Emergent Drug and Nutrition Interactions in COVID-19: A Comprehensive Narrative Review
Abstract
:1. Introduction
2. COVID-19 Treatment
2.1. Anti-Viral Drugs
2.1.1. Hydroxychloroquine/Chloroquine
2.1.2. Mechanism of Action
2.1.3. Pharmacokinetics and Pharmacodynamics
2.1.4. Adverse Effects and Nutrition Interactions
2.1.5. Favipiravir
2.1.6. Mechanism of Action
2.1.7. Pharmacokinetics and Pharmacodynamics
2.1.8. Adverse Effects and Nutrition Interactions
2.1.9. Remdesivir
2.1.10. Mechanism of Action
2.1.11. Pharmacokinetics and Pharmacodynamics
2.1.12. Adverse Effects and Nutrition Interactions
2.1.13. Lopinavir-Ritonavir
2.1.14. Mechanism of Action
2.1.15. Pharmacokinetics and Pharmacodynamics
2.1.16. Adverse Effects and Nutrition Interactions
2.1.17. Umifenovir
2.1.18. Mechanism of Action
2.1.19. Pharmacokinetics and Pharmacodynamics
2.1.20. Adverse Effects and Nutrition Interactions
2.1.21. Oseltamivir
2.1.22. Mechanism of Action
2.1.23. Pharmacokinetics and Pharmacodynamics
2.1.24. Adverse Effects and Nutrition Interactions
2.1.25. Ribavirin
2.1.26. Mechanism of Action
2.1.27. Pharmacokinetics and Pharmacodynamics
2.1.28. Adverse Effects and Nutrition Interactions
2.1.29. Nitazoxanide
2.1.30. Mechanism of Action
2.1.31. Pharmacokinetics and Pharmacodynamics
2.1.32. Adverse Effects and Nutrition Interactions
2.2. Anti-Inflammatory Agents
2.2.1. Ibuprofen
2.2.2. Mechanism of Action
2.2.3. Pharmacokinetics and Pharmacodynamics
2.2.4. Adverse Effects and Nutrition Interactions
2.2.5. Indomethacin
2.2.6. Mechanism of Action
2.2.7. Pharmacokinetics and Pharmacodynamics
2.2.8. Adverse Effects and Nutrition Interactions
2.3. Interleukin Inhibitors
2.3.1. Tocilizumab
2.3.2. Mechanism of Action
2.3.3. Pharmacokinetics and Pharmacodynamics
2.3.4. Adverse Effects and Nutrition Interactions
2.3.5. Anakinra
2.3.6. Mechanism of Action
2.3.7. Pharmacokinetics and Pharmacodynamics
2.3.8. Adverse Effects and Nutrition Interactions
2.4. Additional Treatments
2.4.1. Azithromycin
2.4.2. Mechanism of Action
2.4.3. Pharmacokinetics and Pharmacodynamics
2.4.4. Adverse Effects and Nutrition Interactions
2.4.5. Corticosteroids (Methylprednisolone)
2.4.6. Mechanism of Action
2.4.7. Pharmacokinetics and Pharmacodynamics
2.4.8. Adverse Effects and Nutrition Interactions
2.4.9. Convalescent Plasma Therapy
2.4.10. Vitamins and Minerals
2.4.11. Vitamin D
2.4.12. Vitamin C
2.4.13. Zinc (Zn)
2.4.14. Selenium (Se)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- T.C.Sağlık Bakanlığı. Covid-19 Bilgilendirme Sayfası. Available online: https://covid19.saglik.gov.tr/ (accessed on 2 January 2021).
- World Health Organization. Coronavirus Disease (COVID-19) Dashboard; World Health Organization: Geneva, Switzerland, 2021; Available online: https://covid19.who.int (accessed on 2 January 2021).
- World Health Organization. SARS-CoV-2 Variants; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/csr/don/31-december-2020-sars-cov2-variants/en/ (accessed on 13 April 2021).
- Stasi, C.; Fallani, S.; Voller, F.; Silvestri, C. Treatment for COVID-19: An overview. Eur. J. Pharmacol. 2020, 889, 173644. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.S.; Hsueh, P.R. Old and re-purposed drugs for the treatment of COVID-19. Expert Rev. Anti. Infect. Ther. 2020, 18, 843–847. [Google Scholar] [CrossRef]
- Xu, X.; Ong, Y.K.; Wang, D.Y. Role of adjunctive treatment strategies in COVID-19 and a review of international and national clinical guidelines. Mil. Med. Res. 2020, 7, 22. [Google Scholar] [CrossRef]
- Rabby, M.I.I. Current drugs with potential for treatment of COVID-19: A literature review. J. Pharm. Pharm. Sci. 2020, 23, 58–64. [Google Scholar] [CrossRef]
- Wang, T.; Du, Z.; Zhu, F.; Cao, Z.; An, Y.; Gao, Y.; Jiang, B. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet 2020, 395, e52. [Google Scholar] [CrossRef]
- Bull-Otterson, L.; Gray, E.B.; Budnitz, D.S.; Strosnider, H.M.; Schieber, L.Z.; Courtney, J.; García, M.C.; Brooks, J.T.; Mac Kenzie, W.R.; Gundlapalli, A.V. Hydroxychloroquine and Chloroquine Prescribing Patterns by Provider Specialty Following Initial Reports of Potential Benefit for COVID-19 Treatment—United States, January–June 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 1210–1215. [Google Scholar] [CrossRef]
