Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Data Selection
2.3. Data Collection
2.4. Assessment of Risk of Bias in Included Studies
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Studies with a Single Flavonoid Supplement
- Studies with a Quercetin Supplement
- Studies with other Pure Flavonoids
Reference | Flavonoid | Control Group | Study Design | Number of Participants (Female + Male) | Mean Age of the Participants (Years) | Dosage | Exercise | Performance Variable | Effect |
---|---|---|---|---|---|---|---|---|---|
Quercetin Supplements | |||||||||
[52,59] | Quercetin + Tang powder | Tang powder | Db RPCT | 0 + 40 | 26.1 ± 1.8 (SUP) 29.1 ± 2.4 (PL) | 1000 mg/d for 3 wks | Three 3 h cycling bouts | Mean power | NS |
[61] | Quercetin + isoquercetin + EGCG | Placebo +/− Quercetin | Db RPCT | 7 + 32 | 26.3 ± 1.7 (PL) 26.8 ± 2.6 (Q) 28.1 ± 2.8 (Q + EGCG) | 1000 mg quercetin + 120 mg EGCG + 400 mg/d isoquercetin for 14 d | Cycling | 5, 10 and 20 km time trials | NS |
[47] | Quercetin + sport hydration beverage | Sports hydration beverage | Db RPCCT | 0 + 30 | 23.1 ± 2.4 (SUP) 22.1 ± 1.8 (PL) | 1000 mg/d for 7–16 d | Cycling | Work performed in a 10 min maximal effort cycling | NS |
[48] | Quercetin + Tang | Tang | Db RPCCT | 5 + 7 | 22.9 ± 2.4 | 1000 mg/d for 1 wk | Cycling | Time to fatigue | Improvement |
[60] | Quercetin + vit C + niacin | Placebo chews | Db RPCT | 7 + 32 | 44.2 ± 2.0 (SUP) 46.0 ± 2.3 (PL) | 1000 mg/d quercetin + 1000 mg/d vit C + 80 mg/d niacin for 3 wk | 160-km Western States Endurance Run | Race time | NS |
[55] | Quercetin + PowerAde Coca Cola | PowerAde Coca Cola | Db RPCCT | 0 + 26 | 20.2 ± 0.4 | 1000 mg/d for 14 d | 12 min running trial | Distance | Improvement |
[62] | Quercetin + Isoquercetin + EGCG + Vit mix + EPA and DHA | Placebo chews | Db RPCT | 14 + 44 | 22.0 ± 5.1 (SUP) 20.3 ± 1.6 (PL) | 1000 mg/d for 6 wks | APFT, BMPU, WAnT, and 36.6 m running sprint | Time trial, repetitions, mean power and time trial | NS |
[56] | Quercetin-3-glucoside + 6% carbohydrate sports drink | 6% carbohydrate sports drink | Db RPCCT | 0 + 15 | 23.3 ± 2.6 | 1000 mg/d for 1 wk | Running repeated sprints | Mean sprint time | NS |
[57] | Quercetin + food bars | Energy bars | Db, RPCCT | 0 + 16 | 22.0 ± 3.0 | 1000 mg/d for 8.5 d | Marching in a treadmill and cycling trial | Time trial | NS |
[49,51] | Quercetin | Placebo +/- vit C | Db, RPCT | 0 + 65 | 21.0 ± 1.6 | 500 mg/d for 8 wks | Running in a treadmill | Time to exhaustion or distance covered | NS |
[50] | Quercetin + vit C + tocopherols | Energy bars containing vit C and tocopherols | Db, RPCT | 14 + 16 | 19.6 ± 1.3 (female PL) 20.6 ± 1.1 (female SUP) 19.5 ± 1.1 (male PL) 20.9 ± 1.8 (male SUP) | 1000 mg/d quercetin + 20 mg/d vit C + 14 mg/d tocopherols for 1 wk | Eccentric contractions of the elbow flexors | Muscle strength, arm angle | NS |
[58] | Quercetin | Placebo capsules | RPCCT | 0 + 12 | 26.1 ± 3.1 | 1000 mg/d for 14 d | Eccentric contractions | Arm angle, arm circumference | Improvement |
Other Flavonoid Supplements | |||||||||
[53] | (-)-epicatechin | Cellulose capsules | Db, RPCT | 20 | 20.5 ± 1.5 (SUP) 21.0 ± 1.9 (PL) | 200 mg/d for 4 wks | Cycling | Peak anaerobic power | Worsening |
[54] | Hesperetin-7-O-rutinoside | Microcrystalline cellulose capsules | Db, RPCT | 0 + 39 | 23.0 ± 0.3 | 500 mg/d for 4 wks | Cycling | Absolute power output | Improvement |
3.2.2. Studies with Flavonoid-Enriched Extracts
- Studies with Flavanols
- Studies with Anthocyanins
- Studies with Ellagitannins
- Studies with Other Flavonoids
Family Reference | Flavonoid source | Control Groups | Study Design | Number of Participants (Female + Male) | Mean Age of Participants (Years) | Dosage | Exercise | Performance Variable | Effect |
---|---|---|---|---|---|---|---|---|---|
Flavanols | |||||||||
[74] | Apple extract (Applephenon®) | Crystalline cellulose capsules | Db RPCCT | 9 + 9 | 39.1 ± 9.1 | 720 mg/d procyanidins for 7 d | Cycling | Change of maximum velocity | Improvement |
[85] | Green tea extract | Carbohydrate-containing drink | Db RPCCT | 0 + 9 | 32.2 ± 2.1 | 159 mg/d catechins for 3 wks | Cycling | Time for 30 km trial | NS |
[28] | Green tea extract | Microcrystal-line cellulose capsules | Db RPCCT | 0 + 16 | 21.6 ± 1.5 | 800 mg/d catechins for 4 wks | Cycling | Peak power, mean power, total work output | NS |
[94] | Decaffeinated green tea extract | Corn flour capsules | Db RPCT | 0 + 14 | 21.4 ± 0.3 | 400 mg/d EGCG for 4 wks | Cycling | Distance | Improvement |
[95] | Green tea extract | Sports drink | Db RPCCT | 0 + 14 | 33.9 ± 7.4 | 570 mg/d catechins for 8 wks | Cycling | Leg extension strength | Improvement |
[96] | Green tea extract | Starch capsules | Db RPCT | 0 + 40 | 21.0 ± 1.0 | 207 mg/d catechins for 4 wk | Running | Time to exhaustion | NS |
[97,98] | Blueberry-green tea-polyphenol soy protein complex | Soy protein complex with non-polyphenolic food coloring | Db RPCT | 13 + 18 | 33.7 ± 6.8 (SUP) 35.2 ± 8.7 (PL) | 1001 mg/d flavanols for 17 d | Running in a treadmill for 2.5 h | Distance covered | NS |
[99] | Green tea extract | Microcrystalline cellulose capsules | Db RPCT | 0 + 40 | 23.3 ± 4.1 (CT) 21.9 ± 2.5 (SUP) 21.5 ± 2.3 (PL) | 800 mg/d polyphenols for 4 wks | Maximal strength testing, lower body resistance training | Strength | NS |
[64] | Green tea extract | Celulomax® capsules | Tb RPCT | 0 + 20 | 25 ± 5 | 18.5 mg/d catechins for 15 d | Calf-rising exercise | Number of repetitions | NS |
[65] | Flavanol-rich lychee fruit extract (Oligonol ®) | Malt extract | Db RPCT | 0 + 20 | 20.6 ± 1.3 (SUP) 20.6 ± 1.2 (PL) | 100 mg/d flavanols for 2 months | Running training, combining low, medium, and high intensities | Time for 5-km race | NS |
[66] | Oligomerized lychee fruit extract (Oligonol®) | Dextrin capsules | Db RPCT | 0 + 38 | 24.6 ± 6.6 (SUP) 22.9 ± 3.6 (PL) | 200 mg/d flavanols for 30 d | Running | Submaximal running time | Improvement |
