Age-Related Changes in Zinc, Copper and Selenium Levels in the Human Prostate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapoor, A. Benign Prostatic Hyperplasia (BPH) Management in the Primary Care Setting. Can. J. Urol. 2012, 19, 10–17. [Google Scholar] [PubMed]
- Farashi, S.; Kryza, T.; Clements, J.; Batra, J. Post-GWAS in Prostate Cancer: From Genetic Association to Biological Contribution. Nat. Rev. Cancer 2019, 19, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Stovall, D.B.; Wang, W.; Sui, G. Advances of Zinc Signaling Studies in Prostate Cancer. J. Mol. Sci. 2020, 21, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madersbacher, S.; Sampson, N.; Culig, Z. Pathophysiology of Benign Prostatic Hyperplasia and Benign Prostatic Enlargement: A Mini-Review. Gerontology 2019, 65, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Platz, E.A.; Helzlsouer, K.J. Selenium, Zinc and Prostate Cancer. Epidemiol. Rev. 2001, 23, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laczko, I.; Hudson, D.L.; Freeman, A.; Feneley, M.R.; Masters, J.R. Comparison of the Zones of the Human Prostate with the Seminal Vesicle: Morphology, Immunohistochemistry, and Cell Kinetics. Prostate 2005, 62, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Franklin, R.B. The Intermediary Metabolism of the Prostate: A Key to Understanding the Pathogenesis and Progression of Prostate Malignancy. Oncology 2000, 59, 269–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, L.C.; Franklin, R.B. The Clinical Relevance of the Metabolism of Prostate Cancer; Zinc and Tumor Suppression: Connecting the Dots. Mol. Cancer 2006, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sztalmachova, M.; Hlavna, M.; Gumulec, J.; Holubova, M.; Babula, P.; Balvan, J.; Sochor, J.; Tanhauserova, V.; Raudenska, M.; Krizkova, S.; et al. Effect of Zinc(II) Ions on the Expression of Pro- and Anti-Apoptotic Factors in High-Grade Prostate Carcinoma Cells. Oncol. Rep. 2012, 28, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, L.C.; Franklin, R.B. Zinc is Decreased in Prostate Cancer: An Established Relationship of Prostate Cancer! J. Biol. Inorg. Chem. 2011, 16, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Franklin, R.B. A Comprehensive Review of the Role of Zinc in Normal Prostate Function and Metabolism; and its Implications in Prostate Cancer. Arch. Biochem. Biophys. 2016, 611, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Sapota, A.; Daragó, A.; Taczalski, J.; Kilanowicz, A. Disturbed Homeostasis of Zinc and other Essential Elements in the Prostate Gland Dependent on the Character of Pathological Lesions. Biometals 2009, 22, 1041–1049. [Google Scholar] [CrossRef]
- Wakwe, V.C.; Odum, E.P.; Amadi, C. The Impact of Plasma Zinc Status on the Severity of Prostate Cancer Disease. Investig. Clin. Urol. 2019, 60, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Christudoss, P.; Selvakumar, R.; Fleming, J.J.; Gopalakrishnan, G. Zinc Status of Patients with Benign Prostatic Hyperplasia and Prostate Carcinoma. Indian J. Urol. 2011, 27, 14–18. [Google Scholar] [CrossRef]
