Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection
2.3. Biomarker Measurements in This Study
2.4. Measurement of Citrus Bioflavonoids in Plasma
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Effect of MedDiet on the Levels of Citrus Bioflavonoids
3.3. Effect of MedDiet on Glycaemic Status
3.4. Effect of MedDiet on Markers of Inflammation and Oxidative DNA Stress
3.5. Effect of MedDiet on Anthropometric Measurements and Lipid Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Aubaidy, H.A.; Jelinek, H.F. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur. J. Endocrinol. 2011, 164, 899–904. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Fowler, M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes 2008, 26, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Chen, Z.; Wang, L.; Wang, G.; Wang, Z.; Dong, X.; Wen, B.; Zhang, Z. The Pathogenesis of Diabetes Mellitus by Oxidative Stress and Inflammation: Its Inhibition by Berberine. Front. Pharmacol. 2018, 9, 782. [Google Scholar] [CrossRef] [Green Version]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhowmik, B.; Siddiquee, T.; Mujumder, A.; Afsana, F.; Ahmed, T.; Mdala, I.A.; Do V Moreira, N.C.; Khan, A.K.A.; Hussain, A.; Holmboe-Ottesen, G.; et al. Serum Lipid Profile and Its Association with Diabetes and Prediabetes in a Rural Bangladeshi Population. Int. J. Environ. Res. Public Health 2018, 15, 1944. [Google Scholar] [CrossRef] [Green Version]
- Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of their Molecular Mechanisms and Experimental Models. Phytotherapy Res. 2015, 29, 323–331. [Google Scholar] [CrossRef]
- Andrade, E.F.; Silva, V.O.; Moura, N.O.; Foureaux, R.C.; Orlando, D.R.; Moura, R.F.; Pereira, L.J. Physical Exercise Improves Glycemic and Inflammatory Profile and Attenuates Progression of Periodontitis in Diabetic Rats (HFD/STZ). Nutrients 2018, 10, 1702. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Rana, M.B.M.; Sultan, S. Oral Hypoglycemic Medications, 2020. Stat Pearls Website. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/26266 (accessed on 22 February 2021).
- George, M.M.; Copeland, K.C. Current treatment options for type 2 diabetes mellitus in youth: Today’s realities and lessons from the TODAY study. Curr. Diab. Rep. 2013, 13, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Del Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 2016, 7, 354–395. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J.; Bąk, O.; Borowski, P. Meat Proteins as Dipeptidyl Peptidase IV Inhibitors and Glucose Uptake Stimulating Peptides for the Management of a Type 2 Diabetes Mellitus In Silico Study. Nutrients 2019, 11, 2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayr, H.L.; Tierney, A.C.; Kucianski, T.; Thomas, C.J.; Itsiopoulos, C. Australian patients with coronary heart disease achieve high adherence to 6-month Mediterranean diet intervention: Preliminary results of the AUSMED Heart Trial. Nutrition 2019, 61, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. A Critical Review on Polyphenols and Health Benefits of Black Soybeans. Nutrients 2017, 9, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferré, M.; Merino, J.; Sun, Q.; Fitó, M.; Salas-Salvadó, J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxidative Med. Cell Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef]
- Xiao, J.B.; Hogger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015, 22, 23–38. [Google Scholar] [CrossRef]
- Solayman, M.; Ali, Y.; Alam, F.; Islam, M.A.; Alam, N.; Khalil, M.I.; Gan, S.H. Polyphenols: Potential Future Arsenals in the Treatment of Diabetes. Curr. Pharm. Des. 2016, 22, 549–565. [Google Scholar] [CrossRef]