[67] | Nonalcoholic beer | Control beverage containing the same ingredients except for polyphenols | Db RPCT | 0 + 121 | 44 (SUP) 42 (PL) | 1.0–1.5 L/d with 47 mg/L catechin and 33 mg/L procyanidins for 3 wks | Munich marathon race | Time for the race | NS |
[26] | Dark chocolate | Isocaloric control chocolate without polyphenols | Sb RPCCT | 0 + 20 | 22.0 ± 4.0 | 197.4 mg of flavanols for 2 wks | Incremental cycling | Time to exhaustion | NS |
[68] | Cocoa flavanols | Maltodextrin capsules containing the same amount of theobromine and caffeine than cocoa flavanols capsules | Db RPCT | 0 + 14 | 30.7 ± 3.1 | 100 mg epicatechin and 23 mg catechin for 7 d | Cycling trial in normobaric hypoxia | Completed work in 20 min cycling trial | NS |
[69] | Dark chocolate | Isocaloric nonchocolate placebo | Db RPCCT | 2 + 10 | 35.0 ± 12.0 | 60 g/d dark chocolate for 14 d and 120 g just before trial | 10 km cycling trial at altitude | Time trial | NS |
[70] | Cocoa flavanols | Chocolate milk | Db RPCT | 0 + 13 | 20.69 ± 1.49 | 308 mg/d flavanols for 7 d | Vertical-jump and yo-yo tests | Vertical jump performance, accumulated distance covered | NS |
[71] | Cocoa flavanols | Maltodextrin | Db RPCT | 0 + 32 | 33 ± 7 (SUP) 36 ± 8 (PL) | 425 mg/d flavanols for 10 wks | Treadmill running | Time to run 1 km | NS |
[72] | Carob extract | Carob- flavored commercial drink containing citric acid, sweeteners, and stabilizers | Db RPCT | 11 + 12 | 21.91 ± 1.22 | 14.4 mg/d flavonoids for 6 wks | Taekwondo training + yo-yo tests | Distance covered, maximal aerobic velocity | Improvement |
Anthocyanins | |||||||||
[73] | New Zealand blackcurrant (CurraNZ™) | Microcrystal-line cellulose capsules | Db RPCCT | 0 + 14 | 38.0 ± 13.0 | 105 mg/d anthocyanins for 7 d | Cycling trial | Time trial | Improvement |
[75] | Blackcurrant juice | Orange flavored sports drink | Db RPCCT | 23 + 0 | 31.0 ± 8.0 | 300 mg/d anthocyanins for 3 wks | Running test | Time trial | Worse for average runners, improvement for fast runners |
[76] | New Zealand blackcurrant (CurraNZ™) | Microcrystal-line cellulose capsules | Db RPCCT | 0 + 13 | 25.0 ± 4.0 | 105 mg/d anthocyanins for 7 d | Treadmill running | Running distance | Improvement |
[77] | New Zealand blackcurrant (CurraNZ™) | Microcrystalline cellulose capsules | Db RPCT | 8 + 12 | 30.0 ± 6.0 | 210 mg/d anthocyanins for 7 d | Chichester half- marathon | Finish time | NS |
[78] | New Zealand blackcurrant (CurraNZ™) | Microcrystal-line cellulose capsules | Db RPCCT | 0 + 13 | 25 ± 4 | 210 mg/d anthocyanins for 7 d | Submaximal isometric exercise | Isometric maximal voluntary contractions | NS |
[79] | New Zealand blackcurrant (CurraNZ™) | Microcrystal-line cellulose capsules | Db RPCCT | 0 + 12 | 25.0 ± 4.0 | 210 mg/d anthocyanins for 7 d | Submaximal forearm muscle contractions | Maximal volitional contraction | NS |
[80] | New Zealand blackcurrant (CurraNZ™) | Microcrystal-line cellulose capsules | Db RPCCT | 0 + 12 | 26.0 ± 5.0 | 210 mg/d anthocyanins for 7 d | Submaximal forearm muscle contractions | Time to exhaustion | NS |
[81] | New Zealand blackcurrant (CurraNZ™) | Microcrystal-line cellulose capsules | Db RPCCT | 0 + 18 | 24.0 ± 6.0 | 210 mg/d anthocyanins for 7 d | Climbing ability test | Time to exhaustion | Improvement |
[82] | Montmorency tart cherry concentrate (Cherry Active® concentrate juice) | Commercially cordial with less than 5% fruit, mixed with water and maltodextrin | Db RPCT | 0 + 16 | 30.0 ± 8.0 | 547.02 mg/d anthocyanins for 7 d | Cycling trial | Work performed by cycling | NS |
[83] | Montmorency tart cherry supplement (Cherry Active®) | Dextrose capsules | Db RPCCT | 0 + 8 | 19.7 ± 1.6 | 256.8 mg/d anthocyanins for 7 d | Cycling time trial | Time trial completion time | Improvement |
[84] | Montmorency tart cherry (Cherry PURE®) | Rice flour capsules | Db RPCT | 9 + 18 | 21.8 ± 3.9 | 66 mg/d anthocyanins for 10 d | Running (half- marathon) | Finish time | Improvement |
[86] | Integral purple grape juice | Isoenergetic carbohydrate-based beverage | Db RPCT | 6 + 22 | 39.8 ± 8.5 | 10 mL/kg/d containing 52.6 mg/L anthocyanins for 28 d | Treadmill running | Time to exhaustion | Improvement |
[87] | Blueberry powder | Carbohydrate and fiber-matched placebo powder | Db RPCT | 0 + 59 | 39.0 ± 2.0 | 345 mg/d anthocyanins for 2 wks | Cycling | Time trial | NS |
Ellagitannins | |||||||||
[88] | Pomegranates | Carbohydrate-matched placebo drink | Db RPCCT | 0 + 12 | 26.8 ± 5.0 | 171.9 mg/d ellagitannins for 7 d | Cycling in the heat | Time trial | NS |
[89] | Pomegranate extract | Pure stevia extract powder | Db RPCCT | 2 + 6 | 37 ± 11 | 15 mg/kg/d containing 11.46 mg/kg/d ellagitannins for 8 d | Cycling time trial | Average power outputs and energy expenditure | NS |
[90] | Pomegranate extract (POMANOX® P30) | Maltodextrin capsules | Db RPCCT | 0 + 24 | 34.9 ± 10 | 225 mg/d punicalagins for 15 d | Cycling trial | Time to exhaustion | Improvement |
[91] | Pomegranate juice (Oleofarm®) | Water, sugar, and grenadine | Db RPCT | 0 + 19 | 20.8 ± 0.86(SUP) 20.9 ± 0.95(PL) | 50 mL/d juice containing 220 mg/100 g polyphenols for 2 months | Rowing ergonometer | Time to complete 2000 m | NS |
Isoflavones | |||||||||
[92] | Peptides, taurine, Pueraria isoflavone, and ginseng saponin complex | Starch and lactose | Db RPCCT | 0 + 14 | 21.6 ± 0.7 | 180 mg of isoflavone for 15 d | Cycling | Time to exhaustion | Improvement |
Flavones | |||||||||
[93] | Peanut husk extract | Microcrystal-line cellulose capsules containing maltodextrin | Db RPCCT | 0 + 12 | 21.3 ± 2.1 | 50 or 100 mg/d luteolin for 15 d | Cycling trial | Peak power | Improvement |
3.3. Risk of Bias within Studies
3.4. Association between Flavonoid Intake, Performance, Immune System, and Inflammatory Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Pérez-Cano, F.J.; Massot-Cladera, M.; Franch, A.; Castellote, C.; Castell, M. The effects of cocoa on the immune system. Front. Pharmacol. 2013, 4, 71. [Google Scholar] [CrossRef] [Green Version]
