Maternal Adherence to the Mediterranean Diet during Pregnancy: A Review of Commonly Used a priori Indexes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Characteristics
3.2. Type of Index
3.3. Dietary Assessment Methods
3.4. Food and Nutrient Components
3.4.1. Vegetables
3.4.2. Fruits
3.4.3. Nuts
3.4.4. Cereals
3.4.5. Legumes
3.4.6. Fish
3.4.7. Meat
3.4.8. Dairy Products
3.4.9. Alcohol
3.4.10. Lipid Ratios
3.4.11. Other Food Components
Olive Oil and Rapeseed Oil
Fast Food and Junk Food
Sweets, Candies, and Pastries
Sofrito
Sweetened or Carbonated Beverages or Coffee
Skipping Breakfast
3.5. Scoring Systems
3.5.1. Cut-Off Points
By Distribution
By Fixed Criteria
3.5.2. Range of Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALSPAC | Avon Longitudinal Study of Parents and Children |
aMed | alternative Mediterranean diet score |
Apo A1 | apolipoprotein A1 |
Apo B | apolipoprotein B |
BMI | body mass index |
CMD | cardiometabolic disease |
DBP | diastolic blood pressure |
DNBC | Danish National Birth Cohort |
EISL | Estudio Internacional de Sibilancias en Lactantes |
FFQ | food frequency questionnaire |
FGR | fetal growth restriction |
HOMA-IR | homeostasis model assessment of insulin resistance |
IFPSII | Infant Feeding Practices Study II |
INMA | Infancia y Medio Ambiente |
ISSAC | International Study of Asthma and Allergies in Childhood |
LDL-c | low-density lipoprotein cholesterol |
GDM | gestational diabetes mellitus |
LGA | large for gestational age |
MD | Mediterranean diet |
MDS | Mediterranean diet score |
MDS-2003 | Mediterranean diet score by Trichopoulou et al. (2003) |
MDS-2004 | Mediterranean diet score by Psaltopoulou et al. (2004) |
MDS-2006 | Mediterranean diet score by Panagiotakos et al. (2006) |
MEDAS | Mediterranean Diet Adherence Scanner |
MESH | Medical Subject Heading |
MoBa | Norwegian Mother Child Cohort |
MUFA | monounsaturated fatty acids |
NAS | negative affect score |
PREDIMED | Prevención con Dieta MEDiterránea |
PTB | preterm birth |
RHEA | Rhea Mother-Child Study |
rMed | relative Mediterranean diet score |
SBP | systolic blood pressure |
SFA | saturated fatty acids |
SGA | small for gestational age |
T1 | first trimester of pregnancy |
T2 | second trimester of pregnancy |
T2DM | type 2 diabetes mellitus |
T3 | third trimester of pregnancy |
TIMOUN | Timoun Cohort Study |
UK | United Kingdom |
USA | United States of America |
USFA | unsaturated fatty acids |
Viva | Project Viva |
WFL | weight-for-length |
yr | year |
MD | Mediterranean diet |
MDS | Mediterranean diet score |
MDS-2003 | Mediterranean diet score by Trichopoulou et al. (2003) |
MDS-2006 | Mediterranean diet score by Panagiotakos et al. (2006) |
PREDIMED | Prevención con Dieta MEDiterránea |
References
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Lagiou, P. Healthy traditional Mediterranean diet: An expression of culture, history, and lifestyle. Nutr. Rev. 1997, 55, 383–389. [Google Scholar] [CrossRef]
- Trichopoulos, D.; Lagiou, P. Mediterranean diet and cardiovascular epidemiology. Eur. J. Epidemiol. 2004, 19, 7–8. [Google Scholar]
- Willet, W.C.; Sacks, F.; Trichopoulou, A.; Dresher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulous, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijatovic-Vukas, J.; Capling, L.; Cheng, S.; Stamatakis, E.; Louie, J.; Cheung, N.W.; Markovic, T.; Ross, G.; Senior, A.; Brand-Miller, J.C.; et al. Associations of diet and physical activity with risk for gestational diabetes mellitus: A systematic review and meta-analysis. Nutrients 2018, 10, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amati, F.; Hassounah, S.; Swaka, A. The impact of Mediterranean dietary patterns during pregnancy on maternal and offspring health. Nutrients 2019, 11, 1098. [Google Scholar] [CrossRef] [Green Version]
- Litvak, J.; Parekh, N.; Deierlein, A. Prenatal dietary exposures and offspring body size from 6 months to 18 years: A systematic review. Paediatr. Perinat. Epidemiol. 2020, 34, 171–189. [Google Scholar] [CrossRef]
- Bach, A.; Serra-Majem, L.; Carrasco, J.L.; Roman, B.; Ngo, J.; Bertomeu, I.; Obrador, B. The use of indexes evaluating the adherence to the Mediterranean diet in epidemiological studies: A review. Public Health Nutr. 2006, 9, 132–146. [Google Scholar] [CrossRef]
- Hernández-Ruiz, A.; García-Villanova, B.; Guerra Hernández, E.J.; Amiano, P.; Azpiri, M.; Molina-Montes, E. Description of indexes based on the adherence to the Mediterranean dietary pattern: A review. Nutr. Hosp. 2015, 32, 1872–1884. [Google Scholar]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulous, D. Diet and overall survival in elderly people. BMJ 1995, 311, 1457–1460. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulous, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Mariscal-Arcas, M.; Rivas, A.; Monteagudo, C.; Granada, A.; Cerrillo, I.; Olea-Serrano, F. Proposal of a Mediterranean diet index for pregnant women. Br. J. Nutr. 2009, 102, 744–749. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans 2015–2020. 8th Edition. Available online: http://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 9 September 2020).
