, P.; Forbes, A.; Griffiths, R.; Kreyman, G.; Leverve, X.; Pichard, C.; et al. ESPEN Guidelines on Parenteral Nutrition: Intensive care. Clin. Nutr. 2009, 28, 387–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced recovery after surgery: A review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef]
- Yeh, D.D.; Fuentes, E.; Quraishi, S.A.; Cropano, C.; Kaafarani, H.; Lee, J.; King, D.R.; DeMoya, M.; Fagenholz, P.; Butler, K.; et al. Adequate Nutrition May Get You Home: Effect of Caloric/Protein Deficits on the Discharge Destination of Critically Ill Surgical Patients. JPEN J. Parenter. Enter. Nutr. 2016, 40, 37–44. [Google Scholar] [CrossRef]
- Elke, G.; Wang, M.; Weiler, N.; Day, A.G.; Heyland, D.K. Close to recom- mended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: Secondary analysis of a large international nutrition database. Crit. Care 2014, 18, R29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, D.D.; Cropano, C.; Quraishi, S.A.; Fuentes, E.; Kaafarani, H.M.; Lee, J.; Chang, Y.; Velmahos, G. Implementation of an Aggressive Enteral Nutrition Protocol and the Effect on Clinical Outcomes. Nutr. Clin. Pract. 2017, 32, 175–181. [Google Scholar] [CrossRef]
- Allard, J.P.; Keller, H.; Jeejeebhoy, K.N.; Laporte, M.; Duerksen, D.R.; Gramlich, L.; Payette, H.; Bernier, P.; Vesnaver, E.; Davidson, B.; et al. Malnutrition at Hospital Admission-Contributors and Effect on Length of Stay: A Prospective Cohort Study From the Canadian Malnutrition Task Force. JPEN J. Parenter. Enter. Nutr. 2016, 40, 487–497. [Google Scholar] [CrossRef]
- Slieker, J.; Frauche, P.; Jurt, J.; Addor, V.; Blanc, C.; Demartines, N.; Hübner, M. Enhanced recovery ERAS for elderly: A safe and beneficial pathway in colorectal surgery. Int. J. Colorectal. Dis. 2017, 32, 215–221. [Google Scholar] [CrossRef]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Naseeb, M.A.; Volpe, S.L. Protein and exercise in the prevention of sarcopenia and aging. Nutr. Res. 2017, 40, 1–20. [Google Scholar] [CrossRef]
- Krok-Schoen, J.L.; Archdeacon Price, A.; Luo, M.; Kelly, O.J.; Taylor, C.A. Low Dietary Protein Intakes and Associated Dietary Patterns and Functional Limitations in an Aging Population: A NHANES analysis. J. Nutr. Health Aging 2019, 23, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, C.J.; Milan, A.M.; Mitchell, S.M.; Zeng, N.; Ramzan, F.; Sharma, P.; Knowles, S.O.; Roy, N.C.; Sjödin, A.; Wagner, K.H.; et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: A 10-wk randomized controlled trial. Am. J. Clin. Nutr. 2017, 106, 1375–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.I.; Kim, I.Y.; Wolfe, R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollahosseini, M.; Shab-Bidar, S.; Rahimi, M.H.; Djafarian, K. Effect of whey protein supplementation on long and short term appetite: A meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN 2017, 20, 34–40. [Google Scholar] [CrossRef]
- Paddon-Jones, D.; Leidy, H. Dietary protein and muscle in older persons. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Cramer, J.T.; Cruz-Jentoft, A.J.; Landi, F.; Hickson, M.; Zamboni, M.; Pereira, S.L.; Hustead, D.S.; Mustad, V.A. Impacts of High-Protein Oral Nutritional Supplements Among Malnourished Men and Women with Sarcopenia: A Multicenter, Randomized, Double-Blinded, Controlled Trial. J. Am. Med. Dir. Assoc. 2016, 17, 1044–1055. [Google Scholar] [CrossRef] [Green Version]
- Moberg, M.; Apró, W.; Ekblom, B.; van Hall, G.; Holmberg, H.C.; Blomstrand, E. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. Am. J. Physiol. Cell Physiol. 2016, 310, C874–C884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, M.J.; Wilson, O.J.; Webb, E.K.; Traylor, D.A.; Prior, T.; Elia, A.; Harlow, P.S.; Black, A.D.; Parker, P.J.; Harris, N.; et al. Novel Essential Amino Acid Supplements Following Resistance Exercise Induce Aminoacidemia and Enhance Anabolic Signaling Irrespective of Age: A Proof-of-Concept Trial. Nutrients 2020, 12, 2067. [Google Scholar] [CrossRef]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance- type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Franzke, B.; Neubauer, O.; Cameron-Smith, D.; Wagner, K.H. Dietary Protein, Muscle and Physical Function in the Very Old. Nutrients 2018, 10, 935. [Google Scholar] [CrossRef] [Green Version]
- Traylor, D.A.; Gorissen, S.H.M.; Phillips, S.M. Perspective: Protein Requirements and Optimal Intakes in Aging: Are We Ready to Recommend More Than the Recommended Daily Allowance? Adv. Nutr. 2018, 9, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Church, D.D.; Azhar, G.; Schutzler, S.E.; Ferrando, A.A.; Wolfe, R.R. Anabolic response to essential amino acid plus whey protein composition is greater than whey protein alone in young healthy adults. J. Int. Soc. Sports Nutr. 2020, 17, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atherton, P.J.; Etheridge, T.; Watt, P.W.; Wilkinson, D.; Selby, A.; Rankin, D.; Smith, K.; Rennie, M.J. Muscle full effect after oral protein: Time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am. J. Clin. Nutr. 2010, 92, 1080–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, W.K.; Phillips, B.E.; Hill, I.; Greenhaff, P.; Lund, J.N.; Williams, J.P.; Rankin, D.; Wilkinson, D.J.; Smith, K.; Atherton, P.J. Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men. Clin. Sci. 2017, 131, 2643–2653. [Google Scholar] [CrossRef] [Green Version]