- Wisnuwardani, R.W.; de Henauw, S.; Androutsos, O.; Forsner, M.; Gottrand, F.; Huybrechts, I.; Knaze, V.; Kersting, M.; Le Donne, C.; Marcos, A.; et al. Estimated dietary intake of polyphenols in European adolescents: The HELENA study. Eur. J. Nutr. 2019, 58, 2345–2363. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Andres-Lacueva, C.; Lamuela-Raventós, R.M.; Berenguer, T.; Jakszyn, P.; Barricarte, A.; Ardanaz, E.; Amiano, P.; Dorronsoro, M.; Larrañaga, N.; et al. Estimation of Dietary Sources and Flavonoid Intake in a Spanish Adult Population (EPIC-Spain). J. Am. Diet. Assoc. 2010, 110, 390–398. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowska, A.M.; Zujko, M.E.; Waśkiewicz, A.; Terlikowska, K.M.; Piotrowski, W. Comparison of various databases for estimation of dietary polyphenol intake in the population of polish adults. Nutrients 2015, 7, 9299–9308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovaskainen, M.L.; Törrönen, R.; Koponen, J.M.; Sinkko, H.; Hellström, J.; Reinivuo, H.; Mattila, P. Dietary intake and major food sources of polyphenols in Finnish adults. J. Nutr. 2008, 138, 562–566. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V. Special Issue “Flavonoids and their disease prevention and treatment potencial”: Recent advances and future perspectives. Molecules 2020, 25, 4746. [Google Scholar] [CrossRef] [PubMed]
- García-Barrado, M.J.; Iglesias-Osma, M.C.; Pérez-García, E.; Carrero, S.; Blanco, E.J.; Carretero-Hernández, M.; Carretero, J. Role of flavonoids in the interactions among obesity, inflammation, and autophagy. Pharmaceuticals 2020, 13, 342. [Google Scholar] [CrossRef]
- Liskova, A.; Koklesova, L.; Samec, M.; Varghese, E.; Abotaleb, M.; Samuel, S.M.; Smejkal, K.; Biringer, K.; Petras, M.; Blahutova, D.; et al. Implications of flavonoids as potential modulators of cancer neovascularity. J. Cancer Res. Clin. Oncol. 2020, 146, 3079–3096. [Google Scholar] [CrossRef]
- Ko, Y.H.; Kim, S.K.; Lee, S.Y.; Jang, C.G. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch. Pharm. Res. 2020, 43, 1128–1143. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Li, G.; Ding, K.; Qiao, Y.; Zhang, L.; Zheng, L.; Pan, T.; Zhang, L. Flavonoids Regulate Inflammation and Oxidative Stress in Cancer. Molecules 2020, 25, 5628. [Google Scholar] [CrossRef]
- Cichon, N.; Saluk-Bijak, J.; Gorniak, L.; Przyslo, L.; Bijak, M. Flavonoids as a natural enhancer of neuroplasticity-an overview of the mechanism of neurorestorative action. Antioxidants 2020, 9, 1035. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, B.; Huang, W.; Amrouche, A.T.; Maurizio, B.; Simal-Gandara, J.; Tundis, R.; Xiao, J.; Zou, L.; Lu, B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci. Technol. 2020, 106, 30–47. [Google Scholar] [CrossRef]
- Kressler, J.; Millard-Stafford, M.; Warren, G.L. Quercetin and endurance exercise capacity: A systematic review and meta-analysis. Med. Sci. Sports Exerc. 2011, 43, 2396–2404. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, A.J.; Somerville, V.X.; Hurst, R.D. The effect of New Zealand blackcurrant on sport performance and related biomarkers: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Cook, M.D.; Willems, M.E.T. Dietary Anthocyanins: A Review of the Exercise Performance Effects and Related Physiological Responses. Int. J. Exerc. Metab. Sport. Nutr. 2019, 29, 322–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decroix, L.; Soares, D.D.; Meeusen, R.; Heyman, E.; Tonoli, C. Cocoa Flavanol Supplementation and Exercise: A Systematic Review. Sport. Med. 2018, 48, 867–892. [Google Scholar] [CrossRef]
- Estruel-Amades, S.; Massot-Cladera, M.; Pérez-Cano, F.J.; Franch, À.; Castell, M.; Camps-Bossacoma, M. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients 2019, 11, 324. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Iglesias, P.; Estruel-Amades, S.; Camps-Bossacoma, M.; Massot-Cladera, M.; Franch, À.; Pérez-Cano, F.J.; Castell, M. Influence of Hesperidin on Systemic Immunity of Rats Following an Intensive Training and Exhausting Exercise. Nutrients 2020, 12, 1291. [Google Scholar] [CrossRef]
- Morillas-Ruiz, J.M.; Villegas García, J.A.; López, F.J.; Vidal-Guevara, M.L.; Zafrilla, P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin. Nutr. 2006, 25, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Zaidun, N.H.; Thent, C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci. 2018, 208, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.; Pourmasoumi, M.; Kafeshani, M.; Karimian, J.; Maracy, M.R.; Entezari, M.H. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. J. Diet. Suppl. 2017, 14, 346–357. [Google Scholar] [CrossRef]
- Urso, M.L.; Clarkson, P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003, 189, 41–54. [Google Scholar] [CrossRef]
- Allgrove, J.; Farrell, E.; Gleeson, M.; Williamson, G.; Cooper, K. Regular dark chocolate consumption’s reduction of oxidative stress and increase of free-fatty-acid mobilization in response to prolonged cycling. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jówko, E.; Sacharuk, J.; Balasińska, B.; Ostaszewski, P.; Charmas, M.; Charmas, R. Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutr. Res. 2011, 31, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Jówko, E.; Długołęcka, B.; Makaruk, B.; Cieśliński, I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur. J. Nutr. 2015, 54, 783–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloedon, T.; Vendrame, S.; Bolton, J.; Lehnhard, R.; Riso, P.; Klimis-Zacas, D. The effect of wild blueberry (Vaccinium angustifolium) consumption on oxidative stress, inflammation, and DNA damage associated with exercise. Comp. Exerc. Physiol. 2015, 11, 173–181. [Google Scholar] [CrossRef]
- Knight, J.A. Review: Free radicals, antioxidants, and the immune system. Ann. Clin. Lab. Sci. 2000, 30, 145–158. [Google Scholar]
- Alack, K.; Pilat, C.; Krüger, K. Current knowledge and new challenges in exercise immunology. Dtsch. Z. Sportmed. 2019, 70, 250–260. [Google Scholar] [CrossRef]
- Gleeson, M. Immune function in sport and exercise. J. Appl. Physiol. 2007, 103, 693–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Publ. Gr. 2011, 11, 607–615. [Google Scholar] [CrossRef]
