Altered Amino Acid Metabolism in Patients with Cardiorenal Syndrome Type 2: Is It a Problem for Protein and Exercise Prescriptions?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Comparison between Healthy Controls and the Entire Population with CRS 2
3.2. Comparisons between C, M-CKD, MS-CKD
3.3. Comparison of Non-Amino Acid Variables between M-CKD and MS-CKD Patients
3.4. Correlations between Arterial Plasma AAs, Renal and Cardiac Functions
4. Discussion
4.1. Potential Mechanisms Underlying Low Arterial AAs
4.2. Muscle AA (A-V) Differences and AA Plasma Venous Concentrations
4.3. Correlations between Cardiac Function, Renal Function and PAAs in CRS 2
4.4. Relevance of Altered PAAs for Patients with CRS 2. Potential Practical Implications
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rangaswami, J.; Bhalla, V.; Blair, J.E.; Chang, T.I.; Costa, S.; Lentine, K.L.; Lerma, E.V.; Mezue, K.; Molitch, M.; Mullens, W.; et al. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e840–e878. [Google Scholar] [CrossRef]
- Cruz, D.N.; Schmidt-Ott, K.M.; Vescovo, G.; House, A.A.; Kellum, J.A.; Ronco, C.; McCullough, P.A. Pathophysiology of Cardiorenal Syndrome Type 2 in Stable Chronic Heart Failure: Workgroup Statements from the Eleventh Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 2013, 182, 117–136. [Google Scholar] [CrossRef]
- Hillege, H.L.; Nitsch, D.; Pfeffer, M.A.; Swedberg, K.; McMurray, J.J.; Yusuf, S.; Granger, C.B.; Michelson, E.L.; O’stergren, J.; Cornel, J.H.; et al. Renal Function as a Predictor of Outcome in a Broad Spectrum of Patients with Heart Failure. Circulation 2006, 113, 671–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Silva, R.; Nikitin, N.P.; Witte, K.K.; Rigby, A.S.; Goode, K.; Bhandari, S.; Clark, A.L.; Cleland, J.G. Incidence of renal dysfunction over 6 months in patients with chronic heart failure due to left ventricular systolic dysfunction: Contributing factors and relationship to prognosis. Eur. Hear. J. 2006, 27, 569–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C.; McCullough, P.; Anker, S.D.; Anand, I.; Aspromonte, N.; Bagshaw, S.M.; Bellomo, R.; Berl, T.; Bobek, I.; Cruz, D.N.; et al. Cardio-renal syndromes: Report from the consensus conference of the Acute Dialysis Quality Initiative. Eur. Heart J. 2010, 31, 703–711. [Google Scholar] [CrossRef]
- Zannad, F.; Rossignol, P. Cardiorenal Syndrome Revisited. Circulation 2018, 138, 929–944. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Von Haehling, S.; Anker, S.D.; MacDougall, I.C.; Ponikowski, P. Iron deficiency and heart failure: Diagnostic dilemmas and therapeutic perspectives. Eur. Hear. J. 2013, 34, 816–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Yoshihisa, A.; Kimishima, Y.; Yokokawa, T.; Abe, S.; Shimizu, T.; Misaka, T.; Yamada, S.; Sato, T.; Kaneshiro, T.; et al. Prognostic factors in heart failure patients with cardiac cachexia. J. Geriatr. Cardiol. 2020, 17, 26–34. [Google Scholar] [PubMed]
- Prescott, E.; Hjardem-Hansen, R.; Dela, F.; Ørkild, B.; Teisner, A.S.; Nielsen, H. Effects of a 14-month low-cost maintenance training program in patients with chronic systolic heart failure: A randomized study. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 430–437. [Google Scholar] [CrossRef]
- Aquilani, R.; La Rovere, M.T.; Corbellini, D.; Pasini, E.; Verri, M.; Barbieri, A.; Condino, A.M.; Boschi, F. Plasma Amino Acid Abnormalities in Chronic Heart Failure. Mechanisms, Potential Risks and Targets in Human Myocardium Metabolism. Nutrients 2017, 9, 1251. [Google Scholar] [CrossRef] [Green Version]
- Garibotto, G.; Sofia, A.; Russo, R.; Paoletti, E.; Bonanni, A.; Parodi, E.L.; Viazzi, F.; Verzola, D. Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis. Kidney Int. 2015, 88, 1419–1426. [Google Scholar] [CrossRef] [Green Version]
- Kanjanahattakij, N.; Sirinvaravong, N.; Aguilar, F.; Agrawal, A.; Krishnamoorthy, P.; Gupta, S. High Right Ventricular Stroke Work Index Is Associated with Worse Kidney Function in Patients with Heart Failure with Preserved Ejection Fraction. Cardiorenal Med. 2018, 8, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Clementi, A.; Virzì, G.M.; Battaglia, G.G.; Ronco, C. Neurohormonal, Endocrine, and Immune Dysregulation and Inflammation in Cardiorenal Syndrome. Cardiorenal Med. 2019, 9, 265–273. [Google Scholar] [CrossRef]
