Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats’ Serum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micro- and Nanoparticles of Zinc
2.2. Animals
- CON—control group,
- ZnM—group receiving zinc in the form of microparticles (342 nm),
- ZnN—group receiving zinc in the form of nanoparticles (99 nm).
2.3. Preparation of Serum
2.4. Determination of Fatty Acids Methyl Esters in Serum
2.5. Estimation of Desaturases Activity
2.6. Determination of Squalene, Total Cholesterol and Oxysterols Content
2.7. Statistical Analysis
3. Results
3.1. Body and Internal Organs Weight in Rats
3.2. The Occurrence of Tumors
3.3. Fatty Acids Content in Rats’ Serum
3.4. Desaturases (D6D and D5D) Activity Indices
3.5. Determination of Cholesterol and Oxysterols
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ebbesson, S.O.E.; Lopez-Alvarenga, J.C.; Okin, P.M.; Devereux, R.B.; Tejero, M.E. Heart rate is associated with markers of fatty acid desaturation: The GOCODAN study. Int. J. Circumpolar Health 2012, 71, 17343. [Google Scholar] [CrossRef] [PubMed]
- Behrouzian, B.; Baist, P.H. Mechanism of fatty acid desaturation: A bioorganic perspective. Prostag. Leukotr. Ess. 2003, 68, 107–112. [Google Scholar] [CrossRef]
- Wadhwani, N.S.; Manglekar, R.R.; Dangat, K.D.; Kulkarni, A.V.; Joshi, S.R. Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats. Prostag. Leukotr. Ess. 2012, 86, 21–27. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty Acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advance. Nutrients 2016, 8, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunnane, S.C. Evidence that adverse effects of zinc deficiency on essential fatty acid composition in rats are independent of food intake. Br. J. Nutr. 1988, 59, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Saito, E.; Okada, T.; Abe, Y.; Odaka, M.; Kuromori, Y.; Iwata, F.; Hara, M.; Mugishima, H.; Kitamura, Y. Relationship between estimated fatty acid desaturase activities and abdominal adiposity in Japanese children. Obes. Res. Clin. Pract. 2014, 8, e266–e270. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Qu, X.; Wan, J.-B.; Rong, R.; Huang, L.; Cai, C.; Zhou, K.; Gu, Y.; Qian, S.Y.; Kang, J.X. Inhibiting delta-6 desaturase activity suppresses tumor growth in mice. PLoS ONE 2012, 7, e47567. [Google Scholar] [CrossRef]
- Stawarska, A.; Białek, A.; Stanimirova, I.; Stawarski, T.; Tokarz, A. The efect of conjugated linoleic acids (CLA) supplementation on the activity of enzymes participating in the formation of arachidonic acid in liver microsomes of rats—Probable mechanism of CLA anticancer activity. Nutr. Cancer 2015, 67, 145–155. [Google Scholar] [CrossRef]
- Reed, S.; Qin, X.; Ran-Ressler, R.; Brenna, J.T.; Glahn, R.P.; Tako, E. Dietary zinc deficiency affects blood linoleic acid: Dihomo-γ-linolenic acid (la:dgla) ratio; a sensitive physiological marker of zinc status in vivo (gallus gallus). Nutrients 2014, 6, 1164–1180. [Google Scholar] [CrossRef]
- Gaither, L.A.; Eide, D.J. Eukaryotic zinc transporters and their regulation. Biometals 2001, 14, 251–270. [Google Scholar] [CrossRef] [PubMed]