- Simpson, R.J.; Krüger, K.; Walsh, N.P.; Campbell, J.P.; Gleeson, M.; Nieman, D.C.; Pyne, D.B.; Turner, J.E. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar]
- Krüger, K.; Mooren, F.-C.; Pilat, C. The immunomodulatory effects of physical activity. Curr. Pharm. Des. 2016, 22, 3730–3748. [Google Scholar] [CrossRef]
- Gleeson, M.; Williams, C. Intense exercise training and immune function. In Limits of Human Endurance; Nestle Nutrition Institute Workshop Series; S. Karger AG: Basel, Switzerland, 2013; Volume 76, pp. 39–50. [Google Scholar]
- Abdalla, D.R.; Rocha Aleixo, A.A.; Murta, E.F.C.; Michelin, M.A. Innate immune response adaptation in mice subjected to administration of DMBA and physical activity. Oncol. Lett. 2014, 7, 886–890. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.K.O.; Prestes, J.; Donatto, F.F.; Verlengia, R.; Navalta, J.W.; Cavaglieri, C.R. Phagocytic responses of peritoneal macrophages and neutrophils are different in rats following prolonged exercise. Clinics 2010, 65, 1167–1173. [Google Scholar] [CrossRef] [Green Version]
- Nagao, F.; Suzui, M.; Takeda, K.; Yagita, H.; Okumura, K. Mobilization of NK cells by exercise: Downmodulation of adhesion molecules on NK cells by catecholamines. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R1251–R1256. [Google Scholar] [CrossRef] [Green Version]
- Krumholz-Wagner, I.; Krüger, K.; Niess, A.M.; Steinacker, J.M.; Mooren, F.C.; Beiter, T.; Hudemann, J.; Eichner, G.; Schild, M.; Zügel, M.; et al. Effects of acute endurance exercise on plasma protein profiles of endurance-trained and untrained individuals over time. Mediat. Inflamm. 2016, 2016, 4851935. [Google Scholar]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Mol. Cell. Regul. Adapt. Exerc. 2015, 135, 355–380. [Google Scholar]
- Svendsen, I.S.; Taylor, I.M.; Tonnessen, E.; Bahr, R.; Gleeson, M. Training-related and competition-related risk factors for respiratory tract and gastrointestinal infections in elite cross-country skiers. Br. J. Sports Med. 2016, 50, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Somerville, V.; Bringans, C.; Braakhuis, A. Polyphenols and Performance: A Systematic Review and Meta-Analysis. Sport. Med. 2017, 47, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Quaresma, M.V.L.; Guazzelli Marques, C.; Nakamoto, F.P. Effects of diet interventions, dietary supplements, and performance-enhancing substances on the performance of CrossFit-trained individuals: A systematic review of clinical studies. Nutrition 2020, 82, 110994. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, G.; Bonfill, X. PRIMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses. Med. Clin. 2010, 135, 507–511. [Google Scholar]
- Higgins, J.; Savović, J.; Page, M.; Elbers, R.; Sterne, J. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.1; (updated September 2020); Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; Cochrane: London, UK, 2020. [Google Scholar]
- Cureton, K.J.; Tomporowski, P.D.; Singhal, A.; Pasley, J.D.; Bigelman, K.A.; Lambourne, K.; Trilk, J.L.; McCully, K.K.; Arnaud, M.J.; Zhao, Q. Dietary quercetin supplementation is not ergogenic in untrained men. J. Appl. Physiol. 2009, 107, 1095–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.M.; Carlstedt, C.J.; Chen, S.; Carmichael, M.D.; Murphy, E.A. The dietary flavonoid quercetin increases VO(2max) and endurance capacity. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Askari, G.; Ghiasvand, R.; Karimian, J.; Feizi, A.; Paknahad, Z.; Sharifirad, G.; Hajishafiei, M. Does quercetin and vitamin C improve exercise performance, muscle damage, and body composition in male athletes? J. Res. Med. Sci. 2012, 17, 328–331. [Google Scholar]
- O’Fallon, K.S.; Kaushik, D.; Michniak-Kohn, B.; Dunne, C.P.; Zambraski, E.J.; Clarkson, P.M. Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Askari, G.; Ghiasvand, R.; Paknahad, Z.; Karimian, J.; Rabiee, K.; Sharifirad, G.; Feizi, A. The effect of quercetin supplementation on body composition, exercise performance and muscle damage indices in athletes. Int. J. Prev. Med. 2013, 4, 21–26. [Google Scholar]
- Nieman, D.C.; Henson, D.A.; Gross, S.J.; Jenkins, D.P.; Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Dumke, C.L.; Utter, A.C.; Mcanulty, S.R.; et al. Quercetin reduces illness but not immune perturbations after intensive exercise. Med. Sci. Sports Exerc. 2007, 39, 1561–1569. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, N.A.; Blahnik, Z.J.; Prahadeeswaran, S.; McKinley-Barnard, S.K.; Holden, S.L.; Waldhelm, A. (–)-Epicatechin Supplementation Inhibits Aerobic Adaptations to Cycling Exercise in Humans. Front. Nutr. 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Overdevest, E.; Wouters, J.A.; Wolfs, K.H.M.; van Leeuwen, J.J.M.; Possemiers, S. Citrus flavonoid supplementation improves exercise performance in trained athletes. J. Sports Sci. Med. 2018, 17, 24–30. [Google Scholar]
- Nieman, D.C.; Williams, A.S.; Shanely, R.A.; Jin, F.; McAnulty, S.R.; Triplett, N.T.; Austin, M.D.; Henson, D.A. Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Med. Sci. Sports Exerc. 2010, 42, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Abbey, E.L.; Rankin, J.W. Effect of quercetin supplementation on repeated-sprint performance, xanthine oxidase activity, and inflammation. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 91–96. [Google Scholar] [CrossRef]