- Health Counsel of The Netherlands. Risks of Alcohol Consumption Related to Conception, Pregnancy, and Breastfeeding. The Hague: Health Council of The Netherlands. 2005:2004/22. Available online: https://www.healthcouncil.nl/documents/advisory-reports/2005/01/27/risks-of-alcohol-consumption-related-to-conception-pregnancy-and-breastfeeding (accessed on 9 September 2020).
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and micronutrient intake during pregnancy: An overview of recent evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [Green Version]
- Chatzi, L.; Rifas-Shiman, S.L.; Georgiou, V.; Joung, K.E.; Koinaki, S.; Chalkiadaki, G.; Margioris, A.; Sarri, K.; Vafeiadi, M.; Mantzoros, C.; et al. Adherence to the Mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr. Obes. 2017, 12, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Barrés, S.; Romaguera, D.; Valvi, D.; Martínez, D.; Vioque, J.; Navarrete-Muñoz, E.M.; Amiano, P.; Gonzalez-Palacios, S.; Guxens, M.; Pereda, E.; et al. Mediterranean dietary pattern in pregnant women and offspring risk of overweight and abdominal obesity in early childhood: The INMA birth cohort study. Pediatr. Obes. 2016, 11, 491–499. [Google Scholar] [CrossRef]
- Jardí, C.; Aparicio, E.; Bedmar, C.; Aranda, N.; Abajo, S.; March, G.; Basora, J.; Arija, V. Food consumption during pregnancy and post-partum. ECLIPSES study. Nutrients 2019, 11, 2447. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Galiano, J.M.; Olmedo-Requena, R.; Barrios-Rodríguez, R.; Amezcua-Prieto, C.; Bueno-Cavanillas, A.; Salcedo-Bellido, I.; Jimenez-Moleon, J.J.; Delgado-Rodríguez, M. Effect of adherence to a Mediterranean diet and olive oil intake during pregnancy on risk of small for gestational age infants. Nutrients 2018, 10, 1234. [Google Scholar] [CrossRef] [Green Version]
- Bédard, A.; Northstone, K.; Henderson, A.J.; Shaheen, S.O. Mediterranean diet during pregnancy and childhood respiratory and atopic outcomes: Birth cohort study. Eur. Respir. J. 2020, 55, 1901215. [Google Scholar] [CrossRef] [Green Version]
- Castro-Rodriguez, J.A.; Garcia-Marcos, L.; Sanchez-Solis, M.; Pérez-Fernández, V.; Martinez-Torres, A.; Mallol, J. Olive oil during pregnancy is associated with reduced wheezing during the first year of life of the offspring. Pediatr. Pulmonol. 2010, 45, 395–402. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Ramirez-Hernandez, M.; Padilla, O.; Pacheco-Gonzalez, R.M.; Pérez-Fernández, V.; Garcia-Marcos, L. Effect of foods and Mediterranean diet during pregnancy and first years of life on wheezing, rhinitis and dermatitis in preschoolers. Allergol. Immunopathol. (Madr) 2016, 44, 400–409. [Google Scholar] [CrossRef]
- Chatzi, L.; Torrent, M.; Romieu, I.; Garcia-Esteban, R.; Ferrer, C.; Vioque, J.; Kogevinas, M.; Sunyer, J. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax 2008, 63, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Chatzi, L.; Mendez, M.; Garcia, R.; Roumeliotaki, T.; Ibarluzea, J.; Tardón, A.; Amiano, P.; Lertxundi, A.; Iñiguez, C.; Vioque, J.; et al. Mediterranean diet adherence during pregnancy and fetal growth: INMA (Spain) and RHEA (Greece) mother-child cohort studies. Br. J. Nutr. 2012, 107, 135–145. [Google Scholar] [CrossRef]
- Chatzi, L.; Garcia, R.; Roumeliotaki, T.; Basterrechea, M.; Begiristain, H.; Iñiguez, C.; Vioque, J.; Kogevinas, M.; Sunyer, J. Mediterranean diet adherence during pregnancy and risk of wheeze and eczema in the first year of life: INMA (Spain) and RHEA (Greece) mother-child cohort studies. Br. J. Nutr. 2013, 110, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Barrés, S.; Vrijheid, M.; Manzano-Salgado, C.B.; Valvi, D.; Martínez, D.; Iñiguez, C.; Jimenez-Zabala, A.; Riaño-Galán, I.; Navarrete-Muñoz, E.M.; Santa-Marina, L.; et al. The association of Mediterranean Diet during pregnancy with longitudinal body mass index trajectories and cardiometabolic risk in early childhood. J. Pediatr. 2019, 206, 119–127.e6. [Google Scholar] [CrossRef] [PubMed]
- Haugen, M.; Meltzer, H.M.; Brantsaeter, A.L.; Mikkelsen, T.; Østerdal, M.L.; Alexander, J.; Olsen, S.F.; Bakketeig, L. Mediterranean-type diet and risk of preterm birth among women in the Norwegian Mother and Child Cohort Study (MoBa): A prospective cohort study. Acta Obstet. Gynecol. Scand. 2008, 87, 319–324. [Google Scholar] [CrossRef]