- Sharif, R.; Thomas, P.; Zalewski, P.; Fenech, M. The role of zinc in genomic stability. Mutat. Res. 2012, 733, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Chimhashu, T.; Malan, L.; Baumgartner, J.; van Jaarsveld, P.J.; Galetti, V.; Moretti, D.; Smuts, C.M.; Zimmermann, M.B. Sensitivity of fatty acid desaturation and elongation to plasma zinc concentration: A randomised controlled trial in Beninese children. Br. J. Nutr. 2018, 119, 610–619. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef] [PubMed]
- Kudo, N.; Nakagawa, Y.; Waku, K. Effects of zinc deficiency on the fatty acid composition and metabolism in rats fed a fat-free diet. Biol. Trace Elem. Res. 1990, 24, 49–60. [Google Scholar] [CrossRef]
- Bisht, G.; Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine 2016, 3, 9. [Google Scholar] [CrossRef]
- Alkaladi, A.; Abdelazim, A.M.; Afifi, M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2014, 15, 2015–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.; Loc, W.S.; Dong, C.; Matters, G.L.; Butler, P.J.; Kester, M.; Meyers, C.; Jiang, Y.; Adair, J.H. The use of nanoparticulates to treat breast cancer. Nanomedicine 2017, 12, 2367–2388. [Google Scholar] [CrossRef]
- Krol, A.; Pomastowski, P.; Rafinska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52. [Google Scholar] [CrossRef]
- Skrajnowska, D.; Bobrowska-Korczak, B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 2019, 11, 2273. [Google Scholar] [CrossRef] [Green Version]
- Zmysłowski, A.; Szterk, A. Oxysterols as a biomarker in diseases. Clin. Chim. Acta 2019, 491, 103–113. [Google Scholar] [CrossRef]
- Zerbinati, C.; Iuliano, L. Cholesterol and related sterols autoxidation. Free Radic. Biol. Med. 2017, 111, 151–155. [Google Scholar]
- Poli, G.; Biasi, F.; Leonarduzzi, G. Oxysterols in thepathogenesis of major chronic diseases. Redox Biol. 2013, 1, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobrowska-Korczak, B.; Gątarek, P.; Skrajnowska, D.; Bielecki, W.; Wyrębiak, R.; Kovalczuk, T.; Wrzesień, R.; Kałużna-Czaplińska, J. Effect of zinc supplementation on the serum metabolites profile at the early stage of breast cancer in rats. Nutrients 2020, 12, 3457. [Google Scholar] [CrossRef]
- Yun, J.M.; Surh, J. Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress. Prev. Nutr. Food Sci. 2012, 17, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarya, T.; Virtanena, J.K.; Ruusunenb, A.; Tuomainena, T.P.; Voutilainena, S. Serum zinc and risk of type 2 diabetes incidence in men: The kuopio ischaemic heart disease risk factor study. J. Trace Elem. Med. Biol. 2016, 33, 120–124. [Google Scholar] [CrossRef]
- Yary, T.; Voutilainen, S.; Tuomainen, T.P.; Ruusunen, A.; Nurmi, T.; Virtanen, J.K. Omega-6 polyunsaturated fatty acids, serum zinc, delta-5- and delta-6-desaturase activities and incydent metabolic syndrom. J. Hum. Nutr. Diet. 2016, 30, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, D.; Matthan, N.R.; Lamon-Fava, S.; Lecker, J.L.; Lichtenstein, A.H. Reduction in dietary omega-6 polyunsaturated fatty acids: Eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis 2009, 204, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamaria, N. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod. Nutr. Dev. 2004, 44, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Xu, Y.; Huang, C.C.; Ma, Y.; Shannon, K.B.; Chen, D.R.; Huang, Y.W. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J. Nanopart. Res. 2009, 11, 25–39. