Relative Validity of MijnEetmeter: A Food Diary App for Self-Monitoring of Dietary Intake
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population Characteristics
3.2. Relative Validity for Food Groups
3.3. Relative Validity for Nutrients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Kromhout, D.; Spaaij, C.J.; de Goede, J.; Weggemans, R.M. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869–878. [Google Scholar] [CrossRef]
- Montagnese, C.; Santarpia, L.; Buonifacio, M.; Nardelli, A.; Caldara, A.R.; Silvestri, E.; Contaldo, F.; Pasanisi, F. European food-based dietary guidelines: A comparison and update. Nutrition 2015, 31, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.J.; Barnes, K.A.; Ball, L.E.; Mitchell, L.J.; Sladdin, I.; Lee, P.; Williams, L.T. Effectiveness of dietetic consultation for lowering blood lipid levels in the management of cardiovascular disease risk: A systematic review and meta-analysis of randomised controlled trials. Nutr. Diet. 2019, 76, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.T.; Barnes, K.; Ball, L.; Ross, L.J.; Sladdin, I.; Mitchell, L.J. How Effective Are Dietitians in Weight Management? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Healthcare 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, G.; Kim, J.; Lin, S.; Hua, J.; Seto, E. A Focused Review of Smartphone Diet-Tracking Apps: Usability, Functionality, Coherence With Behavior Change Theory, and Comparative Validity of Nutrient Intake and Energy Estimates. JMIR Mhealth Uhealth 2019, 7, e9232. [Google Scholar] [CrossRef]
- Maringer, M.; Van’t Veer, P.; Klepacz, N.; Verain, M.C.D.; Normann, A.; Ekman, S.; Timotijevic, L.; Raats, M.M.; Geelen, A. User-documented food consumption data from publicly available apps: An analysis of opportunities and challenges for nutrition research. Nutr. J. 2018, 17, 59. [Google Scholar] [CrossRef]
- Ramage, S.; Farmer, A.; Eccles, K.A.; McCargar, L. Healthy strategies for successful weight loss and weight maintenance: A systematic review. Appl. Physiol. Nutr. Metab. 2014, 39, 1–20. [Google Scholar] [CrossRef]
- Eldridge, A.L.; Piernas, C.; Illner, A.K.; Gibney, M.J.; Gurinovic, M.A.; de Vries, J.H.M.; Cade, J.E. Evaluation of New Technology-Based Tools for Dietary Intake Assessment-An ILSI Europe Dietary Intake and Exposure Task Force Evaluation. Nutrients 2018, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- RIVM. NEVO-Online Version 2016/5.0; RIVM: Bilthoven, The Netherlands, 2016.
- Netherlands Nutrition Centre. Levensmiddelendatabank; Netherlands Nutrition Centre: The Hague, The Netherlands, 2019. [Google Scholar]
- Brink, E.; van Rossum, C.; Postma-Smeets, A.; Stafleu, A.; Wolvers, D.; van Dooren, C.; Toxopeus, I.; Buurma-Rethans, E.; Geurts, M.; Ocke, M. Development of healthy and sustainable food-based dietary guidelines for the Netherlands. Public Health Nutr. 2019, 22, 2419–2435. [Google Scholar] [CrossRef] [Green Version]
- Meijboom, S.; van Houts-Streppel, M.T.; Perenboom, C.; Siebelink, E.; van de Wiel, A.M.; Geelen, A.; Feskens, E.J.M.; de Vries, J.H.M. Evaluation of dietary intake assessed by the Dutch self-administered web-based dietary 24-h recall tool (Compl-eat™) against interviewer-administered telephone-based 24-h recalls. J. Nutr. Sci. 2017, 6, e49. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, C.T.M.; Buurma-Rethans, E.J.M.; Dinnissen, C.S.; Beukers, M.; Brants, H.A.M.; Ocké, M.C. The Diet of the Dutch; Results of the Dutch National Food Consumption Survey 2012–2016; 2020-0083; RIVM: Bilthoven, The Netherlands, 2020.