- Lange, N.E.; Rifas-Shiman, S.L.; Carmargo, C.A., Jr.; Gold, D.R.; Gillman, M.W.; Litonjua, A.A. Maternal dietary pattern during pregnancy is not associated with recurrent wheeze in children. J. Allergy Clin. Immunol. 2010, 126, 250–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, K.L.; Buss, C.; Wadhwa, P.D.; Entringer, S. The effect of a maternal Mediterranean diet in pregnancy on insulin resistance is moderated by maternal negative affect. Nutrients 2020, 12, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzoros, C.S.; Sweeney, L.; Williams, C.J.; Oken, E.; Kelesidis, T.; Rifas-Shiman, S.L.; Gillman, M.W. Maternal diet and cord blood leptin and adiponectin concentrations at birth. Clin. Nutr. 2010, 29, 622–626. [Google Scholar] [CrossRef] [Green Version]
- Mikkelsen, T.B.; Østerdal, M.L.; Knudsen, V.K.; Haugen, M.; Meltzer, H.M.; Bakketeig, L.; Olsen, S.F. Association between a Mediterranean-type diet and risk of preterm birth among Danish women: A prospective cohort study. Acta Obstet. Gynecol. Scand. 2008, 87, 325–330. [Google Scholar] [CrossRef]
- Poon, A.K.; Yeung, E.; Boghossian, N.; Albert, P.S.; Zhang, C. Maternal dietary patterns during third trimester in association with birthweight characteristics and early infant growth. Scientifica (Cairo) 2013, 2013, 786409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, L.; Guldner, L.; Costet, N.; Kadhel, P.; Rouget, F.; Monfort, C.; Thomé, J.P.; Multigner, L.; Cordier, S. Effect of a Mediterranean diet during pregnancy on fetal growth and preterm delivery: Results from a French Caribbean Mother-Child Cohort Study (TIMOUN). Paediatr. Perinat. Epidemiol. 2014, 28, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babili, M.G.; Amerikanou, C.; Papada, E.; Christopoulos, G.; Tzavara, C.; Kaliora, A.C. The effect of prenatal maternal physical activity and lifestyle in perinatal outcome: Results from a Greek study. Eur. J. Public Health 2020, 30, 328–332. [Google Scholar] [CrossRef] [PubMed]
- De Batlle, J.; Garcia-Aymerich, J.; Barraza-Villarreal, A.; Antó, J.M.; Romieu, I. Mediterranean diet is associated with reduced asthma and rhinitis in Mexican children. Allergy 2008, 63, 1310–1316. [Google Scholar] [CrossRef]
- Gesteiro, E.; Rodríguez Bernal, B.; Bastida, S.; Sánchez-Muniz, F.J. Maternal diets with low healthy eating index or Mediterranean diet adherence scores are associated with high cord-blood insulin levels and insulin resistance markers at birth. Eur. J. Clin. Nutr. 2012, 66, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Gesteiro, E.; Bastida, S.; Rodríguez Bernal, B.; Sánchez-Muniz, F.J. Adherence to Mediterranean diet during pregnancy and serum lipid, lipoprotein and homocysteine concentrations at birth. Eur. J. Nutr. 2015, 54, 1191–1199. [Google Scholar] [CrossRef]
- Peraita-Costa, I.; Llopis-González, A.; Perales-Marín, A.; Sanz, F.; Llopis-Morales, A.; Morales-Suárez-Varela, M. A retrospective cross-sectional population-based study on prenatal levels of adherence to the Mediterranean diet: Maternal profile and effects on the newborn. Int. J. Environ. Res. Public Health 2018, 15, 1530. [Google Scholar] [CrossRef] [Green Version]
- Spadafranca, A.; Piuri, G.; Bulfoni, C.; Liguori, I.; Battezzati, A.; Bertoli, S.; Speciani, A.F.; Ferrazzi, E. Adherence to the Mediterranean diet and serum adiponectin levels in pregnancy: Results from a cohort study in normal weight Caucasian women. Nutrients 2018, 10, 928. [Google Scholar] [CrossRef] [Green Version]
- Tomaino, L.; Reyes Súarez, D.; Reyes Domínguez, A.; García Cruz, L.; Ramos Días, M.; Serra Majem, L. Adherence to Mediterranean diet is not associated with birthweight—Results form a sample of Canarian pregnant women. Nutr. Hosp. 2020, 37, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Izadi, V.; Tehrani, H.; Haghighatdoost, F.; Dehghan, A.; Surkan, P.J.; Azadbakht, L. Adherence to the DASH and Mediterranean diets is associated with decreased risk for gestational diabetes mellitus. Nutrition 2016, 32, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Peraita-Costa, I.; Llopis-González, A.; Perales-Marín, A.; Diago, V.; Soriano, J.M.; Llopis-Morales, A.; Morales-Suárez-Varela, M. Maternal profile according to Mediterranean diet adherence and small for gestational age and preterm newborn outcomes. Public Health Nutr. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Psaltopoulou, T.; Naska, A.; Orfanos, P.; Trichopoulos, D.; Mountokalakis, T.; Trichopoulou, A. Olive oil, the Mediterranean diet, and arterial blood pressure: The Greek European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2004, 80, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Romaguera, D.; Norat, T.; Vergnaud, A.C.; Mouw, T.; May, A.M.; Agudo, A.; Buckland, G.; Slimani, N.; Rinaldi, S.; Couto, E.; et al. Mediterranean dietary patterns and prospective weight change in participants of the EPIC-PANACEA project. Am. J. Clin. Nutr. 2010, 92, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Buckland, G.; González, C.A.; Agudo, A.; Vilardell, M.; Berenguer, A.