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2, 2121–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Fostera, M.; Petoczb, P.; Sammana, S. Effects of zinc on plasma lipoprotein cholesterol concentrations in humans: A meta-analysis of randomised controlled trials. Atherosclerosis 2010, 210, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Katya-Katya, M.; Ensminger, A.; Méjean, L.; Debry, G. The effect of zinc supplementation on plasma cholesterol levels. Nutr. Res. 1984, 4, 633–638. [Google Scholar] [CrossRef]
- Soto-Rodríguez, I.; Alexander-Aguilera, A.; Zamudio-Pérez, A.; Camara-Contreras, M.; Hernandez-Diaz, G.; Garcia, H.S. Alteration of Some Inflammatory Biomarkers by Dietary Oxysterols in Rats. Inflammation 2012, 35, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Orczewska-Dudek, S.; Bederska-Łojewska, D.; Pieszka, M.; Pietras, M.P. Cholesterol and lipid peroxides in animal products and health implications—A review. Ann. Anim. Sci. 2012, 12, 25–52. [Google Scholar] [CrossRef]
Composition of Labofeed H diet (per kg). | |||
Protein (g) | 210.0 | ||
Fat (g) | 39.2 | ||
Fiber (g) | 43.2 | ||
Starch (g) | 300.0 | ||
Ash (g) | 55.0 | ||
Vitamin A (IU) | 15,000 | Vitamin B6 (mg) | 17.0 |
Lysine (g) | 14.5 | Histidine (g) | 6.0 |
Vitamin D3 (IU) | 1000 | Vitamin B12 (µg) | 80.0 |
Methionine (g) | 4.1 | Arginine (g) | 13.0 |
Vitamin E (mg) | 90.0 | Pantothenate (mg) | 30.0 |
Tryptophan (g) | 3.0 | Phenylalanine (g) | 10.0 |
Vitamin K3 (mg) | 3.0 | Folic acid (mg) | 5.0 |
Threonine (g) | 7.4 | Tyrosine (g) | 7.8 |
Vitamin B1 (mg) | 21.0 | Nicotinic acid (mg) | 133.0 |
Isoleucine (g) | 17.5 | Choline (mg) | 2750.0 |
Vitamin B2 (mg) | 16.0 | Biotin (mg) | 0.4 |
Valine (g) | 11.0 | ||
Calcium (g) | 10.0 | Potassium (g) | 9.4 |
Iron (mg) | 250.0 | Cobalt (mg) | 2.0 |
Phosphorus total (g) | 8.17 | Sodium (g) | 2.2 |
Manganese (mg) | 100.0 | Iodine (mg) | 1.0 |
Phosphorus saturated (g) | 4.5 | Chlorine (g) | 2.5 |
Zinc (mg) | 76.9 | Selenium (mg) | 0.5 |
Magnesium (g) | 3.0 | Sulfur (g) | 1.9 |
Copper (mg) | 21.3 |
CON | ZnM | ZnN | p Value * | |
---|---|---|---|---|
Mass start [g] | 134.2 ± 13.8 a | 121.9 ± 8.6 a,b | 114.5 ± 6.4 b | 0.0028 |
Mass end [g] | 231.0 ± 13.8 | 230.1 ± 17.2 | 230.4 ± 10.2 | n.s. |
Mass increase [g] | 96.7 ± 10.3 a | 108.3 ± 12.5 a,b | 115.9 ± 9.7 b | 0.0075 |
Liver [g] | 6.8 ± 0.8 | 6.2 ± 0.3 | 6.2 ± 0.5 | n.s. |
Kidneys [g] | 1.6 ± 0.2 | 1.7 ± 0.1 | 1.8 ± 0.1 | n.s. |
Spleen [g] | 0.6 ± 0.1 | 0.6 ± 0.2 | 0.6 ± 0.1 | n.s. |
Heart [g] | 1.1 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | n.s. |
Group | Number of Tumors per Individual—Range | Tumor Incidence of Necropsy [%] | Tumor Weight Ranges [g] | Tumor Weight Mean [g] |
---|---|---|---|---|
CON | 2–9 | 100 | 0.01–7.80 | 0.89 ± 0.52 a |
ZnM | 1–6 | 100 | 0.06–7.41 | 0.68 ± 0.66 a,b |
ZnN | 0–3 | 88 | 0.01–1.79 | 0.40 ± 0.34 b |
Fatty Acid [μg/mL] | CON | ZnN | ZnM | p Value * |
---|---|---|---|---|
SFA | ||||
C10:0 | 10.19 ± 8.63 | 8.14 ± 5.51 | 4.04 ± 1.70 | n.s. |
C12:0 | 12.57 ± 8.52 | 10.17 ± 3.8 | 7.00 ± 1.74 | n.s. |
C14:0 | 24.64 ± 25.68 | 18.64 ± 6.36 | 15.48 ±3.53 | n.s. |
C15:0 | 13.58 ± 4.11 a | 10.12 ± 2.97 a,b | 9.15 ± 1.60 b | 0.022 |
C16:0 | 616.7 ± 285.6 | 543.1 ± 118.9 | 677.3 ± 145.6 | n.s. |
C17:0 | 16.55 ± 3.55 a | 13.04 ± 1.88 b | 16.01 ± 1.86 a,b | 0.026 |