- Itsiopoulos, C.; Brazionis, L.; Kaimakamis, M.; Cameron, M.; Best, J.D.; O’Dea, K.; Rowley, K. Can the Mediterranean diet lower HbA1c in type 2 diabetes? Results from a randomized cross-over study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 740–747. [Google Scholar] [CrossRef]
- Gupta, A.; Jacobson, G.A.; Burgess, J.R.; Jelinek, H.F.; Nichols, D.S.; Narkowicz, C.K.; Al-Aubaidy, H.A. Citrus bioflavonoids dipeptidyl peptidase-4 inhibition compared with gliptin antidiabetic medications. Biochem. Biophys. Res. Commun. 2018, 503, 21–25. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Den Hartogh, D.J.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Hiramitsu, M.; Shimada, Y.; Kuroyanagi, J.; Inoue, T.; Katagiri, T.; Zang, L.; Nishimura, Y.; Nishimura, N.; Tanaka, T. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci. Rep. 2014, 4, 3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.M.; Ashour, M.B.; Abdel-Moneim, A.; Ahmed, O.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J. Diabetes Complicat. 2012, 26, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Dokumacioglu, E.; Iskender, H.; Sen, T.M.; Ince, I.; Dokumacioglu, A.; Kanbay, Y.; Erbas, E.; Saral, S. The Effects of Hesperidin and Quercetin on Serum Tumor Necrosis Factor-Alpha and Interleukin-6 Levels in Streptozotocin-induced Diabetes Model. Pharmacogn. Mag. 2018, 14, 167–173. [Google Scholar] [CrossRef]
- Al-Aubaidy, H.A.; Jelinek, H.F. Oxidative stress and triglycerides as predictors of subclinical atherosclerosis in prediabetes. Redox Rep. 2014, 19, 87–91. [Google Scholar] [CrossRef]
- Souverein, O.W.; de Vries, J.H.; Freese, R.; Watzl, B.; Bub, A.; Miller, E.R.; Castenmiller, J.J.; Pasman, W.J.; van Het Hof, K.; Chopra, M.; et al. Prediction of fruit and vegetable intake from biomarkers using individual participant data of diet-controlled intervention studies. Br. J. Nutr. 2015, 113, 1396–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.M.; Bautista, R.J.H.; Sandhu, M.A.; Hussein, O.E. Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. Oxidative Med. Cell. Longev. 2019, 2019, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marfella, R.; Cacciapuoti, F.; Siniscalchi, M.; Sasso, F.C.; Marchese, F.; Cinone, F.; Musacchio, E.; Marfella, M.A.; Ruggiero, L.; Chiorazzo, G.; et al. Effect of moderate red wine intake on cardiac prognosis after recent acute myocardial infarction of subjects with Type 2 diabetes mellitus. Diabet. Med. 2006, 23, 974–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez-Mariscal, F.M.; Perez-Martinez, P.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Camargo, A.; Delgado-Casado, N.; Cruz-Teno, C.; Santos-Gonzalez, M.; Rodriguez-Cantalejo, F.; Castaño, J.P.; et al. Mediterranean diet supplemented with coenzyme Q10 induces postprandial changes in p53 in response to oxidative DNA damage in elderly subjects. AGE 2011, 34, 389–403. [Google Scholar] [CrossRef]
- Konstantinidou, V.; Covas, M.I.; Munoz-Aguayo, D.; Khymenets, O.; de la Torre, R.; Saez, G.; Tormos Mdel, C.; Toledo, E.; Marti, A.; Ruiz-Gutierrez, V.; et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: A randomized controlled trial. FASEB J. 2010, 24, 2546–2557. [Google Scholar] [CrossRef] [Green Version]
- Mitjavila, M.T.; Fandos, M.; Salas-Salvadó, J.; Covas, M.-I.; Borrego, S.; Estruch, R.; Lamuela-Raventós, R.; Corella, D.; Martínez-Gonzalez, M.Á.; Sánchez, J.M.; et al. The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial. Clin. Nutr. 2013, 32, 172–178. [Google Scholar] [CrossRef]