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Basterretxea, M.; et al. Adherence to the Mediterranean diet and risk of coronary heart disease in the Spanish EPIC cohort study. Am J. Epidemiol. 2009, 170, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Khoury, J.; Henriksen, T.; Christophersen, B.; Tonstad, S. Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: A randomized clinical trial. Am. J. Obstet. Gynecol. 2005, 193, 1292–1301. [Google Scholar] [CrossRef]
- Mantzoros, C.S.; Williams, C.J.; Manson, J.E.; Meigs, J.B.; Hu, F.B. Adherence to the Mediterranean dietary pattern is positively associated with plasma adiponectin concentrations in diabetic women. Am. J. Clin. Nutr. 2006, 84, 328–335. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Fernández-Jarne, E.; Serrano-Martínez, M.; Wright, M.; Gomez-Gracia, E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur. J. Clin. Nutr. 2004, 58, 1550–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Bronner, L.; Willett, W.C.; Stampfer, M.J.; Rexrode, K.M.; Albert, C.M.; Hunter, D.; Manson, J.E. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. J. Am. Med. Assoc. 2002, 287, 1815–1821. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.Á.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fiol, M.; Wärnberg, J.; Ruíz-Gutiérrez, V.; Lamuela-Raventós, R.M.; Lapetra, J.; et al. Cohort profile: Design and methods of the PREDIMED study. Int. J. Epidemiol. 2012, 41, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence and mortality of coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D. Dietary and policy priorities for CVD, diabetes and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Kromhout, D.; Spaaij, C.J.K.; de Goede, J.; Weggemans, R.M. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef]
- Bao, W.; Tobias, D.K.; Hu, F.B.; Chavarro, J.E.; Zhang, C. Pre-pregnancy potato consumption and risk of gestational diabetes mellitus: Prospective cohort study. BMJ 2016, 352, h6898. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Wang, D.; Long, J.; Yang, F.; Si, L. Meta-analysis of the association between whole grain intake and coronary heart disease risk. Am. J. Cardiol. 2015, 115, 625–629. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Olsen, S.F.; Mendola, P.; Halldorsson, T.I.; Yeung, E.H.; Granström, C.; Bjerregaard, A.A.; Rawal, S.; Chavarro, J.E.; Hu, F.B.; et al. Maternal dietary intakes of refined grains during pregnancy and growth through the first 7 y of life among children born to women with gestational diabetes. Am. J. Clin. Nutr. 2017, 106, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Abete, I.; Romaguera, D.; Vieira, A.R.; Lopez de Munain, A.; Norat, T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: A meta-analysis of cohort studies. Br. J. Nutr. 2014, 112, 762–775. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N. Red meat and processed meat consumption and all-cause mortality: A meta-analysis. Am. J. Epidemiol. 2014, 179, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Schulze, M.B.; Solomon, C.G.; Hu, F.B. A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia 2006, 49, 2604–2613. [Google Scholar] [CrossRef] [Green Version]
- Briggs, M.; Petersen, K.; Kris-Etherton, P. Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soedamah-Muthu, S.S.; de Goede, J. Dairy consumption and cardiometabolic diseases: Systematic review and updated meta-analyses of prospective cohort studies. Curr. Nutr. Rep. 2018, 7, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Fontecha, J.; Visitación Calvo, M.; Juarez, M.; Gil, A.; Martínez-Vizcaino, V. Milk and dairy product consumption and risk of mortality: An overview of systematic reviews and meta-analyses. Adv. Nutr. 2019, 10, S164–S189. [Google Scholar] [CrossRef]
- van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease—A review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- Bennette, C.; Vickers, A. Against quantiles: Categorization of continuous variables in epidemiologic research, and its discontents. BMC Med. Res. Methodol. 2012, 12, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-González, M.Á.; Hershey, M.S.; Zazpe, I.; Trichopoulou, A. Transferability of the Mediterranean diet to non-Mediterranean countries. What is and what is not the Mediterranean diet. Nutrients 2017, 9, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef] [Green Version]