- Sharp, M.A.; Hendrickson, N.R.; Staab, J.S.; Mcclung, H.L.; Nindl, B.C.; Michniak-Kohn, B.B. Effects of short-term quercetin supplementation on soldier performance. J. Strength Cond. Res. 2012, 26, 53–60. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Patrizio, F.; Ceci, R.; Duranti, G.; Sgrò, P.; Sabatini, S.; Di Luigi, L.; Sacchetti, M.; Felici, F. The effects of quercetin supplementation on eccentric exercise-induced muscle damage. Nutrients 2019, 11, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.C.; Henson, D.A.; Davis, J.M.; Murphy, E.A.; Jenkins, D.P.; Gross, S.J.; Carmichael, M.D.; Quindry, J.C.; Dumke, C.L.; Utter, A.C.; et al. Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA. J. Appl. Physiol. 2007, 103, 1728–1735. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Henson, D.A.; Davis, J.M.; Dumke, C.L.; Gross, S.J.; Jenkins, D.P.; Murphy, E.A.; Carmichael, M.D.; Quindry, J.C.; McAnulty, S.R.; et al. Quercetin ingestion does not alter cytokine changes in athletes competing in the Western States endurance run. J. Interf. Cytokine Res. 2007, 27, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Henson, D.A.; Maxwell, K.R.; Williams, A.S.; Mcanulty, S.R.; Jin, F.; Shanely, R.A.; Lines, T.C. Effects of quercetin and EGCG on mitochondrial biogenesis and immunity. Med. Sci. Sports Exerc. 2009, 41, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Bigelman, K.A.; Fan, E.H.; Chapman, D.P.; Freese, E.C.; Trilk, J.L.; Cureton, K.J. Effects of six weeks of quercetin supplementation on physical performance in ROTC cadets. Mil. Med. 2010, 175, 791–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Da Silva, W.; Machado, Á.S.; Souza, M.A.; Mello-Carpes, P.B.; Carpes, F.P. Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiol. Behav. 2018, 194, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, M.; Hara, T.; Miura, T.; Fujita, S.; Yoshigai, E.; Ue, H.; Hayashi, Y.; Kwon, A.H.; Okumura, T.; Isaka, T. Supplementation with a flavanol-rich lychee fruit extract influences the inflammatory status of young athletes. Phyther. Res. 2011, 25, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Hahn, S.; Kim, J.K.; Yang, S.M.; Park, B.J.; Lee, S.C. Oligomerized lychee fruit extract (OLFE) and a mixture of vitamin C and vitamin E for endurance capacity in a double blind randomized controlled trial. J. Clin. Biochem. Nutr. 2012, 50, 106–113. [Google Scholar] [CrossRef]
- Scherr, J.; Nieman, D.C.; Schuster, T.; Habermann, J.; Rank, M.; Braun, S.; Pressler, A.; Wolfarth, B.; Halle, M. Nonalcoholic beer reduces inflammation and incidence of respiratory tract illness. Med. Sci. Sports Exerc. 2012, 44, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Decroix, L.; Tonoli, C.; Lespagnol, E.; Balestra, C.; Descat, A.; Drittij-Reijnders, M.J.; Blackwell, J.R.; Stahl, W.; Jones, A.M.; Weseler, A.R.; et al. One-week cocoa flavanol intake increases prefrontal cortex oxygenation at rest and during moderate-intensity exercise in normoxia and hypoxia. J. Appl. Physiol. 2018, 125, 8–18. [Google Scholar] [CrossRef]
- Shaw, K.; Singh, J.; Sirant, L.; Neary, P.; Chilibeck, P.D. Effect of Dark Chocolate Supplementation on Tissue Oxygenation, Metabolism, and Performance in Trained Cyclists at Altitude. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 420–426. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, F.G.; Fisher, M.G.; Thornley, T.T.; Roemer, K.; Pritchett, R.; Freitas, E.C.d.; Pritchett, K. Cocoa flavanol effects on markers of oxidative stress and recovery after muscle damage protocol in elite rugby players. Nutrition 2019, 62, 47–51. [Google Scholar] [CrossRef]
- García-Merino, J.Á.; Moreno-Pérez, D.; de Lucas, B.; Montalvo-Lominchar, M.G.; Muñoz, E.; Sánchez, L.; Naclerio, F.; Herrera-Rocha, K.M.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E.; et al. Chronic flavanol-rich cocoa powder supplementation reduces body fat mass in endurance athletes by modifying the follistatin/myostatin ratio and leptin levels. Food Funct. 2020, 11, 3441–3450. [Google Scholar] [CrossRef]
- Gaamouri, N.; Zouhal, H.; Hammami, M.; Hackney, A.C.; Abderrahman, A.B.; Saeidi, A.; El Hage, R.; Ounis, O. Ben Effects of polyphenol (carob) supplementation on body composition and aerobic capacity in taekwondo athletes. Physiol. Behav. 2019, 205, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.D.; Myers, S.D.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. [Google Scholar] [CrossRef]
- Ataka, S.; Tanaka, M.; Nozaki, S.; Mizuma, H.; Mizuno, K.; Tahara, T.; Sugino, T.; Shirai, T.; Kajimoto, Y.; Kuratsune, H.; et al. Effects of Applephenon® and ascorbic acid on physical fatigue. Nutrition 2007, 23, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, A.J.; Hopkins, W.G.; Lowe, T.E. Effects of dietary antioxidants on training and performance in female runners. Eur. J. Sport Sci. 2014, 14, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Perkins, I.C.; Vine, S.A.; Blacker, S.D.; Willems, M.E.T. New Zealand Blackcurrant Extract Improves High-Intensity Intermittent Running. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Costello, R.; Willems, M.E.T.; Myers, S.D.; Myers, F.; Lewis, N.A.; Lee, B.J.; Blacker, S.D. No Effect of New Zealand Blackcurrant Extract on Recovery of Muscle Damage Following Running a Half-Marathon. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 287–294. [Google Scholar] [CrossRef]
- Cook, M.D.; Myers, S.D.; Gault, M.L.; Willems, M.E.T. Blackcurrant alters physiological responses and femoral artery diameter during sustained isometric contraction. Nutrients 2017, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Fryer, S.; Giles, D.; Bird, E.; Stone, K.; Paterson, C.; Baláš, J.; Willems, M.E.T.; Potter, J.A.; Perkins, I.C. New Zealand blackcurrant extract enhances muscle oxygenation during repeated intermittent forearm muscle contractions in advanced and elite rock climbers. Eur. J. Sport Sci. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Fryer, S.; Paterson, C.; Perkins, I.C.; Gloster, C.; Willems, M.E.T.; Potter, J.A. New Zealand blackcurrant extract enhances muscle oxygenation during forearm exercise in intermediate-level rock climbers. Int. J. Sport Nutr. Exerc. Metab. 2020, 30, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.A.; Hodgson, C.I.; Broadhurst, M.; Howell, L.; Gilbert, J.; Willems, M.E.T.; Perkins, I.C. Effects of New Zealand blackcurrant extract on sport climbing performance. Eur. J. Appl. Physiol. 2020, 120, 67–75. [Google Scholar] [CrossRef]