- Kaba, M.; Pirincci, N.; Yuksel, M.B.; Gecit, I.; Gunes, M.; Ozveren, H.; Eren, H.; Demir, H. Serum Levels of Trace Elements in Patients with Prostate Cancer. Asian Pac. J. Cancer Prev. 2014, 15, 2625–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyema-iloh, B.O.; Meludu, S.C.; Iloh, E.; Nnodim, J.; Onyegbule, O.; Mykembata, B. Biochemical Changes in Some Trace Elements, Antioxidant Vitamins and their Therapeutic Importance in Prostate Cancer Patients. Asian J. Med. Sci. 2015, 6, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wu, L.; Wu, Y.; Zhu, J. Content Change of Zinc and Cadmium in Serum of Patients with Prostate Cancer and its Clinical Significance. J. Clin. Urol. 2015, 30, 439–441. [Google Scholar]
- Białkowska, K.; Marciniak, W.; Muszyńska, M.; Baszuk, P.; Gupta, S.; Jaworska-Bieniek, K.; Sukiennicki, G.; Durda, K.; Gromowski, T.; Lener, M.; et al. Association of Zinc Level and Polymorphism in MMP-7 Gene with Prostate Cancer in Polish Population. PLoS ONE 2018, 13, e0201065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, D.; Johnes, A.; Fragmann, C. The Content of Serum Zinc Concentration in Prostate Disease. Int. J. Surg. 1977, 4, 225–227. [Google Scholar]
- Park, S.Y.; Wilkens, L.R.; Morris, J.S.; Henderson, B.E.; Kolonel, L.N. Serum Zinc and Prostate Cancer Risk in a Nested Case-Control Study: The Multiethnic Cohort. Prostate 2013, 73, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Sharma, K.; Sharma, V.P. Serum and Tissue Levels of Zinc, Copper, Magnesium and Retinol in Prostatic Neoplasms. Indian J. Clin. Biochem. 1994, 9, 106–108. [Google Scholar] [CrossRef]
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of Copper in Humans. Am. J. Clin. Nutr. 1998, 67, 952S–959S. [Google Scholar] [CrossRef]
- Majumder, S.; Chatterjee, S.; Pal, S.; Biswas, J.; Efferth, T.; Choudhuri, S.K. The Role of Copper in Drug-Resistant Murine and Human Tumors. Biometals 2009, 22, 377–384. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, D.; Liu, C.; Liu, G. Serum Selenium Levels and Prostate Cancer Risk: A MOOSE-Compliant Meta-Analysis. Medicine 2017, 96, e5944. [Google Scholar] [CrossRef] [PubMed]
- Heaton, J.P.W. Hormone Treatments and Preventive Strategies in the Aging Male: Whom and When to Treat? Rev. Urol. 2003, 5 (Suppl. 1), S16–S21. [Google Scholar] [PubMed]
- Danch, A.; Drozdz, M. A Simplified Technique of Fluorometric Selenium Assay in Biological Material. Diagn. Lab. 1996, 32, 529–534. [Google Scholar]
- Costello, L.C.; Franklin, R.B. Zinc: The Wonder Drug for the Treatment of Carcinomas. Acta Sci. Cancer Biol. 2020, 4, 33–39. [Google Scholar] [CrossRef]
- Costello, L.C.; Franklin, R.B. Novel Role of Zinc in the Regulation of Prostate Citrate Metabolism and its Implications in Prostate Cancer. Prostate 1998, 35, 285–296. [Google Scholar] [CrossRef]
- Györkey, F.; Min, K.W.; Huff, J.A.; Györkey, P. Zinc and Magnesium in Human Prostate Gland: Normal, Hyperplastic, and Neoplastic. Cancer Res. 1967, 27, 1348–1353. [Google Scholar] [PubMed]
- Leitão, R.G.; Anjos, M.J.; Canellas, C.G.L.; Pereira, M.O.; Pereira, G.R.; Correia, R.C.; Palumbo, A., Jr.; Souza, P.A.V.R.; Ferreira, L.C.; Nasciutti, L.E.; et al. The Zinc Distribution in Prostate Tissues Using X-ray Microfluorescence with Synchrotron Radiation. In Proceedings of the International Nuclear Atomic Conference, Rio de Janeiro, Brazil, 27 September–2 October 2009. [Google Scholar]