- Surmelioglu, N.; Demirkan, K. COVID-19 drug interactions. J. Crit. Care 2020, 11, 43. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M.; Yin, L.; Wang, K.; Zhou, Y.; Zhou, M.; Lu, Y. COVID-19 treatment: Close to a cure?–A rapid review of pharmacotherapies for the novel coronavirus. Int. J. Antimicrob. Agents 2020, 56, 106080. [Google Scholar] [CrossRef]
- Becker, R.C. Covid-19 treatment update: Follow the scientific evidence. J. Thromb. Thrombolysis 2020. [Google Scholar] [CrossRef] [Green Version]
- Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Noor, S.; Tippairote, T.; Dadar, M.; Menzel, A.; Bjørklund, G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin. Immunol. 2020, 215, 108409. [Google Scholar] [CrossRef]
- İnkaya, A.Ç.; Taş, Z.; Akova, M. COVID-19’un Güncel Tedavisi. Yalçın Ş Özet A, editörler. Kanser ve COVID-19 Pandemisi. 2020, 1, 27–37. [Google Scholar]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019, 11, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jean, S.S.; Lee, P.I.; Hsueh, P.R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect. 2020, 53, 436–443. [Google Scholar] [CrossRef]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 international online survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef] [PubMed]
- Aguila, E.J.T.; Cua, I.H.Y.; Fontanilla, J.A.C.; Yabut, V.L.M.; Causing, M.F.P. Gastrointestinal manifestations of COVID-19: Impact on nutrition practices. Nutr. Clin. Pract. 2020, 35, 800–805. [Google Scholar] [CrossRef]
- Dikmen, B.Y.; Yağız, P.; Dilekoz, E.; Summsak, G.Y.; Oguz, K.; Filazi, A. Covid-19 Farmakoterapisi. Vet. Farm. Toks Dern Bult. 2020, 11, 80–114. [Google Scholar] [CrossRef]
- Guo, Y.-Z.; Xu, K.-J.; Li, Y.-T.; Fu, J.-D.; Xu, M.; Yu, L.; Sheng, J.-F.; Zhu, B. Safety of protease inhibitors and Arbidol for SARS-CoV-2 pneumonia in Zhejiang Province, China. J. Zhejiang Univ. Sci. B 2020, 21, 948–954. [Google Scholar] [CrossRef]
- Ekici, H.; Yarsan, E. COVID-19 Tedavisinde Kullanılan Bazı İlaçlar ve Farmakolojik Değerlendirme. Eurasian J. Med. 2020, 3, 120–129. [Google Scholar]
- Lam, S.; Lombardi, A.; Ouanounou, A. COVID-19: A review of the proposed pharmacological treatments. Eur. J. Pharmacol. 2020, 886, 173451. [Google Scholar] [CrossRef] [PubMed]
- White, R.; Bradnam, V. Handbook of Drug Administration via Enteral Feeding Tubes; Pharmaceutical Press: London, UK, 2015. [Google Scholar]
- Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020, 323, 1824–1836. [Google Scholar] [CrossRef] [PubMed]
- Aygün, İ.; Kaya, M.; Alhajj, R. Identifying side effects of commonly used drugs in the treatment of Covid 19. Sci. Rep. 2020, 10, 21508. [Google Scholar] [CrossRef]
- Venkatasubbaiah, M.; Reddy, P.D.; Satyanarayana, S.V. Literature-based review of the drugs used for the treatment of COVID-19. Curr. Med. Res. Pract. 2020, 10, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Dai, S.M.; Tong, Q. COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J. Antimicrob. Chemother. 2020, 75, 1667–1670. [Google Scholar] [CrossRef]
- Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int. J. Antimicrob. Agents 2020, 55, 105938. [Google Scholar] [CrossRef]
- Sahu, K.K.; Mishra, A.K.; Raturi, M.; Lal, A. Current Perspectives of convalescent plasma therapy in COVID-19. Acta Bio. Med. Atenei Parmensis 2020, 91, e2020175. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.C.; Parola, P.; Meddeb, L.; Sevestre, J.; Mailhe, M.; Doudier, B.; Aubry, C.; Amrane, S.; Seng, P.; et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med. Infect. Dis. 2020, 34, 101663. [Google Scholar] [CrossRef]
- LexiComp Drug Information Handbook, 25th ed.; American Pharmaceutical Association: Washington, DC, USA, 2016.
- Morrisette, T.; Lodise, T.P.; Scheetz, M.H.; Goswami, S.; Pogue, J.M.; Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of hydroxychloroquine and dose selection for COVID-19: Putting the cart before the horse. Infect. Dis. Ther. 2020, 9, 561–572. [Google Scholar] [CrossRef]
- Browning, D.J. Pharmacology of chloroquine and hydroxychloroquine. In Hydroxychloroquine and Chloroquine Retinopathy, 1st ed.; Browning, D.J., Ed.; Springer Science and Business Media: New York, NY, USA, 2014; pp. 35–63. [Google Scholar]
- T.C.Sağlık Bakanlığı. COVID-19 (Sars-Cov2 Enfeksiyonu) Tedavisinde Kullanılacak İlaçlara İlişkin Bilgilendirme (Hidroksiklorokin Sülfat 200 mg Film Tablet). Available online: https://covid19.saglik.gov.tr/TR-66535/covid-19-sars-cov2-enfeksiyonu-tedavisinde-kullanilacak-ilaclara-iliskin-bilgilendirme-hidroksiklorokin-sulfat-200-mg-film-tablet.html (accessed on 2 January 2021).