- Bell, P.G.; Walshe, I.H.; Davison, G.W.; Stevenson, E.; Howatson, G. Montmorency cherries reduce the oxidative stress and inflammatory responses to repeated days high-intensity stochastic cycling. Nutrients 2014, 6, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Morgan, P.T.; Barton, M.J.; Bowtell, J.L. Montmorency cherry supplementation improves 15-km cycling time-trial performance. Eur. J. Appl. Physiol. 2019, 119, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Levers, K.; Dalton, R.; Galvan, E.; O’Connor, A.; Goodenough, C.; Simbo, S.; Mertens-Talcott, S.U.; Rasmussen, C.; Greenwood, M.; Riechman, S.; et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J. Int. Soc. Sports Nutr. 2016, 13, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Eichenberger, P.; Mettler, S.; Arnold, M.; Colombani, P.C. No effects of three-week consumption of a green tea extract on time trial performance in endurance-trained men. Int. J. Vitam. Nutr. Res. 2010, 80, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Toscano, L.T.; Tavares, R.L.; Toscano, L.T.; da Silva, C.S.O.; de Almeida, A.E.M.; Biasoto, A.C.T.; Gonçalves, M.d.C.R.; Silva, A.S. Potential ergogenic activity of grape juice in runners. Appl. Physiol. Nutr. Metab. 2015, 40, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.C.; Gillitt, N.D.; Chen, G.Y.; Zhang, Q.; Sha, W.; Kay, C.D.; Chandra, P.; Kay, K.L.; Lila, M.A. Blueberry and/or Banana Consumption Mitigate Arachidonic, Cytochrome P450 Oxylipin Generation During Recovery From 75-Km Cycling: A Randomized Trial. Front. Nutr. 2020, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Trinity, J.D.; Pahnke, M.D.; Trombold, J.R.; Coyle, E.F. Impact of polyphenol antioxidants on cycling performance and cardiovascular function. Nutrients 2014, 6, 1273–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crum, E.M.; Barnes, M.J.; Stannard, S.R. Multi-day Pomegranate Extract Supplementation Decreases Oxygen Uptake During Submaximal Cycling Exercise but Co-Supplementation with N-Acetylcysteine. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa-García, A.; Ávila-Gandía, V.; Luque-Rubia, A.J.; Abellán-Ruiz, M.S.; Querol-Calderón, M.; López-Román, F.J. Pomegranate extract improves maximal performance of trained cyclists after an exhausting endurance trial: A randomised controlled trial. Nutrients 2019, 11, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbaniak, A.; Basta, P.; Ast, K.; Wołoszyn, A.; Kuriańska-Wołoszyn, J.; Latour, E.; Skarpańska-Stejnborn, A. The impact of supplementation with pomegranate fruit (Punica granatum L.) juice on selected antioxidant parameters and markers of iron metabolism in rowers. J. Int. Soc. Sports Nutr. 2018, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, T.S.; Chan, K.H.; Hsu, M.C.; Liu, J.F. Supplementation with soybean peptides, taurine, Pueraria isoflavone, and ginseng saponin complex improves endurance exercise capacity in humans. J. Med. Food 2011, 14, 219–225. [Google Scholar] [CrossRef]
- Gelabert-Rebato, M.; Wiebe, J.C.; Martin-Rincon, M.; Galvan-Alvarez, V.; Curtelin, D.; Perez-Valera, M.; Habib, J.J.; Pérez-López, A.; Vega, T.; Morales-Alamo, D.; et al. Enhancement of exercise performance by 48 hours, and 15-day supplementation with mangiferin and luteolin in men. Nutrients 2019, 11, 344. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.D.; Roberts, M.G.; Tarpey, M.D.; Weekes, J.C.; Thomas, C.H. The effect of a decaffeinated green tea extract formula on fat oxidation, body composition and exercise performance. J. Int. Soc. Sports Nutr. 2015, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Ota, N.; Soga, S.; Shimotoyodome, A. Daily consumption of tea catechins improves aerobic capacity in healthy male adults: A randomized double-blind, placebo-controlled, crossover trial. Biosci. Biotechnol. Biochem. 2016, 80, 2412–2417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, Y.-C.; Lin, J.-C.; Bernard, J.R.; Liao, Y.-H. Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Appl. Physiol. Nutr. Metab. 2015, 40, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Gillitt, N.D.; Knab, A.M.; Shanely, R.A.; Pappan, K.L.; Jin, F.; Lila, M.A. Influence of a Polyphenol-Enriched Protein Powder on Exercise-Induced Inflammation and Oxidative Stress in Athletes: A Randomized Trial Using a Metabolomics Approach. PLoS ONE 2013, 8, e72215. [Google Scholar] [CrossRef]
- Ahmed, M.; Henson, D.A.; Sanderson, M.C.; Nieman, D.C.; Gillitt, N.D.; Lila, M.A. The protective effects of a polyphenol-enriched protein powder on exercise-induced susceptibility to virus infection. Phyther. Res. 2014, 28, 1829–1836. [Google Scholar] [CrossRef]
- Beyer, K.S.; Stout, J.R.; Fukuda, D.H.; Jajtner, A.R.; Townsend, J.R.; Church, D.D.; Wang, R.; Riffe, J.J.; Muddle, T.W.D.; Herrlinger, K.A.; et al. Impact of polyphenol supplementation on acute and chronic response to resistance training. J. Strength Cond. Res. 2017, 31, 2945–2954. [Google Scholar] [CrossRef] [Green Version]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018, 269, 355–374. [Google Scholar] [CrossRef]
- Machado, Á.S.; da Silva, W.; Souza, M.A.; Carpes, F.P. Green tea extract preserves neuromuscular activation and muscle damage markers in athletes under cumulative fatigue. Front. Physiol. 2018, 9, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reto, M.; Figueira, M.E.; Filipe, H.M.; Almeida, C.M.M. Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant. Foods Hum. Nutr. 2007, 62, 139–144. [Google Scholar] [CrossRef]
- Bell, P.G.; Walshe, I.H.; Davison, G.W.; Stevenson, E.J.; Howatson, G. Recovery facilitation with montmorency cherries following high-intensity, metabolically challenging exercise. Appl. Physiol. Nutr. Metab. 2015, 40, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, J.A.; Hofheinz, K.; Zaiss, M.M.; Krönke, G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 371–381. [Google Scholar] [CrossRef]
- Ahtiainen, J.P.; Pakarinen, A.; Alen, M.; Kraemer, W.J.; Häkkinen, K. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur. J. Appl. Physiol. 2003, 89, 555–563. [Google Scholar] [CrossRef]
- Moon, Y.J.; Wang, L.; DiCenzo, R.; Morris, M.E. Quercetin pharmacokinetics in humans. Biopharm. Drug Dispos. 2008, 29, 205–217. [Google Scholar] [CrossRef]