- Zaichick, V.; Zaichick, S. Age-Related Histological and Zinc Content Changes in Adult Nonhyperplastic Prostate Glands. Age 2014, 36, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Gumulec, J.; Masarik, M.; Adam, V.; Eckschlager, T.; Provaznik, I.; Kizek, R. Serum and Tissue Zinc in Epithelial Malignancies: A Meta-Analysis. PLoS ONE 2014, 9, e99790. [Google Scholar] [CrossRef] [PubMed]
- Sauer, A.K.; Vela, H.; Guillermo, V.; Stark, P.; Barrera-Juarez, E.; Grabrucker, A.M. Zinc Deficiency in Men over 50 and Its Implications in Prostate Disorders. Front. Oncol. 2020, 10, 1293. [Google Scholar] [CrossRef]
- Zaichick, V.; Zaichick, S.; Davydov, G. Differences Between Chemical Element Contents in Hyperplastic and Nonhyperplastic Prostate Glands Investigated by Neutron Activation Analysis. Biol. Trace Elem. Res. 2015, 164, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Carson, C., III; Rittmaster, R. The Role of Dihydrotestosterone in Benign Prostatic Hyperplasia. Urology 2003, 61, 2–7. [Google Scholar] [CrossRef]
- Leake, A.; Chisholm, G.D.; Habib, F.K. The Effect of Zinc on the 5 Alpha-Reduction of Testosterone by the Hyperplastic Human Prostate Gland. J. Steroid Biochem. 1984, 20, 651–655. [Google Scholar] [CrossRef]
- Zaichick, V. The Variation with Age of 67 Macro- and Microelement Contents in Nonhyperplastic Prostate Glands of Adult and Elderly Males Investigated by Nuclear Analytical and Related Methods. Biol. Trace Elem. Res. 2015, 168, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Zaichick, V.; Nosenko, S.; Moskvina, I. The Effect of Age on 12 Chemical Element Contents in the Intact Prostate of Adult Men Investigated by Inductively Coupled Plasma Atomic Emission Spectrometry. Biol. Trace Elem. Res. 2012, 147, 49–58. [Google Scholar] [CrossRef]
- Zaichick, V.; Zaichick, S. Distinguishing Malignant from Benign Prostate Using Content of 17 Chemical Elements in Prostatic Tissue. Integr. Cancer Sci. Ther. 2016, 3, 579–587. [Google Scholar] [CrossRef]
- Denoyer, D.; Clatworthy, S.A.S.; Masaldan, S.; Meggyesy, P.M.; Cater, M.A. Heterogeneous Copper Concentrations in Cancerous Human Prostate Tissues. Prostate 2015, 75, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Denoyer, D.; Pearson, H.B.; Clatworthy, S.A.S.; Smith, Z.M.; Francis, P.S.; Llanos, R.M.; Volitakis, I.; Phillips, W.A.; Masaldan, S.; Meggyesy, P.M.; et al. Copper as a Target for Prostate Cancer Therapeutics: Copper-Ionophore Pharmacology and Altering Systemic Copper Distribution. Oncotarget 2016, 7, 37064–37080. [Google Scholar] [CrossRef] [Green Version]