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. Ser. D 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Chen, J.; Berkman, W.; Bardouh, M.; Ng, C.Y.K.; Allman-Farinelli, M. The use of a food logging app in the naturalistic setting fails to provide accurate measurements of nutrients and poses usability challenges. Nutrition 2019, 57, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Bucher Della Torre, S.; Carrard, I.; Farina, E.; Danuser, B.; Kruseman, M. Development and Evaluation of e-CA, an Electronic Mobile-Based Food Record. Nutrients 2017, 9, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.E.; Song, S.; Ahn, J.S.; Kim, Y.; Lee, J.E. Use of a Mobile Application for Self-Monitoring Dietary Intake: Feasibility Test and an Intervention Study. Nutrients 2017, 9, 748. [Google Scholar] [CrossRef] [PubMed]
- Lemacks, J.L.; Adams, K.; Lovetere, A. Dietary Intake Reporting Accuracy of the Bridge2U Mobile Application Food Log Compared to Control Meal and Dietary Recall Methods. Nutrients 2019, 11, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. ‘My Meal Mate’ (MMM): Validation of the diet measures captured on a smartphone application to facilitate weight loss. Br. J. Nutr. 2013, 109, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangan, A.M.; O’Connor, S.; Giannelli, V.; Yap, M.L.; Tang, L.M.; Roy, R.; Louie, J.C.; Hebden, L.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Comparison of a Mobile Phone Digital Entry App for Dietary Data Collection With 24-Hour Dietary Recalls. JMIR Mhealth Uhealth 2015, 3, e98. [Google Scholar] [CrossRef]
- Wellard-Cole, L.; Chen, J.; Davies, A.; Wong, A.; Huynh, S.; Rangan, A.; Allman-Farinelli, M. Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients 2019, 11, 621. [Google Scholar] [CrossRef] [Green Version]
- Ambrosini, G.L.; Hurworth, M.; Giglia, R.; Trapp, G.; Strauss, P. Feasibility of a commercial smartphone application for dietary assessment in epidemiological research and comparison with 24-h dietary recalls. Nutr. J. 2018, 17, 5. [Google Scholar] [CrossRef]
- Zhang, L.; Misir, A.; Boshuizen, H.; Ocké, M. A Systematic Review and Meta-analysis of Validation Studies Performed on Food Record Apps. In Moving to Self-Administered Dietary Assessment in National Food Consumption Surveys; Zhang, L., Ed.; Wageningen University: Wageningen, The Netherlands, 2020. [Google Scholar]
- Kirkpatrick, S.I.; Baranowski, T.; Subar, A.F.; Tooze, J.A.; Frongillo, E.A. Best Practices for Conducting and Interpreting Studies to Validate Self-Report Dietary Assessment Methods. J. Acad. Nutr. Diet. 2019, 119, 1801–1816. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, M.; Flynn, A.; Kiely, M. Impact of disaggregation of composite foods on estimates of intakes of meat and meat products in Irish adults. Public Health Nutr. 2005, 8, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitt, E.; Mak, T.N.; Stephen, A.M.; Prynne, C.; Roberts, C.; Swan, G.; Farron-Wilson, M. Disaggregating composite food codes in the UK National Diet and Nutrition Survey food composition databank. Eur. J. Clin. Nutr. 2010, 64 (Suppl. 3), S32–S36. [Google Scholar] [CrossRef] [PubMed]
- Crispim, S.P.; Nicolas, G.; Casagrande, C.; Knaze, V.; Illner, A.K.; Huybrechts, I.; Slimani, N. Quality assurance of the international computerised 24 h dietary recall method (EPIC-Soft). Br. J. Nutr. 2014, 111, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.C.; Albar, S.A.; Morris, M.A.; Mulla, U.Z.; Hancock, N.; Evans, C.E.; Alwan, N.A.; Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; et al. Development of a UK Online 24-h Dietary Assessment Tool: Myfood24. Nutrients 2015, 7, 4016–4032. [Google Scholar] [CrossRef] [Green Version]