- World health Organization; Weniger, H. Review of Side Effects and Toxicity of Chloroquine; World health Organization: Geneva, Switzerland, 1979. [Google Scholar]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2020, 102, 501–508. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005, 49, 981–986. [Google Scholar] [CrossRef] [Green Version]
- Madelain, V.; Nguyen, T.H.T.; Olivo, A.; De Lamballerie, X.; Guedj, J.; Taburet, A.M.; Mentré, F. Ebola virus infection: Review of the pharmacokinetic and pharmacodynamic properties of drugs considered for testing in human efficacy trials. Clin. Pharmacokinet. 2016, 55, 907–923. [Google Scholar] [CrossRef]
- Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India 2020, 76, 370–376. [Google Scholar] [CrossRef]
- T.C.Sağlık Bakanlığı. COVID-19 (SARS-CoV2 Enfeksiyonu) Tedavisinde Kullanılacak İlaçlara İlişkin Bilgilendirme (Favipiravir 200 mg Tablet). Available online: https://covid19.saglik.gov.tr/TR-66538/covid-19-sars-cov2-enfeksiyonu-tedavisinde-kullanilacak-ilaclara-iliskin-bilgilendirme-favipiravir-200-mg-tablet.html (accessed on 2 January 2021).
- Mishima, E.; Anzai, N.; Miyazaki, M.; Abe, T. Uric Acid Elevation by Favipiravir, an Antiviral Drug. Tohoku J. Exp. Med. 2020, 251, 87–90. [Google Scholar] [CrossRef]
- Mulangu, S.; Dodd, L.E.; Davey Jr, R.T.; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef] [PubMed]
- Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 2020, 104786. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018, 9, e00221-18. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.J.; Won, J.J.; Graham, R.L.; Dinnon, K.H., III; Sims, A.C.; Feng, J.Y.; Cihlar, T.; Denison, M.R.; Baric, R.S.; Sheahan, T.P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antivir. Res. 2019, 169, 104541. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.C.; Chen, M.Y.; Lee, W.S.; Chang, Y.L. Potential therapeutic agents against COVID-19: What we know so far. J. Chin. Med. Assoc. 2020, 83, 534–536. [Google Scholar] [CrossRef]
- Tempestilli, M.; Caputi, P.; Avataneo, V.; Notari, S.; Forini, O.; Scorzolini, L.; Marchioni, L.; Ascoli Bartoli, T.; Castilletti, C.; Lalle, E.; et al. Pharmacokinetics of remdesivir and GS-441524 in two critically ill patients who recovered from COVID-19. J. Antimicrob. Chemother. 2020, 75, 2977–2980. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, B.; Ma, J.; Zhang, S. Safety profile of the antiviral drug remdesivir: An update. Biomed. Pharmacother. 2020, 130, 110532. [Google Scholar] [CrossRef] [PubMed]
- Türkiye Ulusal Alerji ve Klinik İmmünoloji Derneği. COVID-19 Tedavisinde Kullanılan İlaçlara Gelişen İstenmeyen İlaç Reaksiyonları. Available online: https://www.aid.org.tr/covid-19-tedavisinde-kullanilan-ilaclara-gelisen-istenmeyen-ilac-reaksiyonlari/ (accessed on 2 January 2021).
- Chu, C.; Cheng, V.; Hung, I.; Wong, M.; Chan, K.; Chan, K.; Kao, R.; Poon, L.; Wong, C.; Guan, Y.; et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax 2004, 59, 252–256. [Google Scholar] [CrossRef] [Green Version]
- De Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; Van Nieuwkoop, S.; Bestebroer, T.M.; Van Den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother. 2014, 58, 4875–4884. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H.; et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.T.; Qian, J.D.; Zhu, W.Y.; Wang, Y.; Wang, G.Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J. Med. Virol. 2020, 92, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.; Lai, S.; Chu, C.; Tsui, E.; Tam, C.; Wong, M.; Tse, M.; Que, T.; Peiris, J.; Sung, J.; et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med. J. 2003, 9, 399–406. [Google Scholar]
- Agbowuro, A.A.; Huston, W.M.; Gamble, A.B.; Tyndall, J.D. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev. 2018, 38, 1295–1331. [Google Scholar] [CrossRef]
- Moltó, J.; Barbanoj, M.J.; Miranda, C.; Blanco, A.; Santos, J.R.; Negredo, E.; Costa, J.; Domingo, P.; Clotet, B.; Valle, M. Simultaneous population pharmacokinetic model for lopinavir and ritonavir in HIV-infected adults. Clin. Pharmacokinet. 2008, 47, 681–692. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
- Worm, S.W.; Sabin, C.; Weber, R.; Reiss, P.; El-Sadr, W.; Dabis, F.; De Wit, S.; Law, M.; Monforte, A.D.A.; Friis-Møller, N.; et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: The data collection on adverse events of anti-HIV drugs (D:A:D) study. J. Infect. Dis. 2010, 201, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovic, R.S.; Goa, K.L. Lopinavir/ritonavir: A review of its use in the management of HIV infection. Drugs 2003, 63, 769–802. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Khamitov, R.; Loginova, S.; Shchukina, V.; Borisevich, S.; Maksimov, V.; Shuster, A. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr. Virusol. 2008, 53, 9–13. [Google Scholar]
- Jomah, S.; Asdaq, S.M.B.; Al-Yamani, M.J. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J. Infect. Public Health 2020, 13, 1187–1195. [Google Scholar] [CrossRef]