- Safi, R.; Nelson, E.R.; Chitneni, S.K.; Franz, K.J.; George, D.J.; Zalutsky, M.R.; McDonnell, D.P. Copper Signaling Axis as a Target for Prostate Cancer Therapeutics. Cancer Res. 2014, 74, 5819–5831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, M.J. Selenium and Prostate Cancer Prevention: What Next-if Anything? Cancer Prev. Res. 2014, 7, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, A.; Kaya, Y.; Tanriverdi, O. Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association with Cancer Prevention. J. Cancer Prev. 2019, 24, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Zaichick, S.; Zaichick, V. Trace Elements of Normal, Benign Hypertrophic and Cancerous Tissues of the Human Prostate Gland Investigated by Neutron Activation Analysis. Appl. Radiat. Isot. 2012, 70, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Zaichick, V.; Zaichick, S. Comparison of 66 Chemical Element Contents in Normal and Benign Hyperplastic Prostate. Asian J. Urol. 2019, 6, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Nyman, D.W.; Stratton, M.S.; Kopplin, K.J.; Dalkin, B.L.; Nagle, R.B.; Gandolfi, A.J. Selenium and Selenomethionine Levels in Prostate Cancer Patients. Cancer Detect. Prev. 2004, 28, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Zachara, B.A.; Szewczyk-Golec, K.; Wolski, Z.; Tyloch, J.; Bloch-Bogusławska, E.; Wąsowicz, W. Selenium Level in Benign and Cancerous Prostate. Biol. Trace Elem. Res. 2005, 103, 199–206. [Google Scholar] [CrossRef]
Group | N | Age | |
---|---|---|---|
Mean ± SD [years] | Range [years] | ||
Control Group 1 (age ≤ 35) | 20 | 26.8 ± 5.2 | 20–35 |
Control Group 2 (age ≥ 36) | 108 | 56.6 ± 8.5 | 40–78 |
BPH | 11 | 68.0 ± 7.5 | 59–82 |
PCa | 8 | 72.1 ± 9.0 | 60–83 |
Control Group 1 (Age ≤ 35) | Control Group 2 (Age ≥ 36) | BPH | PCa | |
---|---|---|---|---|
N | 20 | 108 | 11 | 8 |
Zn | ||||
Central Part | 84.59 ± 23.68 | 240.01 ± 69.02 a | 350.59 ± 61.64 ab | 231.43 ± 61.88 ac |
Peripheral Part | 114.44 ± 37.97 | 117.20 ± 29.97 d | 87.95 ± 20.13 d | 28.76 ± 9.57 abcd |
Central/Peripheral Ratio | 0.79 ± 0.24 | 2.12 ± 0.63 a | 4.10 ± 0.78 ab | 8.49 ± 2.30 abc |
Cu | ||||
Central Part | 1.08 ± 0.14 | 1.19 ± 0.14 | 1.52 ± 0.08 ab | 1.40 ± 0.08 abc |
Peripheral Part | 1.02 ± 0.14 | 1.03 ± 0.11 | 0.72 ± 0.08 abd | 0.45 ± 0.09 abcd |
Central/Peripheral Ratio | 1.07 ± 0.07 | 1.16 ± 0.14 | 2.12 ± 0.23 ab | 3.21 ± 0.76 abc |
Se | ||||
Central Part | 0.18 ± 0.05 | 0.19 ± 0.06 | 0.27 ± 0.04 a | 0.23 ± 0.02 |
Peripheral Part | 0.15 ± 0.04 | 0.13 ± 0.06 | 0.10 ± 0.02 d | 0.16 ± 0.02 cd |
Central/Peripheral Ratio | 1.15 ± 0.18 | 1.56 ± 0.40 | 2.68 ± 0.64 ab | 1.46 ± 0.26 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daragó, A.; Klimczak, M.; Stragierowicz, J.; Jobczyk, M.; Kilanowicz, A. Age-Related Changes in Zinc, Copper and Selenium Levels in the Human Prostate. Nutrients 2021, 13, 1403. https://doi.org/10.3390/nu13051403
Daragó A, Klimczak M, Stragierowicz J, Jobczyk M, Kilanowicz A. Age-Related Changes in Zinc, Copper and Selenium Levels in the Human Prostate. Nutrients. 2021; 13(5):1403. https://doi.org/10.3390/nu13051403
Chicago/Turabian StyleDaragó, Adam, Michał Klimczak, Joanna Stragierowicz, Mateusz Jobczyk, and Anna Kilanowicz. 2021. "Age-Related Changes in Zinc, Copper and Selenium Levels in the Human Prostate" Nutrients 13, no. 5: 1403. https://doi.org/10.3390/nu13051403
APA StyleDaragó, A., Klimczak, M., Stragierowicz, J., Jobczyk, M., & Kilanowicz, A. (2021). Age-Related Changes in Zinc, Copper and Selenium Levels in the Human Prostate. Nutrients, 13(5), 1403. https://doi.org/10.3390/nu13051403