Study Type | Duration of the Study | Material and Methods | References | Main Findings |
---|---|---|---|---|
Review | The articles were conducted from January 2010 until April 2015 | The first group, containing eight articles, discussed protein or amino acid supplementation alone on sarcopenia. The second group, containing six articles, discussed exercise alone on sarcopenia. The last group, containing six articles, discussed both protein or amino acid supplementation and exercise on sarcopenia | Naseeb MA et al. [122] | Protein intakes should exceed the current recommended dietary allowance RDA (0.8 g/kg body mass per day) |
The European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly | Healthy older people for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness. Older adults above 65 years | Deutz NE et al. [121] | Higher protein intakes in older adults in relation to the current protein RDA: a 25–50% increase for healthy individuals, a 50–90% increase those suffering from acute or chronic disease, and greater than 50% increase above the RDA for those experiencing severe illness or injury | |
Observational and cross-sectional study | Noninstitutionalized participants from the 2005-2014 National Health and Nutrition Examination Survey | Data from 11,680 adults were categorized into 51–60 years (n = 4016), 61–70 years (n = 3854), and 71 years and older (n = 3810) for analysis | Krok-Schoen JL et al. [123] | Over 30% failed to meet the current protein RDA |
Parallel-group randomized trial, protein consumption at the current RDA or twice the RDA (2RDA) affects skeletal muscle mass and physical function in elderly men | Before treatment and after 10 wk of intervention | 29 men aged > 70 y (mean ± SD) body mass index (in kg/m2): 28.3 ± 4.2 | Mitchell CJ et al. [124] | Increasing protein intake to twice RDA (1.6 g/kg per day) resulted in significant gains in lean tissue mass in healthy older men |
The current evidence related to dietary protein intake and muscle health in elderly adults | / | Elderly population of the United State | Baum JI et al. [125] | The consumption of dietary protein consistent with the upper end of the AMDRs (as much as 30–35% of total caloric intake) may prove to be beneficial, although practical limitations may make this level of dietary protein intake difficult The consumption of high-quality proteins that are easily digestible and contain a high proportion of EAAs lessens the urgency of consuming diets with an extremely high protein content |
A meta-analysis of randomized controlled trials to investigate effect of whey protein supplementation on long- and short-term appetite | / | Eight publications met inclusion criteria, five records were on short-term and three records on long-term appetite | Mollahosseini M et al. [126] | Increasing daily protein intake to twice the RDA translates to an 80 kg older adult consuming about 130 protein daily. Given that protein increases satiety in a dose-dependent manner |
Review | Seniors over 50 with reduced protein intake | Paddon-Jones D et al. [127] | Results from muscle protein anabolism, appetite regulation and satiety research support the contention that meeting a protein threshold (approximately 30 g/meal) represents a promising strategy for middle-aged and older adults concerned with maintaining muscle mass while controlling body fat | |
A multicenter, randomized, double-blinded, controlled trial with evaluation the effects of two high-quality oral nutritional supplements (ONS) differing in amount and type of key nutrients in older adult men and women | A 24-week intervention period with two energy-rich (330 kcal) ONS treatment groups | Malnourished and sarcopenic men and women, 65 years and older (n = 330) | Cramer JT et al. [128] | The recommendation to increase protein intake while simultaneously maintaining, and in many cases increasing, energy intake can present a protein paradox. Dietary supplementation strategies to increase protein intake may unintentionally result in partial energy redistribution, which may negatively affect both protein and energy intake |
Experimental protocol that compared the stimulatory role of leucine, BCAA and EAA ingestion on anabolic signaling following exercise | / | Eight healthy male volunteers with mean (± E) age 27 ± 2 yr, body weight 84 ± 3 kg, height 181 ± 3 cm, and maximal leg strength 430± 13 kg | Moberg M et al. [129] | The capacity of resistance exercise to sensitize muscle to the anabolic potential of dietary protein is primarily achieved through a timely supply of EAA |
All trials were single-blind, randomized, and counterbalanced | All laboratory visits were separated by a minimum of 7 days | Seven (n = 7) younger (18–45 years; four males, three females) and seven (n = 7) older (60–80 years; four males, three females) volunteers | Lees MJ et al. [130] | The ingestion of a novel, gel-based, leucine-enriched EAA supplement results in substantial aminoacidemia and anabolic signaling in younger and older individuals. This formulation can augment dietary protein consumption, intracellular anabolic signaling, and aminoacidemia in older adults without deleterious effects on appetite and subsequent energy intake |