- Kadam, R.U.; Wilson, I.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci. USA 2017, 114, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Blaising, J.; Polyak, S.J.; Pécheur, E.I. Arbidol as a broad-spectrum antiviral: An update. Antivir. Res. 2014, 107, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Glushkov, R.; Gus’ kova, T. Arbidol: A new domestic immunomodulant (a review). Pharm. Chem. J. 1999, 33, 115–122. [Google Scholar] [CrossRef]
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections—More than just the common cold. JAMA 2020, 323, 707–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, R.; Wang, L.; Kuo, H.C.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zeynep Tatlı, S.; Çakar, G.; Çolak, B.; Özel Kızıl, E.T. COVID-19 pandemisinde psikofarmakolojik tedavi. J. Clin. Psy. 2020, 23, 52–56. [Google Scholar]
- He, G.; Massarella, J.; Ward, P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64-0802. Clin. Pharmacokinet. 1999, 37, 471–484. [Google Scholar] [CrossRef]
- Dutkowski, R.; Thakrar, B.; Froehlich, E.; Suter, P.; Oo, C.; Ward, P. Safety and pharmacology of oseltamivir in clinical use. Drug Saf. 2003, 26, 787–801. [Google Scholar] [CrossRef]
- Smith, J.R.; Rayner, C.R.; Donner, B.; Wollenhaupt, M.; Klumpp, K.; Dutkowski, R. Oseltamivir in seasonal, pandemic, and avian influenza: A comprehensive review of 10-years clinical experience. Adv. Ther. 2011, 28, 927–959. [Google Scholar] [CrossRef] [Green Version]
- Stockman, L.J.; Bellamy, R.; Garner, P. SARS: Systematic review of treatment effects. PLoS Med. 2006, 3, e343. [Google Scholar] [CrossRef] [Green Version]
- Graci, J.D.; Cameron, C.E. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol. 2006, 16, 37–48. [Google Scholar] [CrossRef]
- Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 2020, 14, 72–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tod, M.; Farcy-Afif, M.; Stocco, J.; Boyer, N.; Bouton, V.; Sinegre, M.; Marcellin, P. Pharmacokinetic/pharmacodynamic and time-to-event models of ribavirin-induced anaemia in chronic hepatitis C. Clin. Pharmacokinet. 2005, 44, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, J.F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antivir. Res. 2014, 110, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, J.F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health 2016, 9, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu, O.; Uyfun, İ.; Erden, F. Koronavirüs Hastalığı (COVID-19) Tedavisinde Kullanılan İlaçlar. J. Health Sci. Kocaeli Univ. 2020, 6, 167–173. [Google Scholar] [CrossRef]
- Jasenosky, L.D.; Cadena, C.; Mire, C.E.; Borisevich, V.; Haridas, V.; Ranjbar, S.; Nambu, A.; Bavari, S.; Soloveva, V.; Sadukhan, S. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus. iScience 2019, 19, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Stockis, A.; Allemon, A.M.; De Bruyn, S.; Gengler, C. Nitazoxanide pharmacokinetics and tolerability in man using single ascending oral doses. Int. J. Clin. Pharmacol. Ther. 2002, 40, 213–220. [Google Scholar] [CrossRef]
- Broekhuysen, J.; Stockis, A.; Lins, R.; De Graeve, J.; Rossignol, J. Nitazoxanide: Pharmacokinetics and metabolism in man. Int. J. Clin. Pharmacol. Ther. 2000, 38, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Fox, L.M.; Saravolatz, L.D. Nitazoxanide: A new thiazolide antiparasitic agent. Clin. Infect. Dis. 2005, 40, 1173–1180. [Google Scholar] [CrossRef]
- Anderson, V.R.; Curran, M.P. Nitazoxanide. Drugs 2007, 67, 1947–1967. [Google Scholar] [CrossRef] [PubMed]
- Lucas, S. The pharmacology of indomethacin. Headache 2016, 56, 436–446. [Google Scholar] [CrossRef]
- Ehrenpreis, E.D.; Kruchko, D.H. Rapid Review: Nonsteroidal Anti-inflammatory Agents and Aminosalicylates in COVID-19 Infections. J. Clin. Gastroenterol. 2020, 54, 602–605. [Google Scholar] [CrossRef]
- Vonkeman, H.E.; van de Laar, M.A. Nonsteroidal anti-inflammatory drugs: Adverse effects and their prevention. Semin Arthritis Rheum. 2010, 39, 294–312. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N. An overview of clinical pharmacology of Ibuprofen. Oman Med. J. 2010, 25, 155–1661. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Sacerdote, P. Ibuprofen in the treatment of children’s inflammatory pain: A clinical and pharmacological overview. Minerva Pediatrics 2019, 71, 82–99. [Google Scholar] [CrossRef] [PubMed]
- Day, M. Covid-19: Ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ 2020, 368, m1086. [Google Scholar] [CrossRef] [Green Version]
- Smart, L.; Fawkes, N.; Goggin, P.; Pennick, G.; Rainsford, K.; Charlesworth, B.; Shah, N. A narrative review of the potential pharmacological influence and safety of ibuprofen on coronavirus disease 19 (COVID-19), ACE2, and the immune system: A dichotomy of expectation and reality. Inflammopharmacology 2020, 28, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, M.; Etminan, M. Safety of ibuprofen in patients with COVID-19: Causal or confounded? Chest 2020, 158, 55–56. [Google Scholar] [CrossRef]