- Cucó, G.; Fernández-Ballart, J.; Sala, J.; Viladrich, C.; Iranzo, R.; Vila, J. Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur. J. Clin. Nutr. 2006, 60, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- lCrozier, S.R.; Inskip, H.M.; Godfrey, K.M.; Cooper, C.; Robinson, S.M. Nausea and vomiting in early pregnancy: Effects on food intake and diet quality. Matern. Child. Nutr. 2017, 13, e12389. [Google Scholar]
- Imbard, A.; Benoist, J.F.; Blom, H.J. Neural tube defects, folic acid and methylation. Int. J. Environ. Res. Public Health 2013, 10, 4352–4389. [Google Scholar] [CrossRef] [Green Version]
- Alman, B.L.; Coffman, E.; Seiga-Riz, A.M.; Luben, T.J. Associations between maternal water consumption and birth defects in the National Birth Defects Prevention Study (2000–2005). Birth Defects Res. 2017, 109, 193–202. [Google Scholar] [CrossRef]
- Burggraf, C.; Teuber, R.; Brosig, S.; Meier, T. Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 2018, 76, 747–764. [Google Scholar] [CrossRef] [Green Version]
Search Number | Pubmed: 1 July 2020 | Search Results |
---|---|---|
1 | mother OR maternal OR pregnan * OR gestation * OR prenatal | 1,309,142 |
2 | mother [MESH] | 43,260 |
3 | maternal nutritional physiological phenomena [MESH] | 5891 |
4 | pregnancy [MESH] | 890,464 |
5 | Search 1 OR 2 OR 3 OR 4 | 1,320,879 |
6 | “diet, Mediterranean” OR “diets, Mediterranean” OR “Mediterranean diet” OR “Mediterranean diets” OR “Mediterranean diet score” OR “Mediterranean diet scores” OR “Mediterranean dietary pattern” OR “Mediterranean dietary patterns” | 5706 |
7 | “diet, Mediterranean” [MESH] | 3371 |
8 | Search 6 OR 7 | 5706 |
9 | Search 5 AND 8 | 224 |
Author, Year | Study Design, Location | Study Population | Dietary Assessment | A priori Index | Food and Nutrient Components * | Scoring | Range † | Main Outcomes |
---|---|---|---|---|---|---|---|---|
Babili et al. (2020) [38] | Cross-sectional study, Greece | 535 mother-child pairs | Semi-quantitative, 69-question FFQ, post-partum | MDS-2006 [14] | 11 components: vegetables (+) potatoes (+) fruits (+) non-refined cereals (+) legumes (+) fish (+) meat (−) poultry (−) full-fat dairy (−) alcohol (−) olive oil (+) | Fixed criteria (0–5) § | 0–55 | No association shown between MDS and infant weight class or length class at birth. |
Bédard et al. (2020) [24] | Population-based cohort (ALSPAC), UK | 8907 mother-child pairs | 43-item FFQ, T3 | MDS-2003 [27] | 7 components vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish and shellfish (+)meat (−) dairy (+) | Median intake (0,1) | 0–7 | Positive association shown between MDS and FEF25–75% z-scores in offspring at 8.5 years. |
Castro-Rodriguez et al. (2010) [25] | Longitudinal cohort (EISL), Spain | 1409 children ** | Semi-quantitative, 11-item FFQ, post-partum | Modified MDS-2004 [47] | 11 components: vegetables (+) potatoes (+) fruits (+) cereals (+) pasta (+) rice (+) legumes (+) fish (+) meat (−) milk (−) fast foods (−) | Fixed criteria (0–2) § | 0–22 | No association shown between MDS and wheezing in offspring 12 months after birth. |
Castro-Rodriguez et al. (2016) [26] | Longitudinal cohort (EISL), Spain | 1000 children ** | Semi-quantitative, 11-item FFQ, post-partum | Modified MDS-2004 [47] | 11 components: vegetables (+) potatoes (+) fruits (+) cereals (+) pasta (+) rice (+) legumes (+) fish (+) meat (−) milk (−) fast foods (−) | Fixed criteria (0–2) § | 0–22 | No association shown between MDS and current wheeze, rhinitis, or eczema 12 months after birth. |
Chatzi et al. (2008) [27] | Cohort study, Spain | 460 mother-child pairs | Semi-quantitative, 42-item FFQ †† | MDS-2003 [13] | 7 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish (+) meat (−) dairy (+) | Median intake (0,1) §§ | 0–7 | Inverse association shown between MDS and risk of persistent wheeze, atopic wheeze, and atopy in offspring at 6.5 year. |
Chatzi et al. (2012) [28] | Population-based cohort studies (INMA), Spain and (RHEA), Greece | 2461 mother-child pairs (INMA); 889 mother-child pairs (RHEA) | Semi-quantitative, 100-item FFQ, T1 (INMA); semi-quantitative, 250-item FFQ, T2 (RHEA) | MDS-2003 [13] | 8 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish and seafood (+) meat (−) dairy (+) MUFA:SFA (.) | Median intake (0,1) §§ | 0–8 | Inverse association shown between MDS and risk of FGR for weight in infants at birth in the INMA-Mediterranean cohort. |