- Rangan, A.M.; Tieleman, L.; Louie, J.C.; Tang, L.M.; Hebden, L.; Roy, R.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Relative validity of a mobile phone application to measure intake of food groups. Br. J. Nutr. 2016, 115, 2219–2226. [Google Scholar] [CrossRef] [Green Version]
- Recio-Rodriguez, J.I.; Rodriguez-Martin, C.; Gonzalez-Sanchez, J.; Rodriguez-Sanchez, E.; Martin-Borras, C.; Martínez-Vizcaino, V.; Arietaleanizbeaskoa, M.S.; Magdalena-Gonzalez, O.; Fernandez-Alonso, C.; Maderuelo-Fernandez, J.A.; et al. EVIDENT Smartphone App, a New Method for the Dietary Record: Comparison With a Food Frequency Questionnaire. JMIR Mhealth Uhealth 2019, 7, e11463. [Google Scholar] [CrossRef]
- Freedman, L.S.; Commins, J.M.; Willett, W.; Tinker, L.F.; Spiegelman, D.; Rhodes, D.; Potischman, N.; Neuhouser, M.L.; Moshfegh, A.J.; Kipnis, V.; et al. Evaluation of the 24-Hour Recall as a Reference Instrument for Calibrating Other Self-Report Instruments in Nutritional Cohort Studies: Evidence From the Validation Studies Pooling Project. Am. J. Epidemiol. 2017, 186, 73–82. [Google Scholar] [CrossRef] [Green Version]
Variables | Total Population | Experience with MijnEetmeter | No Experience with MijnEetmeter | ||
---|---|---|---|---|---|
% | n (47) | % | n (53) | % | |
Gender | |||||
Male | 35 | 13 | 28 | 22 | 42 |
Female | 64 | 34 | 72 | 30 | 57 |
Other | 1 | 0 | 0 | 1 | 2 |
Age category (years) | |||||
20–50 | 51 | 23 | 49 | 28 | 53 |
51–70 | 49 | 24 | 51 | 25 | 47 |
Highest educational level attained | |||||
Low 1 | 15 | 6 | 13 | 9 | 17 |
Middle 2 | 31 | 11 | 23 | 20 | 38 |
High 3 | 52 | 29 | 62 | 23 | 43 |
Unknown | 2 | 1 | 2 | 1 | 2 |
Smoking status | |||||
Never or previous smoker | 90 | 40 | 85 | 50 | 94 |
Current smoker | 10 | 7 | 15 | 3 | 6 |
Alcohol consumption frequency | |||||
None | 41 | 24 | 51 | 17 | 32 |
1 day or less per week | 36 | 12 | 26 | 24 | 45 |
2 or more days per week | 23 | 11 | 23 | 12 | 23 |
BMI category | |||||
BMI < 18.5 kg/m2 | 1 | 1 | 2 | 0 | 0 |
18.5 ≤ BMI ≤ 25 kg/m2 | 55 | 27 | 57 | 28 | 53 |
BMI > 25 kg/m2 | 44 | 19 | 40 | 25 | 47 |
Food Groups | MijnEetmeter 3-Day Average | 24-h Dietary Recalls 3-Day Average | Difference | Spearman Correlation Coefficient | |||||
---|---|---|---|---|---|---|---|---|---|
P50 | P25 | P75 | P50 | P25 | P75 | p-Value * | 3-Day Means | Same Day | |
Vegetables | 179 | 72 | 248 | 182 | 123 | 286 | 0.23 | 0.61 | 0.68 |
Fruit | 160 | 79 | 243 | 184 | 96 | 245 | 0.49 | 0.79 | 0.88 |
Added fats | 8 | 0 | 17 | 16 | 9 | 26 | <0.001 | 0.43 | 0.39 |
Fish | 0 | 0 | 23 | 0 | 0 | 33 | 0.80 | 0.52 | 0.94 |
Legumes | 0 | 0 | 0 | 0 | 0 | 0 | 0.85 | 0.40 | 0.57 |
Meat | 64 | 40 | 94 | 77 | 43 | 116 | 0.12 | 0.64 | 0.81 |
Eggs | 17 | 0 | 33 | 11 | 0 | 33 | 0.95 | 0.53 | 0.74 |
Nuts | 8 | 0 | 20 | 8 | 0 | 21 | 0.82 | 0.65 | 0.85 |
Milk and milk products | 233 | 117 | 359 | 245 | 134 | 392 | 0.48 | 0.81 | 0.89 |
Cheese | 20 | 10 | 40 | 32 | 13 | 48 | 0.05 | 0.61 | 0.80 |
Bread | 108 | 82 | 152 | 119 | 87 | 172 | 0.13 | 0.57 | 0.89 |
Cereal products | 30 | 12 | 64 | 47 | 19 | 90 | 0.02 | 0.33 | 0.72 |
Potatoes | 43 | 0 | 88 | 58 | 24 | 111 | 0.02 | 0.35 | 0.82 |