- Davies, N.M. Clinical pharmacokinetics of ibuprofen. Clin. Pharmacokinet. 1998, 34, 101–154. [Google Scholar] [CrossRef] [PubMed]
- Albert, K.S.; Gernaat, C.M. Pharmacokinetics of ibuprofen. Am. J. Med. 1984, 77, 40–46. [Google Scholar] [CrossRef]
- Shin, D.; Lee, S.J.; Ha, Y.M.; Choi, Y.S.; Kim, J.W.; Park, S.R.; Park, M.K. Pharmacokinetic and pharmacodynamic evaluation according to absorption differences in three formulations of ibuprofen. Drug Des. Devel. Ther. 2017, 11, 135. [Google Scholar] [CrossRef] [Green Version]
- Mathias, C.B.; McAleer, J.P.; Szollosi, D.E. Inflammatory Diseases of the Gastrointestinal Tract and Pharmacological Treatments. In Pharmacology of Immunotherapeutic Drugs, 1st ed.; Mathias, C.B., McAleer, J.P., Szollosi, D.E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 175–205. [Google Scholar]
- Kondal, A.; Garg, S. Influence of acidic beverage (Coca-Cola) on pharmacokinetics of ibuprofen in healthy rabbits. Indian J. Exp. Biol. 2003, 41, 1322–1324. [Google Scholar] [PubMed]
- Garba, M.; Yakasai, I.; Bakare, M.; Munir, H. Effect of Tamarindus indica. L on the bioavailability of Ibuprofen in healthy human volunteers. Eur. J. Drug. Metab. Pharmacokinet. 2003, 28, 179–184. [Google Scholar] [CrossRef]
- Rainsford, K. Ibuprofen: Pharmacology, Therapeutics and Side Effects, 1st ed.; Springer: Basel, Switzerland, 2013; pp. 77–90. [Google Scholar]
- Beauchamp, G.K.; Keast, R.S.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.H.; Smith, A.B.; Breslin, P.A. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Nalamachu, S.; Wortmann, R. Role of indomethacin in acute pain and inflammation management: A review of the literature. Postgrad. Med. 2014, 126, 92–97. [Google Scholar] [CrossRef]
- Summ, O.; Evers, S. Mechanism of action of indomethacin in indomethacin-responsive headaches. Curr. Pain Headache Rep. 2013, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Blobaum, A.L.; Uddin, M.J.; Felts, A.S.; Crews, B.C.; Rouzer, C.A.; Marnett, L.J. The 2’-trifluoromethyl analogue of indomethacin is a potent and selective COX-2 inhibitor. ACS Med. Chem. Lett. 2013, 4, 486–490. [Google Scholar] [CrossRef]
- Maddirevula, S.; Abanemai, M.; Alkuraya, F.S. Human knockouts of PLA2G4A phenocopy NSAID-induced gastrointestinal and renal toxicity. Gut 2016, 65, 1575–1577. [Google Scholar] [CrossRef]
- Maity, P.; Bindu, S.; Dey, S.; Goyal, M.; Alam, A.; Pal, C.; Mitra, K.; Bandyopadhyay, U. Indomethacin, a non-steroidal anti-inflammatory drug, develops gastropathy by inducing reactive oxygen species-mediated mitochondrial pathology and associated apoptosis in gastric mucosa a novel role of mitochondrial aconitase oxidation. J. Biol. Chem. 2009, 284, 3058–3068. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Y.; Tung, Y.T.; Chen, S.Y.; Lee, Y.L.; Yen, G.C. Protective effects of camellia oil (Camellia brevistyla) against indomethacin-induced gastrointestinal mucosal damage in vitro and in vivo. J. Funct. Foods 2019, 62, 103539. [Google Scholar] [CrossRef]
- Adhikary, B.; Yadav, S.K.; Roy, K.; Bandyopadhyay, S.K.; Chattopadhyay, S. Black tea and theaflavins assist healing of indomethacin-induced gastric ulceration in mice by antioxidative action. Evid-Based Complement. Altern. Med. 2011, 2011, 546560. [Google Scholar] [CrossRef]
- Bilal, J.; Berlinberg, A.; Riaz, I.B.; Faridi, W.; Bhattacharjee, S.; Ortega, G.; Murad, M.H.; Wang, Z.; Prokop, L.J.; Alhifany, A.A. Risk of Infections and Cancer in Patients With Rheumatologic Diseases Receiving Interleukin Inhibitors: A Systematic Review and Meta-analysis. JAMA Netw. Open 2019, 2, e1913102. [Google Scholar] [CrossRef] [Green Version]
- T.C. Sağlık Bakanlığı. Antisitokin-Antiinflamatuar Tedaviler; Koagülopati Yönetimi: Ankara, Turkey, 2020. [Google Scholar]
- Oldfield, V.; Dhillon, S.; Plosker, G.L. Tocilizumab. Drugs 2009, 69, 609–632. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (actemra). Hum. Vaccines Immunother. 2017, 13, 1972–1988. [Google Scholar] [CrossRef] [Green Version]
- Firestein, G.S.; Budd, R.C.; Gabriel, S.E.; McInnes, I.B.; O’Dell, J.R. Kelley and Firestein’s Textbook of Rheumatology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; Volume 1. [Google Scholar]
- Maini, R.; Taylor, P.; Szechinski, J.; Pavelka, K.; Bröll, J.; Balint, G.; Emery, P.; Raemen, F.; Petersen, J.; Smolen, J. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheumatol. 2006, 54, 2817–2829. [Google Scholar] [CrossRef] [PubMed]
- Waugh, J.; Perry, C.M. Anakinra. BioDrugs 2005, 19, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Pile, K.; Graham, G.G.; Mahler, S.M. Interleukin-1 (IL-1) inhibitors: Anakinra, rilonacept, and canakinumab. In Compendium of Inflammatory Diseases; Parnham, M.J., Ed.; Springer: Basel, Switzerland, 2016; pp. 666–670. [Google Scholar]
- Cavalli, G.; Dinarello, C.A. Anakinra therapy for non-cancer inflammatory diseases. Front. Pharmacol. 2018, 9, 1157. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.B. The use of anakinra, an interleukin-1 receptor antagonist, in the treatment of rheumatoid arthritis. Rheum. Dis. Clin. N. Am. 2004, 30, 365–380. [Google Scholar] [CrossRef]