C18:0 | 359.1 ± 66.9 a | 393.1 ± 85.4 a | 510.22 ± 76.5 b | 0.002 |
∑ SFA | 1123 ± 393 | 1051 ± 134 | 1271 ± 110 | n.s. |
MUFA | ||||
C16:1 n-9 | 9.83 ± 3.10 | 9.18 ± 3.64 | 7.11 ± 1.18 | n.s. |
C16:1 n-7 | 60.33 ± 13.61 a | 45.63 ± 30.97 a,b | 25.60 ± 3.89 b | 0.007 |
C18:1 n-9 OL | 229.5 ± 116.6 | 196.5 ± 50.5 | 243.5 ± 32.5 | n.s. |
C18:1 n-7 | 33.90 ± 10.94 | 32.29 ± 5.74 | 40.77 ± 5.25 a | n.s. |
∑ MUFA | 333.6 ± 140.0 | 283.6 ± 86.5 | 317.0 ± 37.4 | n.s. |
PUFA | ||||
C18:2 n-6 LA | 588.3 ± 20.5 | 578.0 ± 154.5 | 632.4 ± 72.5 | n.s. |
C18:3 n-6 GLA | 18.55 ± 5.07 a | 18.62 ± 9.33 a | 10.18 ± 2.33 b | 0.019 |
C18:3 n-3 ALA | 46.69 ± 15.30 a | 36.92 ± 17.98 a,b | 27.13 ± 3.04 b | 0.032 |
C20:3 n-6 DGLA | 6.30 ± 3.28 | 5.72 ± 1.07 | 7.53 ± 1.65 | n.s. |
C20:4 n-6 AA | 878.7 ± 166.9 | 859.8 ± 156.0 | 820.9 ± 125.7 | n.s. |
C20:5 n-3 EPA | 54.67 ± 24.89 a | 32.59 ± 12.05 b | 20.05 ± 6.02 b | 0.001 |
C22:5 n-6 DPA | 16.06 ± 7.72 | 15.13 ± 5.58 | 14.15 ± 4.71 | n.s. |
C22:6 n-3 DHA | 170.2 ± 44.6 | 139.5 ± 34.3 | 138.1 ± 27.7 | n.s. |
∑ PUFA | 1779 ± 416 | 1686 ± 336 | 1670 ± 185 | n.s. |
n-3 | 271.6 ± 68.2 a | 209.0 ± 59.1 a,b | 185.2 ± 27.48 b | 0.013 |
n-6 | 1507 ± 360 | 1477 ± 288 | 1485 ± 137 | n.s. |
Control | ZnN | ZnM | p Value * | |
---|---|---|---|---|
SFA [%] | 32.87 ± 2.06 b | 34.00 ± 3.50 b | 38.41 ± 1.87 a | <0.001 |
MUFA [%] | 10.32 ± 1.31 | 9.41 ± 1.53 | 9.83 ± 0.91 | n.s. |
PUFA [%] | 56.81 ± 3.14 a | 56.60 ± 2.90 a | 51.76 ± 2.00 | 0.001 |
n-6/n-3 PUFA | 5.64 ± 0.90 b | 7.34 ± 1.21 a | 8.16 ± 1.28 a | <0.001 |
(MUFA + PUFA)/SFA | 1.92 ± 0.15 a | 1.87 ± 0.24 a | 1.57 ± 0.12 b | 0.002 |
PUFA/SFA | 1.62 ± 0.16 a | 1.60 ± 0.21 a | 1.32 ± 0.11 b | 0.002 |
PI | 194.2 ± 16.5 a | 186.9 ± 13.1 a | 165.0 ± 11.2 b | 0.001 |
[μg/mL] | CON | ZnN | ZnM | p Value * |
---|---|---|---|---|
Squalene | 19.79 ± 12.39 | 11.78 ± 3.02 | 18.95 ± 16.80 | n.s. |
Cholesterol | 2006 ± 1091 a | 979 ± 115 b | 1573 ± 525 a,b | 0.027 |
7K-Ch | 5.12 ± 2.60 a | 2.64 ± 0.79 b | 3.70 ± 1.64 a,b | 0.042 |
7α-OH-Ch | 1.81 ± 1.00 a | 0.77 ± 0.17 b | 1.18 ± 0.43 a,b | 0.013 |
7β-OH-Ch | 4.69 ± 2.25 a | 2.04 ± 0.32 b | 2.87 ± 1.00 b | 0.004 |
5,6βE-Ch | 5.84 ± 3.03 a | 2.70 ± 0.63 b | 4.20 ± 1.44 a,b | 0.016 |
∑ COPs | 17.45 ± 8.53 a | 8.15 ± 1.51 b | 11.95 ± 4.37 a,b | 0.011 |
COPs/Ch [%] | 0.94 ± 0.33 | 0.83 ± 0.10 | 0.75 ± 0.06 | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stawarska, A.; Czerwonka, M.; Wyrębiak, R.; Wrzesień, R.; Bobrowska-Korczak, B. Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats’ Serum. Nutrients 2021, 13, 1563. https://doi.org/10.3390/nu13051563
Stawarska A, Czerwonka M, Wyrębiak R, Wrzesień R, Bobrowska-Korczak B. Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats’ Serum. Nutrients. 2021; 13(5):1563. https://doi.org/10.3390/nu13051563
Chicago/Turabian StyleStawarska, Agnieszka, Małgorzata Czerwonka, Rafał Wyrębiak, Robert Wrzesień, and Barbara Bobrowska-Korczak. 2021. "Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats’ Serum" Nutrients 13, no. 5: 1563. https://doi.org/10.3390/nu13051563
APA StyleStawarska, A., Czerwonka, M., Wyrębiak, R., Wrzesień, R., & Bobrowska-Korczak, B. (2021). Zinc Affects Cholesterol Oxidation Products and Fatty Acids Composition in Rats’ Serum. Nutrients, 13(5), 1563. https://doi.org/10.3390/nu13051563