- Camuesco, D.; Comalada, M.; Concha, A.; Nieto, A.; Sierra, S.; Xaus, J.; Zarzuelo, A.; Gálvez, J. Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis. Clin. Nutr. 2006, 25, 466–476. [Google Scholar] [CrossRef]
- Young, J.M.; Morris, M.E. Pharmacokinetics and bioavailability of the bioflavonoid biochanin A: Effects of quercetin and EGCG on biochanin A disposition in rats. Mol. Pharm. 2007, 4, 865–872. [Google Scholar]
- Chen, C.Y.; Milbury, P.E.; Chung, S.K.; Blumberg, J. Effect of almond skin polyphenolics and quercetin on human LDL and apolipoprotein B-100 oxidation and conformation. J. Nutr. Biochem. 2007, 18, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.F.; Borge, G.I.A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C.N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Davis, B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1071–R1077. [Google Scholar] [CrossRef] [Green Version]
- Dumke, C.L.; Nieman, D.C.; Utter, A.C.; Rigby, M.D.; Quindry, J.C.; Triplett, N.T.; McAnulty, S.R.; McAnulty, L.S. Quercetin’s effect on cycling efficiency and substrate utilization. Appl. Physiol. Nutr. Metab. 2009, 34, 993–1000. [Google Scholar] [CrossRef]
- Alexander, S.P.H. Flavonoids as antagonists at A1 adenoside receptors. Phyther. Res. 2006, 20, 1009–1012. [Google Scholar] [CrossRef]
- Buford, T.W.; Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. J. Int. Soc. Sports Nutr. 2007, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Noguera, F.J.; Marín-Pagán, C.; Carlos-Vivas, J.; Rubio-Arias, J.A.; Alcaraz, P.E. Acute effects of hesperidin in oxidant/antioxidant state markers and performance in amateur cyclists. Nutrients 2019, 11, 1898. [Google Scholar] [CrossRef] [Green Version]
- Estruel-Amades, S.; Massot-Cladera, M.; Garcia-Cerdà, P.; Pérez-Cano, F.J.; Franch, Á.; Castell, M.; Camps-Bossacoma, M. Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats. Nutrients 2019, 11, 783. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.M.; Dourado, G.K.Z.S.; Cesar, T.B. Hesperidin associated with continuous and interval swimming improved biochemical and oxidative biomarkers in rats. J. Int. Soc. Sports Nutr. 2013, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Murase, T.; Haramizu, S.; Shimotoyodome, A.; Tokimitsu, I.; Hase, T. Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, 1550–1556. [Google Scholar] [CrossRef]
- Murase, T.; Haramizu, S.; Shimotoyodome, A.; Nagasawa, A.; Tokimitsu, I. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, 708–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Sayama, K.; Okubo, T.; Juneja, L.R.; Oguni, I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 2004, 18, 55–62. [Google Scholar] [PubMed]
- Kalgaonkar, S.; Nishioka, H.; Gross, H.B.; Fujii, H.; Keen, C.L.; Hackman, R.M. Bioactivity of a flavanol-rich lychee fruit extract in adipocytes and its effects on oxidant defense and indices of metabolic syndrome in animal models. Phyther. Res. 2010, 24, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, R.; Yoshigai, E.; Okuyama, T.; Mori, M.; Murase, H.; Machida, T.; Okumura, T.; Nishizawa, M. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS ONE 2014, 9, e93818. [Google Scholar] [CrossRef]
- Marshall, R.J.; Scott, K.C.; Hill, R.C.; Lewis, D.D.; Sundstrom, D.; Jones, G.L.; Harper, J. Supplement vitamin C appears to slow racing greyhounds. Animals 2002, 132, 1616S–1621S. [Google Scholar]
- Coombes, J.S.; Powers, S.K.; Rowell, B.; Hamilton, K.L.; Dodd, S.L.; Shanely, R.A.; Sen, C.K.; Packer, L. Effects of vitamin E and α-lipoic acid on skeletal muscle contractile properties. J. Appl. Physiol. 2001, 90, 1424–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Cabrera, M.C.; Domenech, E.; Romagnoli, M.; Arduini, A.; Borras, C.; Pallardo, F.V.; Sastre, J.; Viña, J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 2008, 87, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trexler, E.T.; Smith-Ryan, A.E.; Melvin, M.N.; Roelofs, E.J.; Wingfield, H.L. Effects of pomegranate extract on blood flow and running time to exhaustion. Appl. Physiol. Nutr. Metab. 2014, 39, 1038–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Al-Dashti, Y.A.; Holt, R.R.; Stebbins, C.L.; Keen, C.L.; Hackman, R.M. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance. J. Am. Coll. Nutr. 2018, 37, 553–567. [Google Scholar] [CrossRef]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Alipour, M.; Motevalli, M.S.; Chebbi, A.; Laher, I.; Zouhal, H. Does green tea extract enhance the anti-inflammatory effects of exercise on fat loss? Br. J. Clin. Pharmacol. 2020, 86, 753–762. [Google Scholar] [CrossRef] [Green Version]
- Boushel, R.; Langberg, H.; Gemmer, C.; Olesen, J.; Crameri, R.; Scheede, C.; Sander, M.; Kjær, M. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J. Physiol. 2002, 543, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, R.D.; Lyall, K.A.; Roberts, J.M.; Perthaner, A.; Wells, R.W.; Cooney, J.M.; Jensen, D.J.; Burr, N.S.; Hurst, S.M. Consumption of an anthocyanin-rich extract made from New Zealand blackcurrants prior to exercise may assist recovery from oxidative stress and maintains circulating neutrophil function: A pilot study. Front. Nutr. 2019, 6, 73. [Google Scholar] [CrossRef]
- Bell, P.G.; McHugh, M.P.; Stevenson, E.; Howatson, G. The role of cherries in exercise and health. Scand. J. Med. Sci. Sports 2014, 24, 477–490. [Google Scholar] [CrossRef]
- Matsukawa, T.; Motojima, H.; Sato, Y.; Takahashi, S.; Villareal, M.O.; Isoda, H. Upregulation of skeletal muscle PGC-1α through the elevation of cyclic AMP levels by cyanidin-3-glucoside enhances exercise performance. Sci. Rep. 2017, 7, 1–12. [Google Scholar]
- Mogalli, R.; Matsukawa, T.; Shimomura, O.; Isoda, H.; Ohkohchi, N. Cyanidin-3-glucoside enhances mitochondrial function and biogenesis in a human hepatocyte cell line. Cytotechnology 2018, 70, 1519–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toscano, L.d.L.T.; Silva, A.S.; de França, A.C.L.; de Sousa, B.R.V.; de Almeida Filho, E.J.B.; da Silveira Costa, M.; Marques, A.T.B.; da Silva, D.F.; de Farias Sena, K.; Cerqueira, G.S.; et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: A randomized, crossover, double-blind, placebo study. Eur. J. Nutr. 2020, 59, 2997–3007. [Google Scholar]