- Yang, B.B.; Baughman, S.; Sullivan, J.T. Pharmacokinetics of anakinra in subjects with different levels of renal function. Clin. Pharm. Therap. 2003, 74, 85–94. [Google Scholar] [CrossRef]
- Cecil, R.L.F.; Goldman, L.; Schafer, A.I. Goldman’s Cecil Medicine, Expert Consult. Premium Edition--Enhanced Online Features and Print, Single Volume, 24: Goldman’s Cecil Medicine; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012; Volume 1. [Google Scholar]
- Donath, M.Y. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat. Rev. Drug Discov. 2014, 13, 465–476. [Google Scholar] [CrossRef]
- Fantini, J.; Chahinian, H.; Yahi, N. Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int. J. Antimicrob. Agents 2020, 106020. [Google Scholar] [CrossRef]
- Gul, M.H.; Htun, Z.M.; Shaukat, N.; Imran, M.; Khan, A. Potential specific therapies in COVID-19. Ther. Adv. Respir. Dis. 2020, 14, 1753466620926853. [Google Scholar] [CrossRef]
- Peters, D.H.; Friedel, H.A.; McTavish, D. Azithromycin. Drugs 1992, 44, 750–799. [Google Scholar] [CrossRef]
- Størmer, F.; Reistad, R.; Alexander, J. Glycyrrhizic acid in liquorice—evaluation of health hazard. Food Chem. Toxicol. 1993, 31, 303–312. [Google Scholar] [CrossRef]
- Çorum, D.; Üney, K. Besin-İlaç Etkileşimleri. Dicle Üniv. Vet. Fak. Derg. 2017, 10, 38–55. [Google Scholar]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colomco, R.; Antinori, S.; Corbellino, M. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef]
- Shang, L.; Zhao, J.; Hu, Y.; Du, R.; Cao, B. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet 2020, 395, 683–684. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020, 395, 473–475. [Google Scholar] [CrossRef] [Green Version]
- Corral-Gudino, L.; Bahamonde, A.; Arnaiz-Revillas, F.; Gomez-Barquero, J.; Abadia-Otero, J.; Garcia-Ibardia, C.; Mora, V.; Cerezo-Hernandez, A.; Hernandez, J.L.; Lopez-Muniz, G. GLUCOCOVID: A controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. MedRxiv 2020. [Google Scholar] [CrossRef]
- Group, T.R.C. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N. Engl. J. Med. 2020, NEJMoa2021436. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Cevik, M.; Bamford, C.G.G.; Ho, A. COVID-19 pandemic–a focused review for clinicians. Clin. Microbiol. Infect. 2020, 26, 842–847. [Google Scholar] [CrossRef]
- Corral-Gudino, L.; Bahamonde, A.; Arnaiz-Revillas, F.; Gomez-Barquero, J.; Abadia-Otero, J.; Garcia-Ibardia, C.; Mora, V.; Cerezo-Hernandez, A.; Hernandez, J.L.; Loperz-Muniz, G.; et al. Methylprednisolone in adults hospitalized with COVID-19 pneumonia. Wien. Klin. Wochenschr. 2021, 1–9. [Google Scholar] [CrossRef]
- Dagens, A.; Sigfrid, L.; Cai, E.; Lipworth, S.; Cheng, V.; Harris, E.; Bannister, P.; Rigby, I.; Horby, P. Scope, quality, and inclusivity of clinical guidelines produced early in the covid-19 pandemic: Rapid review. BMJ 2020, 369, m1936. [Google Scholar] [CrossRef]
- Zhao, J.; Hu, Y.; Du, R.H.; Chen, Z.S.; Jin, Y.; Zhou, M.; Zhang, J.; Qu, J.M.; Cao, B. Expert consensus on the use of corticosteroid in patients with 2019-nCoV pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, e007. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maria, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.O.; et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: The CoDEX randomized clinical trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Czock, D.; Keller, F.; Rasche, F.M.; Häussler, U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 2005, 44, 61–98. [Google Scholar] [CrossRef] [PubMed]
- Honoré, P.M.; Jacobs, R.; De Waele, E.; De Regt, J.; Rose, T.; Van Gorp, V.; Joannes-Boyau, O.; Boer, W.; Spapen, H.D. What do we know about steroids metabolism and ‘PK/PD approach’in AKI and CKD especially while on RRT-current status in 2014. Blood Purif. 2014, 38, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-term systemic corticosteroid exposure: A systematic literature review. Clin. Ther. 2017, 39, 2216–2229. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Liu, J.; Zhou, Y.; Zhao, X.; Zhao, Q.; Liu, J. The effect of corticosteroid treatment on patients with coronavirus infection: A systematic review and meta-analysis. J. Infect. 2020, 81, e13–e20. [Google Scholar] [CrossRef]
- Katz, L.M. (A Little) Clarity on Convalescent Plasma for Covid-19. N. Engl. J. Med. 2021, 384, 666–668. [Google Scholar] [CrossRef] [PubMed]
- Health, N.I.O. Convalescent Plasma. Available online: https://www.covid19treatmentguidelines.nih.gov/anti-sars-cov-2-antibody-products/convalescent-plasma/ (accessed on 13 April 2021).
- Food and Drug Administration. FDA Issues Emergency Use Authorization for Convalescent Plasma as Potential Promising COVID–19 Treatment, Another Achievement in Administration’s Fight Against Pandemic. 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-issues-emergency-use-authorization-convalescent-plasma-potential-promising-covid-19-treatment (accessed on 13 April 2021).