A systematic review of interventional evidence was performed through the use of a random-effects meta-analysis model | The effect of dietary protein supplementation during prolonged (>6 wk) resistance-type exercise training | 680 subjects | Cermak NM et al. [131] | Gains in lean tissue mass were of greater magnitude in both younger and older adults when combining resistance training with protein supplementation vs. resistance training alone. Increases in type II muscle fiber cross-sectional area in older adults following resistance training |
A systematic review, meta-analysis and meta-regression | Only randomized controlled trials with RET ≥6 weeks in duration and dietary protein supplementation | 49 studies with 1863 participants | Morton RW et al. [132] | Protein supplementation augmented muscle growth during resistance training when habitual dietary protein intakes were, on average, below 1.6 g/kg body mass per day in younger adults. However, the impact of protein supplementation on muscle mass was reduced with advancing age |
Available studies linking protein intake with physical function and health parameters in elderly 80 years old or older | / | Elderly cohorts including very old participants aged 80 years and older | Franzke B et al. [133] | The amino acid composition of a given protein source can influence the extent and amplitude of postprandiam MPS, and induce varying patterns of aminoacidemia |
Studies assessing the relation between dietary protein intake and indexes of muscle mass, physical function, distribution, and muscle mass and function | / | Persons aged > 80 y sarcopenic | Traylor DA et al. [134] | The leucine content of a given protein source is particularly important in attenuating declines in a muscle mass when consumed alongside other essential amino acid EAA |
Clinical trials anabolic response to essential amino acid plus whey protein composition is greater than whey protein alone in young healthy adults | / | 16 healthy male and females. Characteristics: age, body weight, body mass index, lean body mass, fat mass | Park S et al. [135] | Provision of ample dietary EAA and leucine are necessary to support a skeletal muscle anabolic response in older adults. Nutritional supplementation with EAA and leucine alongside meals containing suboptimal protein content (i.e., breakfast and lunch) could assist older adults in achieving their per meal protein intake |
Study time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling | Recruitment for healthy young men (n = 8; 21 ± 2 y old (mean ± SEM); body mass index (in kg/m2): 22.9 ± 0.9) began in January 2008 | Eight postabsorptive healthy men (≈21 y of age) were studied during 8.5 h of primed continuous infusion of [1,2-13C2]leucine with intermittent quadriceps biopsies for determination of muscle protein synthesis MPS and anabolic signaling | Atherton PJ et al. [136] | When skeletal muscle is refractory to the anabolic effects of leucine during the postprandial ‘muscle-full’ period, it would be prudent that protein-based snacks or supplements are administered between meals when additional nutritional supplementation is required to reach their daily protein goal |
Protocol study that demonstrates the refractoriness of muscle to nutrient-led anabolic stimulation in the postprandial period | / | Healthy, recreationally active older males (n = 16, 70.3 ± 2.6 years, BMI 25.5 ± 1.8 (mean ± SD) were recruited by mail and local advertising | Mitchell WK et al. [137] | Supplements may be most likely to be effective when taken in between meals, perhaps in the form of low dose EAA mixtures, rather than leucine alone; the efficacy of which may be limited in the absence of exogenous EAA to promote whole body and skeletal muscle net balance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisano, C.; Polisano, D.; Balistreri, C.R.; Altieri, C.; Nardi, P.; Bertoldo, F.; Trombetti, D.; Asta, L.; Ferrante, M.S.; Buioni, D.; et al. Role of Cachexia and Fragility in the Patient Candidate for Cardiac Surgery. Nutrients 2021, 13, 517. https://doi.org/10.3390/nu13020517
Pisano C, Polisano D, Balistreri CR, Altieri C, Nardi P, Bertoldo F, Trombetti D, Asta L, Ferrante MS, Buioni D, et al. Role of Cachexia and Fragility in the Patient Candidate for Cardiac Surgery. Nutrients. 2021; 13(2):517. https://doi.org/10.3390/nu13020517
Chicago/Turabian StylePisano, Calogera, Daniele Polisano, Carmela Rita Balistreri, Claudia Altieri, Paolo Nardi, Fabio Bertoldo, Daniele Trombetti, Laura Asta, Maria Sabrina Ferrante, Dario Buioni, and et al. 2021. "Role of Cachexia and Fragility in the Patient Candidate for Cardiac Surgery" Nutrients 13, no. 2: 517. https://doi.org/10.3390/nu13020517
APA StylePisano, C., Polisano, D., Balistreri, C. R., Altieri, C., Nardi, P., Bertoldo, F., Trombetti, D., Asta, L., Ferrante, M. S., Buioni, D., Foti, C., & Ruvolo, G. (2021). Role of Cachexia and Fragility in the Patient Candidate for Cardiac Surgery. Nutrients, 13(2), 517. https://doi.org/10.3390/nu13020517