Chatzi et al. (2013) [29] | Population-based cohort studies (INMA), Spain and (RHEA), Greece | 1771 mother-child pairs (INMA); 745 mother-child pairs (RHEA) | Semi-quantitative, 100-item FFQ, T1 (INMA); semi-quantitative, 250-item FFQ, T2 (RHEA) | MDS-2003 [13] | 8 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish and seafood (+) meat (−) dairy (+) MUFA:SFA (.) | Median intake (0,1) §§ | 0–8 | No association shown between MDS and wheeze and eczema 12 months after birth. |
Chatzi et al. (2017) [20] | Prospective mother-child cohort study (Viva), USA; population-based cohort study (RHEA), Greece | 997 mother-child pairs (Viva); 569 mother-child pairs (RHEA) | Semi-quantitative, 146-item FFQ, T1 (Viva); semi-quantitative, 250-item FFQ, T2 (RHEA) | MDS-2003 [13] | 9 components: vegetables (+) fruits (+) nuts (+) whole grains (+) legumes (+) fish and shellfish (+) red and processed meat (−) dairy (+) MUFA:SFA (+) | Fixed criteria (0,1) § | 0–9 | Inverse association between MDS and BMI z-score, waist circumference, skin-fold thickness, SBP, and DBP in offspring. |
de Batlle et al. (2008) [39] | Cross-sectional study (ISSAC), Mexico | 1476 children ** | Semi-quantitative, 70-item FFQ, post-partum | MDS-2003 [13] | 8 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish (+) meat (−) dairy (−) junk food and fat (−) | Median intake (0,1)¶¶ | 0–8 | Inverse association between MDS and current sneezing in offspring 6–7 year. |
Fernández-Barrés et al. (2016) [21] | Population-based cohort study (INMA), Spain | 1827 mother-child pairs | Semi-quantitative, 101-item FFQ, T1 and T3 | rMed [48]; aMed *** | 8 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish (+) meat (−) dairy (−) olive oil (+) | Tertiles of intake (0–2) | 0–16 | Inverse association shown between MDS and waist circumference in offspring at 4 year. |
Fernández-Barrés et al. (2019) [30] | Population-based cohort study (INMA), Spain | 2195 mother-child pairs | Semi-quantitative, 101-item FFQ, T1 and T3 | rMed [49] | 8 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish (+) meat (−) dairy (−) olive oil (+) | Tertiles of intake (0–2) | 0–16 | Inverse association between MDS and risk of having an offspring of larger size followed by an accelerated gain in BMI. |
Gesteiro et al. (2012) [40] | Cross-sectional study, Spain | 35 mother-child pairs | 169-item FFQ, T2 and post-partum | PREDIMED score [50] | 12 components:††† vegetables (+) fruits (+) nuts (+) legumes (+) fish and shellfish (+) chicken, turkey, or rabbit (+) red meat, hamburger, or other meat products (−) butter, margarine, or cream (−) olive oil (+) commercial sweets or pastries (−) dishes with sofrito (+) §§§ sweet or carbonated beverages (−) | Fixed criteria (0,1) ¶¶¶ | 0–13 | Inverse association shown between MDS and core-blood glycemia and insulinemia in infants. |
Gesteiro et al. (2015) [41] | Cross-sectional study, Spain | 35 mother-child pairs | 169-item FFQ, T2 and post-partum | PREDIMED score [50] | 12 components: ††† vegetables (+) fruits (+) nuts (+) legumes (+) fish and shellfish (+) chicken, turkey, or rabbit (+) red meat, hamburger, or other meat products (−) butter, margarine, or cream (−) olive oil (+) commercial sweets or pastries (−) dishes with sofrito (+) §§§ sweet or carbonated beverages (−) | Fixed criteria (0,1) ¶¶¶ | 0–13 | Inverse association shown between MDS and cord-blood LDL-c, Apo B, homocysteine, and Apo A1/Apo B ratio in infants. |
Haugen et al. (2008) [31] | Population-based cohort study (MoBa), Norway | 26,563 mother-child pairs | Semi-quantitative, 255-item FFQ, T2 | Khoury’s criteria [51] | 5 components: vegetables and fruits (+) fish (+) meat (−) olive oil or rapeseed oil (+) coffee (−) | Fixed criteria (0,1) ¶¶¶ | 0–5 | No association shown between MDS and PTB in infants at birth. |
Izadi et al. (2016) [45] | Case-control hospital-based study, Iran | 459 mothers | Repeated 24-hour recalls †† | MDS-2003 [13] | 9 components: vegetables (+) fruits (+) nuts (+) whole grains (+) legumes (+) fish (+) meat (−) dairy (−) MUFA:SFA (+) | Median intake (0,1) §§ | 0–9 | Inverse association shown between MDS and GDM. |
Jardí et al. (2019) [22] | Cohort study (ECLIPSES study), Spain | 513 mothers | 45-item FFQ, T1, T2, and T3 | rMed [21] | 9 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish and seafood (+) meat (−) dairy (−) alcohol (−) olive oil (+) | Tertiles of intake (0–2) **** | 0–18 | No association shown in MDS across trimesters of pregnancy. |