- Minnelli, N.; Gibbs, L.; Larrivee, J. Challenges of Maintaining Optimal Nutrition Status in COVID-19 Patients in Intensive Care Settings. J. Parenter. Enter. Nutr. 2020, 44, 1439–1446. [Google Scholar] [CrossRef]
- Feyaerts, A.F.; Luyten, W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition 2020, 79, 110948. [Google Scholar] [CrossRef]
- Rahman, M.T.; Idid, S.Z. Can Zn be a critical element in COVID-19 treatment? Biol. Trace Elem. Res. 2021, 199, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Yisak, H.; Ewunetei, A.; Kefale, B.; Mamuye, M.; Teshome, F.; Ambaw, B.; Yitbarek, G.Y. Effects of vitamin D on COVID-19 infection and prognosis: A systematic review. Risk Manag. Healthc. Policy 2021, 14, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.M.; Lones, J.L.; Han, J.E.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Zughaier, S.M.; Martin, G.S.; Ziegler, T.R.; Tangpricha, V. High-dose vitamin D3 administration is associated with increases in hemoglobin concentrations in mechanically ventilated critically ill adults: A pilot double-blind, randomized, placebo-controlled trial. JPEN J. Parenter. Enter. Nutr. 2018, 42, 87–94. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.H.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [Green Version]
- Grant, W.B.; Baggerly, C.A.; Lahore, H. Reply:“Vitamin D Supplementation in Influenza and COVID-19 Infections. Comment on: Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths Nutrients 2020, 12 (4), 988”. Nutrients 2020, 12, 1620. [Google Scholar] [CrossRef]
- Davidson, Z.E.; Walker, K.Z.; Truby, H. Clibical review: Do glucocorticosteroids alter vitamin D status? A systematic review with meta-analyses of observational studies. J. Clin. Endocrinol. Metab. 2012, 97, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Crutchley, R.D.; Jacobs, D.M.; Gathe, J.; Mayberry, C.; Bulayeva, N.; Rosenblatt, K.P.; Garey, K.W. Vitamin D Assessment Over 48 Weeks in Treatment-Naive HIV Individuals Starting Lopinavir/Ritonavir Monotherapy. Curr. HIV Res. 2021, 19, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Arya, A.; Dwivedi, V.D. Synergistic effect of Vitamin D and Remdesivir can fight COVID-19. J. Biomol. Struct. Dyn. 2020, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Anstey, M.; Lu, J.; Myers, E.; Palmer, R.; Wibrow, B.; Ho, K.M. Vitamin C and corticosteroids in viral pneumonia: A prospective cohort study. Acute Crit. Care 2020. [Google Scholar] [CrossRef]
- Chiba, S. Effect of early oseltamivir on outpatients without hypoxia with suspected COVID-19. Wien. Klin. Wochenschr. 2020, 1–6. [Google Scholar] [CrossRef]
- Skalny, A.V.; Rink, L.; Ajsuvakova, O.P.; Aschner, M.; Gritsenko, V.A.; Alekseenko, S.I.; Svistunov, A.A.; Petrakis, D.; Spandidos, D.A.; Aaseth, J.; et al. Zinc and respiratory tract infections: Perspectives for COVID-19. Int. J. Mol. Med. 2020, 46, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Tuerk, M.J.; Fazel, N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.B.; Hamer, D.H.; Meydani, S.N. Low zinc status: A new risk factor for pneumonia in the elderly? Nutr. Rev. 2010, 68, 30–37. [Google Scholar] [CrossRef]
- Bonaventura, P.; Benedetti, G.; Albarede, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Cattini, L.; Neri, S.; Malavolta, M.; Mocchegiani, E.; Ravaglia, G.; Facchini, A. Simultaneous evaluation of circulating chemokine and cytokine profiles in elderly subjects by multiplex technology: Relationship with zinc status. Biogerontology 2006, 7, 449–459. [Google Scholar] [CrossRef]
- Te Velthuis, A.J.W.; Van Den Worm, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; Van Hemert, M. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef]
- Maret, W. Zinc in cellular regulation: The nature and significance of “zinc signals”. Int. J. Mol. Sci. 2017, 18, 2285. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Moyer, A.; Peng, B.; Wu, J.; Hannafon, B.N.; Ding, W.Q. Chloroquine is a zinc ionophore. PLoS ONE 2014, 9, e109180. [Google Scholar] [CrossRef] [Green Version]
- Derwand, R.; Scholz, M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med. Hypotheses 2020, 142, 109815. [Google Scholar] [CrossRef]
- Abd-Elsalam, S.; Soliman, S.; Esmail, E.S.; Khalaf, M.; Mostafa, E.F.; Medhat, M.A.; Ahmed, O.A.; El Ghafar, M.S.A.; Alboraie, M.; Hassant, S.M. Do Zinc Supplements Enhance the Clinical Efficacy of Hydroxychloroquine? A Randomized, Multicenter Trial. Biol. Trace Elem. Res. 2020, 1–5. [Google Scholar] [CrossRef]
- Saper, R.B.; Rash, R. Zinc: An essential micronutrient. Am. Fam. Physician 2009, 79, 768–772. [Google Scholar] [PubMed]
- Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harthill, M. Micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol. Trace Elem. Res. 2011, 143, 1325–1336. [Google Scholar] [CrossRef]
- Avery, J.C.; Hoffmann, P.R. Selenium, selenoproteins, and immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.A.; Handy, J.; Levander, O.A. Host nutritional status: The neglected virulence factor. Trends Microbiol. 2004, 12, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Pearson, H.; Clarke, T.; Abbott, A.; Knight, J.; Cyranoski, D. SARS: What have we learned? Nature 2003, 424, 121–126. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Fakhrolmobasheri, M.; Nasr-Esfahany, Z.; Khanahmad, H.; Zeinalian, M. Selenium supplementation can relieve the clinical complications of COVID-19 and other similar viral infections. Int. J. Vitam. Nutr. Res. 2020, 1–3. [Google Scholar] [CrossRef]