- Hofer, T.; Karlsson, H.L.; Moller, L. DNA oxidative damage and strand breaks in young healthy individuals: A gender difference and the role of life style factors. Free Radic. Res. 2006, 40, 707–714. [Google Scholar] [CrossRef]
- Klatsky, A.L.; Zhang, J.; Udaltsova, N.; Li, Y.; Tran, H.N. Body Mass Index and Mortality in a Very Large Cohort: Is It Really Healthier to Be Overweight? Perm J. 2017, 21, 16–142. [Google Scholar] [CrossRef] [Green Version]
- McKillop, A.M.; Duffy, N.A.; Lindsay, J.R.; O’Harte, F.P.; Bell, P.M.; Flatt, P.R. Decreased dipeptidyl peptidase-IV activity and glucagon-like peptide-1(7-36)amide degradation in type 2 diabetic subjects. Diabetes Res. Clin. Pract. 2008, 79, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Jakob, R.; Carolyn, F.D.; Richard, D.C.; Thure, K.; Sten, M.; Jens, H.; Tina, V. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur. J. Endocrinol. 2006, 155, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, E.; Pala, L.; Ciani, S.; Bardini, G.; Pezzatini, A.; Sposato, I.; Cremasco, F.; Ognibene, A.; Rotella, C.M. Hyperglycaemia increases dipeptidyl peptidase IV activity in diabetes mellitus. Diabetologia 2005, 48, 1168–1172. [Google Scholar] [CrossRef]
- Korosi, J.; McIntosh, C.H.; Pederson, R.A.; DeMuth, H.-U.; Habener, J.F.; Gingerich, R.; Egan, J.M.; Elahi, D.; Meneilly, G.S. Effect of aging and diabetes on the enteroinsular axis. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2001, 56, M575–M579. [Google Scholar] [CrossRef] [Green Version]
- Meneilly, G.S.; Demuth, H.U.; McIntosh, C.H.; Pederson, R.A. Effect of ageing and diabetes on glucose-dependent insulinotropic polypeptide and dipeptidyl peptidase IV responses to oral glucose. Diabet. Med. 2000, 17, 346–350. [Google Scholar] [CrossRef]
- Pala, L.; Ciani, S.; Dicembrini, I.; Bardini, G.; Cresci, B.; Pezzatini, A.; Giannini, S.; Mannucci, E.; Rotella, C.M. Relationship between GLP-1 levels and dipeptidyl peptidase-4 activity in different glucose tolerance conditions. Diabet. Med. 2010, 27, 691–695. [Google Scholar] [CrossRef]
- American Diabetes Association. Implications of the United Kingdom Prospective Diabetes Study. Diabetes Care 2002, 25, S28–S32. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gomez-Gracia, E.; Lopez-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Romaguera, D.; Norat, T.; Vergnaud, A.C.; Mouw, T.; May, A.M.; Agudo, A.; Buckland, G.; Slimani, N.; Rinaldi, S.; Couto, E.; et al. Mediterranean dietary patterns and prospective weight change in participants of the EPIC-PANACEA project. Am. J. Clin. Nutr. 2010, 92, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Schroder, H.; Marrugat, J.; Vila, J.; Covas, M.I.; Elosua, R. Adherence to the traditional mediterranean diet is inversely associated with body mass index and obesity in a spanish population. J. Nutr. 2004, 134, 3355–3361. [Google Scholar] [CrossRef]
- Franquesa, M.; Pujol-Busquets, G.; García-Fernández, E.; Rico, L.; Shamirian-Pulido, L.; Aguilar-Martínez, A.; Medina, F.X.; Serra-Majem, L.; Bach-Faig, A. Mediterranean Diet and Cardiodiabesity: A Systematic Review through Evidence-Based Answers to Key Clinical Questions. Nutrients 2019, 11, 655. [Google Scholar] [CrossRef] [Green Version]
- Mente, A.; de Koning, L.; Shannon, H.S.; Anand, S.S. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch. Intern. Med. 2009, 169, 659–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Salvadó, J.; Guasch-Ferré, M.; Lee, C.-H.; Estruch, R.; Clish, C.B.; Ros, E. Protective Effects of the Mediterranean Diet on Type 2 Diabetes and Metabolic Syndrome. J. Nutr. 2016, 146, 920S–927S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Standard Compounds | Molecular Formula | Molar Mass (g/mol) | Retention Time (min) | Product Ion (m/z) | Collision Energy (V) |