Lange et al. (2010) [32] | Cohort study (Viva), USA | 1376 mother-child pairs | Semi-quantitative, 166-item FFQ, T1 and T2 | MDS-2003 [13] | 9 components: vegetables (+) fruit (+) nuts (+) whole grains (+) legumes (+) fish (+) red and processed meat (−) dairy (+) USFA:SFA (+) | Median intake (0,1) ¶ | 0–9 | No association shown between MDS and recurrent wheeze, asthma, eczema, or lower respiratory infection in offspring at 3 years. |
Lindsay et al. (2020) [33] | Cohort study, USA | 203 mothers | Repeated 24-hour recalls, T1, T2, and T3 | MDS-2003 [20] | 9 components: vegetables (+) fruits (+) nuts (+) whole grains (+) legumes (+) fish and shellfish (+) red and processed meat (−) dairy (+) MUFA:SFA (+) | Fixed criteria (0,1) § | 0–9 | No association shown between MDS and maternal HOMA-IR. |
Mantzoros et al. (2010) [34] | Cohort study (Viva), USA | 780 mother-child pairs | Semi-quantitative FFQ, T1 and T2 | MDS-2003 [13,52] | 9 components: vegetables (+) fruits (+) nuts (+) whole grains (+) legumes (+) fish (+) red and processed meat (−) dairy (+) USFA:SFA (+) | Median intake (0,1) ¶ | 0–9 | No association shown between MDS and cord-blood leptin or adiponectin. |
Martínez-Galiano et al. (2018) [23] | Case-control study, Spain | 1036 mother-child pairs | Semi-quantitative, 137-item FFQ, post-partum | MDS-2003 [13]; PREDIMED score [53]; MDS-2006 [54] | 8 components (MDS-2003): vegetables (.) fruits (.) cereals (.) legumes (.) fish (.) meat (.) dairy (.) MUFA:SFA (.) 12 components (PREDIMED):††† vegetables (+) fruits (+) nuts (+) legumes (+) fish (+) chicken, turkey, or rabbit (+) red meat, hamburger, or sausages (−) butter, margarine, or cream (−) olive oil (+) commercial sweets or pastries (−) dishes with sofrito (+)§§§ sweet or carbonated beverages (−) 10 components (MDS-2006): vegetables (+) potatoes (+) fruits (+) whole grains (+) legumes (+) fish (+) meat (−) poultry (−) dairy with fat (−) olive oil (+) | MDS-2003 – median intake (0,1) ¶ PREDIMED – fixed criteria (0,1) ¶¶¶ MDS-2006 – fixed criteria (0–5)§ | MDS-2003 (0–8); PREDIMED (0–13); MDS-2006 (0–50) | Inverse association shown between MDS-2003 and SGA. No association shown between PREDIMED score and MDS-2006 and SGA. |
Mikkelsen et al. (2008) [35] | Cohort study (DNBC), Denmark | 35,530 mother-child pairs | Semi-quantitative, 360-item FFQ, T2 | Khoury’s criteria [51] | 5 components: vegetables and fruits (+) fish (+) meat (−) olive oil or rapeseed oil (+) coffee (−) | Fixed criteria (0,1) ¶¶¶ | 0–5 | Inverse association shown between MDS and early PTB. |
Peraita-Costa et al. (2018) [42] | Cross-sectional study, Spain | 492 mothers | 16-question KIDMED questionnaire, post-partum | Modified KidMed index [55] | 13 components:†††† vegetables (+) fruits (+) nuts (+) cereals (+) pasta or rice (+) legumes (+) fish (+) dairy (+) olive oil (+) fast foods (−) commercial baked goods or pastries (−) sweets and candy (−) skipping breakfast (−) | Fixed criteria (−1,+1) ¶¶¶ | 0–12 | No association shown with SGA. |
Peraita-Costa et al. (2020) [46] | Nested case-control study, Spain | 1118 mothers | 16-question KIDMED questionnaire, post-partum | Modified KidMed index [55] | 13 components: †††† vegetables (+) fruits (+) nuts (+) cereals (+) pasta or rice (+) legumes (+) fish (+) dairy (+) olive oil (+) fast foods (−) commercial baked goods or pastries (−) sweets and candy (−) skipping breakfast (−) | Fixed criteria (−1,+1) ¶¶¶ | 0–12 | Moderate MDS shown to be associated with increased risk of PTB. No association between MDS and SGA. |
Poon et al. (2013) [36] | Population-based cohort (IFPSII), USA | 893 mother-infant pairs | FFQ, T3 | aMed [13] | 8 components: vegetables (+) fruits (+) nuts (+) whole grains (+) legumes (+) fish (+) red and processed meat (−) MUFA:SFA (+) | Median intake (0,1) ¶ | 0–8 | No association shown between MDS and LGA, SGA, birth weight, or WFL at birth, or change in WFL from 4–6 months. |
Saunders et al. (2014) [37] | Population-based cohort study (TIMOUN), Caribbean | 728 mother-child pairs | Semi-quantitative, 214-item FFQ, post-partum | MDS-2003 [12,56] | 9 components: vegetables (+) fruits and nuts (+) cereals (+) legumes (+) fish (+) meat (−) dairy (+) alcohol (−) MUFA:SFA (.) | Median intake (0,1) §§ | 0–9 | No association shown between MDS and PTB and FGR. |
Spadafranca et al. (2014) [43] | Cross-sectional study, Italy | 99 mothers | FFQ, T1 and T3 | PREDIMED score [57] | 12 components: ††† vegetables (+) fruits (+) nuts (+) legumes (+) fish and shellfish (+) chicken, turkey, or rabbit (+) red meat, hamburger, or sausages (−) butter, margarine, or cream (−) olive oil (+) commercial sweets or pastries (−) dishes with sofrito (+) §§§ sweet or carbonated beverages (−) | Fixed criteria (0,1) ¶¶¶ | 0–13 | Inverse association shown between MDS and level of adiponectin in mothers from T1 to T3. |