- Kieliszek, M.; Lipinski, B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses 2020, 143, 109878. [Google Scholar] [CrossRef] [PubMed]
- Seale, L.A.; Torres, D.J.; Berry, M.J.; Pitts, M.W. A role for selenium-dependent GPX1 in SARS-CoV-2 virulence. Am. J. Clin. Nutr. 2020, 112, 447–448. [Google Scholar] [CrossRef] [PubMed]
Antiviral Drugs | Drug | Mechanism of Action | Most Common Adverse Effects | Administration via Feeding Tube |
---|---|---|---|---|
Viral entry blockers | Hydroxychloroquine | Increases the endosomal pH needed for the continuation of cell functions of the virus, further glycosylation of the cellular receptors of SARS-CoV-2 (ACE-2) | Common: Abdominal cramps, anorexia, nausea, diarrhea, vomiting Major: Cardiotoxicity, arrhythmia, hematopoietic system disease, hypoglycemia, neuropsychiatric and central nervous system effects, retinal toxicity | Splitting or crushing the film-coated tablet is generally not recommended. When necessary, the tablet can be crushed and mixed with water. |
Umifenovir | Spike protein/ACE-2 fusion inhibitor | Nausea and vomiting, less commonly, dizziness and psychiatric symptoms | ||
Viral RNA polymerase/RNA synthesis inhibitors | Remdesivir | Adenosine nucleotide analog, RdRp inhibitor, prodrug | Renal dysfunction Abnormal liver function tests | |
Favipiravir | Guanosine nucleotide analog, RdRp inhibitor, prodrug | Hyperuricemia, diarrhea, increased transaminases, decreased neutrophile numbers | The tablet can be crushed and mixed with water or juice. | |
Ribavirin | Guanine analog, RdRp inhibitor | Hematopoietic system disease Dizziness Arterial pressure not decreased | ||
Viral protein synthesis inhibitors | Lopinavir/ritonavir | Protease inhibitor | Dizziness Cardiovascular system disease Arterial pressure not decreased Urinary system disease | Splitting or crushing the tablet is not recommended. When crushed, its bioavailability decreases. If the tablet needs to be crushed, the medicine should be placed in the syringe and 10 mL of water should be withdrawn. After 4 h of dissolving, it becomes a slurry and can be applied in this way. |
Immunomodulators | Nitazoxanide | Interactions with regulated host pathways concerting viral replication, amplification of cytoplasmic RNA sensitivity, and type I IFN pathways | Abdominal pain, nausea, diarrhea, vomiting, headache | |
Neuraminidase inhibitor | Oseltamivir | Prevention of viral spread in the human body, prodrug | Diarrhea, nausea, vomiting | The capsule can be opened. The content can be mixed into sweetened foods and drinks. |
Additional Treatments | ||||
Antibacterials applied in combination with hydroxychloroquine for synergistic antiviral action | Azithromycin | Prevention of viral binding among host cell receptors | Hematopoietic system disease Integumentary system disease Cardiovascular system disease | |
Cytokine gene expression inhibitor | Corticosteroids (methylprednisolone) | Treatment of severe pneumonia and prevention of lung damage | Osteoporosis, cardiovascular diseases, impaired immune response, changes in glucose and lipid metabolism, stomach irritation, vomiting, headache, dizziness neuropsychiatric diseases, insomnia, dermatological problems | The tablet can be administered after dissolving in 10 mL of water. |
Drugs | Nutritional Interactions and Potential Action Plan | References | |
---|---|---|---|
Antiviral Drugs | Hydroxychloroquine/Chloroquine |
| [37,38] |
Favipiravir |
| [40,44] | |
Remdesivir |
| [53,54] | |
Lopinavir-Ritonavir |
| [54,62,63,65] | |
Umifenovir |
| [25,67] | |
Oseltamivir |
| [54,73,76] | |
Ribavirin |
| [54] | |
Nitazoxanide |
| [81,86,89] | |
Anti-Inflammatory Drugs | Ibuprofen |
| [101] |
Indomethacin |
| [90] | |
Interleukin Inhibitors | Tocilizumab |
| [116,118] |
Anakinra |
| [125] | |
Some Additional Treatments | Azithromycin |
| [54,73,129,130] |
Corticosteroids (Methylprednisolone) |
| [135,136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ağagündüz, D.; Çelik, M.N.; Çıtar Dazıroğlu, M.E.; Capasso, R. Emergent Drug and Nutrition Interactions in COVID-19: A Comprehensive Narrative Review. Nutrients 2021, 13, 1550. https://doi.org/10.3390/nu13051550
Ağagündüz D, Çelik MN, Çıtar Dazıroğlu ME, Capasso R. Emergent Drug and Nutrition Interactions in COVID-19: A Comprehensive Narrative Review. Nutrients. 2021; 13(5):1550. https://doi.org/10.3390/nu13051550
Chicago/Turabian StyleAğagündüz, Duygu, Menşure Nur Çelik, Merve Esra Çıtar Dazıroğlu, and Raffaele Capasso. 2021. "Emergent Drug and Nutrition Interactions in COVID-19: A Comprehensive Narrative Review" Nutrients 13, no. 5: 1550. https://doi.org/10.3390/nu13051550
APA StyleAğagündüz, D., Çelik, M. N., Çıtar Dazıroğlu, M. E., & Capasso, R. (2021). Emergent Drug and Nutrition Interactions in COVID-19: A Comprehensive Narrative Review. Nutrients, 13(5), 1550. https://doi.org/10.3390/nu13051550