---|---|---|---|---|---|
Consumed (glycoside) form | |||||
Eriocitrin | C27H32O15 | 596.50 | 6.9 | 287.0 | 24 |
Naringin | C27H32O14 | 580.54 | 7.5 | 271.2 | 31 |
Hesperidin | C28H34O15 | 610.57 | 7.7 | 301.2 | 25 |
Metabolic (aglycone) form | |||||
Eriodictyol | C15H12O6 | 288.25 | 8.4 | 151.1 | 16 |
Naringenin | C15H12O5 | 272.26 | 9.1 | 151.2 | 20 |
Hesperetin | C16H14O6 | 302.27 | 9.4 | 164.1 | 26 |
Rutin | C27H30O16 | 610.52 | 6.8 | 300.2 | 38 |
Parameter | Total Cohort (N = 19) | Males N = 11 (58%) | Females N = 8 (42%) |
---|---|---|---|
Age (years) | 57.5 ± 1.30 | 58.55 ± 1.80 | 56.00 ± 2.00 |
Anthropometric measurements | |||
Weight (kg) | 93.14 ± 3.14 | 97.00 ± 3.00 | 87.00 ± 4.00 |
Waist circumference (cm) | 104.12 ± 2.28 | 105.00 ± 3.00 | 102.70 ± 3.20 |
BMI (kg/m2) | 31.54 ±1.19 | 30.20 ± 1.00 | 33.30 ± 2.3 |
Glycaemic status | |||
Fasting Glucose (mmol/L) | 9.83 ± 0.82 | 9.40 ± 0.98 | 10.37 ± 1.40 |
HbA1c (%) | 7.02 ± 0.40 | 7.00 ± 0.50 | 7.20 ± 0.50 |
Insulin (µIU/mL) | 14.92 ± 2.38 | 14.92 ± 2.87 | 14.91 ± 4.26 |
DPP-4 (µIU/µL) | 5.61 ± 0.59 | 4.88 ± 0.31 | 6.60 ± 1.29 |
Lipid profile | |||
Total cholesterol (mmol/L) | 5.38 ± 0.26 | 5.10 ± 0.20 | 5.60 ± 0.06 |
LDL cholesterol (mmol/L) | 3.31 ± 0.20 | 3.20 ± 0.20 | 3.40 ± 0.30 |
HDL cholesterol (mmol/L) | 1.00 ± 0.06 | 0.95 ± 0.07 | 1.00 ± 0.10 |
Triglycerides (mmol/L) | 2.36 ± 0.27 | 2.17 ± 0.30 | 2.60 ± 0.50 |
Hemodynamic measurements | |||
Systolic Blood Pressure (mmHg) | 136.84 ± 3.18 | 135.00 ± 3.90 | 139.30 ± 5.40 |
Diastolic Blood Pressure (mmHg) | 72.95 ± 2.14 | 73.90 ± 3.10 | 71.60 ± 2.90 |
Heart Rate (bpm) | 68.63 ± 3.15 | 62.00 ± 3.80 | 77.60 ± 3.40 * |
Variables | Estimated Regression Weight * (S.E.) | p Value |
---|---|---|
Changes in the plasma levels of DPP-4 following MedDiet intervention | ||
Hesperitin | −0.88 (0.31) | 0.005 |
Hesperidin | −0.97 (1.41) | 0.48 |
Naringin | 0.12 (0.14) | 0.4 |
Naringenin | 21.37 (25.85) | 0.4 |
Rutin | −0.022 | 0.26 |
Changes in the plasma levels of BGL following MedDiet intervention | ||
Hesperitin | 524.40 (1.28) | <0.001 |
Hesperidin | 506.90 (4.91) | <0.001 |
Naringin | −176.70 (0.51) | <0.001 |
Naringenin | 150,922 (90.43) | <0.001 |
Rutin | 60.90 (0.06) | <0.001 |
Changes in the plasma levels of HbA1c following MedDiet intervention | ||
Hesperitin | 733.80 (97.81) | <0.001 |
Hesperidin | 458.80 (369.70) | 0.22 |
Naringin | −259.90 (38.84) | <0.001 |
Naringenin | 178,300 (6801.56) | <0.001 |
Rutin | 79.70 (5.22) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Aubaidy, H.A.; Dayan, A.; Deseo, M.A.; Itsiopoulos, C.; Jamil, D.; Hadi, N.R.; Thomas, C.J. Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus. Nutrients 2021, 13, 1133. https://doi.org/10.3390/nu13041133
Al-Aubaidy HA, Dayan A, Deseo MA, Itsiopoulos C, Jamil D, Hadi NR, Thomas CJ. Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus. Nutrients. 2021; 13(4):1133. https://doi.org/10.3390/nu13041133
Chicago/Turabian StyleAl-Aubaidy, Hayder A., Aanchal Dayan, Myrna A. Deseo, Catherine Itsiopoulos, Dina Jamil, Najah R. Hadi, and Colleen J. Thomas. 2021. "Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus" Nutrients 13, no. 4: 1133. https://doi.org/10.3390/nu13041133
APA StyleAl-Aubaidy, H. A., Dayan, A., Deseo, M. A., Itsiopoulos, C., Jamil, D., Hadi, N. R., & Thomas, C. J. (2021). Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus. Nutrients, 13(4), 1133. https://doi.org/10.3390/nu13041133