Tomaino et al. (2020) [44] | Cross-sectional study, Spain | 218 mother-child pairs | 14-question, MEDAS questionnaire, post-partum | PREDIMED score [50,58] | 13 components:††† vegetables (+) fruits (+) nuts (+) legumes (+) fish and shellfish (+) chicken, turkey, or rabbit (+) red meat, hamburger, or sausages (−) butter, margarine, or cream (−) olive oil (+) wine (+) commercial sweets or pastries (−) dishes with sofrito (+) §§§ sweet or carbonated beverages (−) | Fixed criteria (0,1) ¶¶¶ | 0–14 | No association shown between MDS and infant weight at birth. |
Vegetables † | Fruits and Nuts § | Cereals ¶ | Legumes | Fish ** | Meat †† | Dairy §§ | Alcohol | Lipid Ratio | Other Components | Cut-off points ¶¶ | Range of Scores *** | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vegetables | Potatoes | Fruits and Nuts | Fruits | Nuts | Cereals | Pasta and Rice | Non-refined or Whole Grains | Legumes | Fish | Fish and Shellfish or Seafood | Meat | Poultry | Red and Processed | Dairy | Full-Fat Dairy or Dairy with Fat | Milk | Butter, Margarine, or Cream ††† | Alcohol | MUFA:SFA | USFA:SFA | Olive Oil or Rapeseed Oil | Fast Food and Junk Foods | Sweets, Candies, and Pastries | Dishes with Sofrito§§§ | Sweetened or Carbonated Beverages | Coffee | Skipping Breakfast | Distribution | Fixed Criteria | ||
Babili et al. (2020) [38] | × | 0–55 | |||||||||||||||||||||||||||||
Bédard et al. (2020) [24] | × | 0–7 | |||||||||||||||||||||||||||||
Castro-Rodriguez et al. (2010) [25] ¶¶¶ **** | × | 0–22 | |||||||||||||||||||||||||||||
Castro-Rodriguez et al. (2016) [26] ¶¶¶ **** | × | 0–22 | |||||||||||||||||||||||||||||
Chatzi et al. (2008) [27] | × | 0–7 | |||||||||||||||||||||||||||||
Chatzi et al. (2012) [28] | × | 0–8 | |||||||||||||||||||||||||||||
Chatzi et al. (2013) [29] | × | 0–8 | |||||||||||||||||||||||||||||
Chatzi et al. (2017) [20] | × | 0–9 | |||||||||||||||||||||||||||||
de Batlle et al. (2008) [39] ¶¶¶ | × | 0–8 | |||||||||||||||||||||||||||||
Fernández-Barrés et al. (2016) [21] | × | 0–16 | |||||||||||||||||||||||||||||
Fernández-Barrés et al. (2019) [30] | × | 0–16 | |||||||||||||||||||||||||||||
Gesteiro et al. (2012) [40] †††† | × | 0–13 | |||||||||||||||||||||||||||||
Gesteiro et al. (2015) [41] †††† | × | 0–13 | |||||||||||||||||||||||||||||
Haugen et al. (2008) [31] §§§§ | × | 0–5 | |||||||||||||||||||||||||||||
Izadi et al. (2016) [45] | × | 0–9 | |||||||||||||||||||||||||||||
Jardí et al. (2019) [22] | × | 0–18 | |||||||||||||||||||||||||||||
Lange et al. (2010) [32] | × | 0–9 | |||||||||||||||||||||||||||||
Lindsay et al. (2020) [33] | × | 0–9 | |||||||||||||||||||||||||||||
Mantzoros et al. (2010) [34] | × | 0–9 | |||||||||||||||||||||||||||||
Martínez-Galiano et al. (2018) [23] ¶¶¶¶ | |||||||||||||||||||||||||||||||
MDS-2003 | × | 0–8 | |||||||||||||||||||||||||||||
PREDIMED score | × | 0–13 | |||||||||||||||||||||||||||||
MDS-2006 | × | 0–50 | |||||||||||||||||||||||||||||
Mikkelsen et al. (2008) [35] §§§§ | × | 0–5 | |||||||||||||||||||||||||||||
Peraita-Costa et al. (2018) [42] | × | 0–12 | |||||||||||||||||||||||||||||
Peraita-Costa et al. (2020) [46] | × | 0–12 | |||||||||||||||||||||||||||||
Poon et al. (2013) [36] | × | 0–8 | |||||||||||||||||||||||||||||
Saunders et al. (2014) [37] | × | 0–9 | |||||||||||||||||||||||||||||
Spadafranca et al. (2014) [43] †††† | × | 0–13 | |||||||||||||||||||||||||||||
Tomaino et al. (2020) [44] †††† | × | 0–14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckl, M.R.; Brouwer-Brolsma, E.M.; Küpers, L.K. Maternal Adherence to the Mediterranean Diet during Pregnancy: A Review of Commonly Used a priori Indexes. Nutrients 2021, 13, 582. https://doi.org/10.3390/nu13020582
Eckl MR, Brouwer-Brolsma EM, Küpers LK. Maternal Adherence to the Mediterranean Diet during Pregnancy: A Review of Commonly Used a priori Indexes. Nutrients. 2021; 13(2):582. https://doi.org/10.3390/nu13020582
Chicago/Turabian StyleEckl, Marion R., Elske M. Brouwer-Brolsma, and Leanne K. Küpers. 2021. "Maternal Adherence to the Mediterranean Diet during Pregnancy: A Review of Commonly Used a priori Indexes" Nutrients 13, no. 2: 582. https://doi.org/10.3390/nu13020582
APA StyleEckl, M. R., Brouwer-Brolsma, E. M., & Küpers, L. K. (2021). Maternal Adherence to the Mediterranean Diet during Pregnancy: A Review of Commonly Used a priori Indexes. Nutrients, 13(2), 582. https://doi.org/10.3390/nu13020582