- Toscano, L.T.; Silva, A.S.; Toscano, L.T.; Tavares, R.L.; Biasoto, A.C.T.; de Camargo, A.C.; da Silva, C.S.O.; Gonçalves, M.D.C.R.; Shahidi, F. Phenolics from purple grape juice increase serum antioxidant status and improve lipid profile and blood pressure in healthy adults under intense physical training. J. Funct. Foods 2017, 33, 419–424. [Google Scholar] [CrossRef]
- Chaves, A.A.; Joshi, M.S.; Coyle, C.M.; Brady, J.E.; Dech, S.J.; Schanbacher, B.L.; Baliga, R.; Basuray, A.; Bauer, J.A. Vasoprotective endothelial effects of a standardized grape product in humans. Vascul. Pharmacol. 2009, 50, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.; Mitmesser, S. Potential impact of nutrition on immune system recovery from heavy exertion: A metabolomics perspective. Nutrients 2017, 9, 513. [Google Scholar] [CrossRef] [Green Version]
- Di Sotto, A.; Vitalone, A.; Di Giacomo, S. Plant-derived nutraceuticals and immune system modulation: An evidence-based overview. Vaccines 2020, 8, 468. [Google Scholar] [CrossRef]
- Goya, L.; Martín, M.Á.; Sarriá, B.; Ramos, S.; Mateos, R.; Bravo, L. Effect of cocoa and its flavonoids on biomarkers of inflammation: Studies of cell culture, animals and humans. Nutrients 2016, 8, 212. [Google Scholar] [CrossRef] [PubMed]
- Somerville, V.S.; Braakhuis, A.J.; Hopkins, W.G. Effect of Flavonoids on Upper Respiratory Tract Infections and Immune Function: A Systematic Review and Meta-Analysis. Adv. Nutr. 2016, 7, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Nantz, M.P.; Rowe, C.A.; Muller, C.; Creasy, R.; Colee, J.; Khoo, C.; Percival, S.S. Consumption of cranberry polyphenols enhances human γδ-T cell proliferation and reduces the number of symptoms associated with colds and influenza: A randomized, placebo-controlled intervention study. Nutr. J. 2013, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nantz, M.P.; Rowe, C.A.; Muller, C.E.; Creasy, R.A.; Stanilka, J.M.; Percival, S.S. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: A randomized, double-blind, placebo-controlled nutrition intervention. Clin. Nutr. 2012, 31, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Morand, C.; de Roos, B.; Garcia-Conesa, M.T.; Gibney, E.R.; Landberg, R.; Manach, C.; Milenkovic, D.; Rodriguez-Mateos, A.; van de Wiele, T.; Tomas-Barberan, F. Why interindividual variation in response to consumption of plant food bioactives matters for future personalised nutrition. Proc. Nutr. Soc. 2020, 79, 225–235. [Google Scholar] [CrossRef] [PubMed]
Reference | Flavonoid | Dosage | Exercise | Effect on Performance | Measurement | Outcome |
---|---|---|---|---|---|---|
Quercetin | ||||||
[59] | quercetin + Tang powder | 1000 mg/d for 3 wks | Three 3-h cycling bouts | NS |
|
|
[52] | quercetin + Tang powder | 1000 mg/d for 3 wks | Three 3-h cycling bouts | NS |
|
|
[60] | quercetin + vit C + niacin | 1000 mg/d quercetin + 1000 mg/d vit C + 80 mg/d niacin for 3 wks | 160-km Western States Endurance Run | NS |
|
|
[56] | quercetin-3- glucoside + 6% carbohydrate sports drink | 1000 mg/d for 1 wk | Running repeated sprints | NS |
|
|
[61] | Quercetin + isoquercetin + EGCG | 1000 mg quercetin + 120 mg EGCG + 400 mg/d isoquercetin for 14 d | Cycling | NS |
|
|
[50] | Quercetin + vit C + tocopherols | 1000 mg/d quercetin + 20 mg/d vit C + 14 mg/d tocopherols for 1 wk | Eccentric contractions of the elbow flexors | NS |
|
|
Extracts with flavanols | ||||||
[85] | Green tea extract | 159 mg/d catechins for 3 wks | Cycling | NS |
|
|
[97] | Blueberry–green tea–polyphenol soy protein complex | 1001 mg/d flavanols for 17 d | Running in a treadmill for 2.5 h | NS |
|
|
[98] | Blueberry–green tea–polyphenol soy protein complex | 1001 mg/d flavanols for 17 d | Running in a treadmill for 2.5 h | NS |
|
|
[65] | Flavanol-rich lychee fruit extract | 100 mg/d flavanols for 2 months | Running training, combining low, medium, and high intensities | NS |
|
|
[67] | Nonalcoholic beer | 1.0–1.5 L/d with 47 mg/L catechin and 33 mg/L procyanidins for 3 wks | Munich marathon race | NS |
|
|
[26] | Dark chocolate | 197.4 mg flavanols for 2 wks | Incremental cycling | NS |
|
|
Extracts with anthocyanins | ||||||
[77] | New Zealand blackcurrant | 210 mg/d anthocyanins for 7 d | Chichester half-marathon | NS |
|
|
[82] | Montmorency tart cherry concentrate | 547.02 mg/d anthocyanins for 7 d | Cycling trial | NS |
|
|
[84] | Montmorency tart cherry | 66 mg/d anthocyanins for 10 d | Running (half-marathon) | Improvement |
|
|
[86] | Integral purple grape juice | 10 mL/kg/d containing 52.6 mg/L anthocyanins for 28 d | Treadmill running | Improvement |
|
|
[87] | Blueberry powder | 345 mg/d anthocyanins for 2 wks | Cycling | NS |
|
|
Extracts with ellagitannins | ||||||
[91] | Pomegranate juice | 50 mL/d juice containing 220 mg/100 g polyphenols for 2 months | Rowing ergonometer | NS |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Iglesias, P.; Gorgori-González, A.; Massot-Cladera, M.; Castell, M.; Pérez-Cano, F.J. Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients 2021, 13, 1132. https://doi.org/10.3390/nu13041132
Ruiz-Iglesias P, Gorgori-González A, Massot-Cladera M, Castell M, Pérez-Cano FJ. Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients. 2021; 13(4):1132. https://doi.org/10.3390/nu13041132
Chicago/Turabian StyleRuiz-Iglesias, Patricia, Abril Gorgori-González, Malén Massot-Cladera, Margarida Castell, and Francisco J. Pérez-Cano. 2021. "Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005" Nutrients 13, no. 4: 1132. https://doi.org/10.3390/nu13041132
APA StyleRuiz-Iglesias, P., Gorgori-González, A., Massot-Cladera, M., Castell, M., & Pérez-Cano, F. J. (2021). Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients, 13(4), 1132. https://doi.org/10.3390/nu13041132