Drinks | 1373 | 900 | 1722 | 1685 | 1294 | 2054 | <0.001 | 0.64 | 0.63 |
Sandwich spreads | 8 | 0 | 22 | 10 | 2 | 19 | 0.80 | 0.68 | 0.82 |
Soups | 0 | 0 | 83 | 0 | 0 | 81 | 0.93 | 0.48 | 0.86 |
Snacks | 45 | 18 | 84 | 59 | 23 | 93 | 0.28 | 0.68 | 0.80 |
Sauces | 8 | 0 | 25 | 10 | 0 | 28 | 0.40 | 0.29 | 0.43 |
Mixed dishes | 37 | 0 | 156 | 0 | 0 | 5 | <0.001 | 0.14 | 0.35 |
Nutrients | MijnEetmeter | 24-h Dietary Recalls | Difference | Bland–Altman 95% LOA | Pearson’ s Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | 95% CI | Lower | Upper | 3-Day Means | Same Day | ||
Energy (kcal) | 1830 | 485 | 1944 | 549 | −114 | −181 | −47 | −789 | 562 | 0.79 | 0.69 |
Fat (g) | 70 | 24 | 77 | 27 | −7 | −11 | −4 | −47 | 32 | 0.71 | 0.61 |
Fat (En%) | 33.0 | 9.0 | 35.0 | 7.0 | −3.0 | −5.0 | −1.0 | −21.0 | 15.0 | 0.40 | 0.36 |
Saturated Fatty Acids (g) | 25 | 10 | 27 | 11 | −2 | −4 | −1 | −17 | 13 | 0.75 | 0.67 |
Saturated Fatty Acids (En%) | 11.0 | 4.0 | 12.0 | 4.0 | −1.0 | −2.0 | 0.0 | −8.0 | 6.0 | 0.59 | 0.51 |
Protein (g) | 77 | 26 | 79 | 24 | −2 | −5 | 1 | −35 | 31 | 0.79 | 0.77 |
Protein (En%) | 16.0 | 5.0 | 17.0 | 4.0 | 0.0 | −1.0 | 1.0 | −8.0 | 7.0 | 0.73 | 0.77 |
Carbohydrates (g) | 199 | 61 | 209 | 67 | −9 | −18 | −1 | −91 | 72 | 0.80 | 0.76 |
Carbohydrates (En%) | 42.0 | 10.0 | 43.0 | 7.0 | −1.0 | −3.0 | 0.0 | −16.0 | 14.0 | 0.66 | 0.64 |
Mono– and disaccharides (g) | 80 | 31 | 87 | 34 | −7 | −10 | −3 | −42 | 29 | 0.86 | 0.82 |
Mono– and disaccharides (En%) | 17.0 | 6.0 | 18.0 | 5.0 | −1.0 | −2.0 | 0.0 | −9.0 | 6.0 | 0.77 | 0.78 |
Sodium (mg) | 2307 | 909 | 2254 | 854 | 54 | −126 | 234 | −1762 | 1869 | 0.47 | 0.75 |
Nutrients | Experienced MijnEetmeter Users | Inexperienced MijnEetmeter Users | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MijnEetmeter | 24-h Dietary Recalls | Difference | MijnEetmeter | 24-h Dietary Recalls | Difference | |||||
Mean | Mean | Mean | 95% CI | Mean | Mean | Mean | 95% CI | |||
Energy (kcal) | 1831 | 1874 | −42 | −135 | 50 | 1829 | 2006 | −177 | −272 | −81 |
Fat (g) | 66 | 72 | −5 | −11 | 0 | 73 | 82 | −9 | −15 | −4 |
Saturated Fatty Acids (g) | 22 | 24 | −2 | −4 | 0 | 27 | 30 | −3 | −5 | 0 |
Protein (g) | 80 | 82 | −1 | −7 | 4 | 74 | 77 | −3 | −7 | 1 |
Carbohydrates (g) | 204 | 203 | 1 | −10 | 12 | 196 | 214 | −19 | −30 | −7 |
Mono – and disaccharides (g) | 81 | 83 | −2 | −7 | 2 | 80 | 90 | −10 | −15 | −5 |
Sodium (mg) | 2205 | 2184 | 21 | −214 | 256 | 2398 | 2315 | 83 | −193 | 358 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocké, M.; Dinnissen, C.; Stafleu, A.; de Vries, J.; van Rossum, C. Relative Validity of MijnEetmeter: A Food Diary App for Self-Monitoring of Dietary Intake. Nutrients 2021, 13, 1135. https://doi.org/10.3390/nu13041135
Ocké M, Dinnissen C, Stafleu A, de Vries J, van Rossum C. Relative Validity of MijnEetmeter: A Food Diary App for Self-Monitoring of Dietary Intake. Nutrients. 2021; 13(4):1135. https://doi.org/10.3390/nu13041135
Chicago/Turabian StyleOcké, Marga, Ceciel Dinnissen, Annette Stafleu, Jeanne de Vries, and Caroline van Rossum. 2021. "Relative Validity of MijnEetmeter: A Food Diary App for Self-Monitoring of Dietary Intake" Nutrients 13, no. 4: 1135. https://doi.org/10.3390/nu13041135
APA StyleOcké, M., Dinnissen, C., Stafleu, A., de Vries, J., & van Rossum, C. (2021). Relative Validity of MijnEetmeter: A Food Diary App for Self-Monitoring of Dietary Intake. Nutrients, 13(4), 1135. https://doi.org/10.3390/nu13041135