- Young, G.A. Amino acids and the kidney. Amino Acids 1991, 1, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Garibotto, G.; Sofia, A.; Saffioti, S.; Bonanni, A.; Mannucci, I.; Verzola, D. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin. Nutr. 2010, 29, 424–433. [Google Scholar] [CrossRef]
- Le Jemtel, T.H.; Rajapreyar, I.; Selby, M.G.; Payne, B.; Barnidge, D.R.; Milic, N.; Garovic, V.D. Direct Evidence of Podocyte Damage in Cardiorenal Syndrome Type 2: Preliminary Evidence. Cardiorenal Med. 2015, 5, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghel, A.; Shrestha, K.; Mullens, W.; Borowski, A.; Tang, W.H.W. Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Predicting Worsening Renal Function in Acute Decompensated Heart Failure. J. Card. Fail. 2010, 16, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brezis, M.; Rosen, S. Hypoxia of the Renal Medulla–Its Implications for Disease. N. Engl. J. Med. 1995, 332, 647–655. [Google Scholar] [CrossRef]
- Shrestha, K.; Shao, Z.; Singh, D.; Dupont, M.; Tang, W.H.W. Relation of Systemic and Urinary Neutrophil Gelatinase-Associated Lipocalin Levels to Different Aspects of Impaired Renal Function in Patients with Acute Decompensated Heart Failure. Am. J. Cardiol. 2012, 110, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Kalista-Richards, M. Invited Review: The Kidney: Medical Nutrition Therapy—Yesterday and Today. Nutr. Clin. Pr. 2011, 26, 143–150. [Google Scholar] [CrossRef]
- Levey, A.S.; Greene, T.; Beck, G.J.; Caggiula, A.W.; Kusek, J.W.; Hunsicker, L.G.; Klahr, S. Dietary protein restriction and the progression of chronic renal disease: What have all of the results of the MDRD study shown? Modification of Diet in Renal Disease Study group. J. Am. Soc. Nephrol. 1999, 10, 2426–2439. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, K.-U.; Kasiske, B.L. Foreword. Kidney Int. 2009, 76, S1–S2. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; Brugnatelli, S.; Dossena, M.; Maestri, R.; Delfanti, S.; Buonocore, D.; Boschi, F.; Simeti, E.; Condino, A.M.; Verri, M. Oxaliplatin-Fluoropyrimidine Combination (XELOX) Therapy Does Not Affect Plasma Amino Acid Levels and Plasma Markers of Oxidative Stress in Colorectal Cancer Surgery Patients: A Pilot Study. Nutrients 2019, 11, 2667. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.A.; Bitla, A.R.R.; Raju, K.V.N.; Manohar, S.M.; Kumar, V.S.; Narasimha, S.R.P.V.L. Branched chain amino acid profile in early chronic kidney disease. Saudi J. Kidney Dis. Transplant. 2012, 23, 1202–1207. [Google Scholar]
- Suliman, M.E.; Qureshi, A.R.; Stenvinkel, P.; Pecoits-Filho, R.; Bárány, P.; Heimburger, O.; Anderstam, B.; Ayala, E.R.; Filho, J.C.D.; Alvestrand, A.; et al. Inflammation contributes to low plasma amino acid concentrations in patients with chronic kidney disease. Am. J. Clin. Nutr. 2005, 82, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Murtas, S.; Aquilani, R.; Iadarola, P.; Deiana, M.; Secci, R.; Cadeddu, M.; Bolasco, P. Differences and Effects of Metabolic Fate of Individual Amino Acid Loss in High-Efficiency Hemodialysis and Hemodiafiltration. J. Ren. Nutr. 2020, 30, 440–451. [Google Scholar] [CrossRef]
- Bhargava, P.; Schnellmann, R.G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629–646. [Google Scholar] [CrossRef]
- Damman, K.; Masson, S.; Hillege, H.L.; Maggioni, A.P.; Voors, A.A.; Opasich, C.; Van Veldhuisen, D.J.; Montagna, L.; Cosmi, F.; Tognoni, G.; et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur. Hear. J. 2011, 32, 2705–2712. [Google Scholar] [CrossRef] [Green Version]
- Duranton, F.; Lundin, U.; Gayrard, N.; Mischak, H.; Aparicio, M.; Mourad, G.; Daurès, J.-P.; Weinberger, K.M.; Argilés, À. Plasma and Urinary Amino Acid Metabolomic Profiling in Patients with Different Levels of Kidney Function. Clin. J. Am. Soc. Nephrol. 2014, 9, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.; Ponikowski, P.; Clark, A.; Leyva, F.; Rauchhaus, M.; Kemp, M.; Teixeira, M.; Hellewell, P.; Hooper, J.; Poole-Wilson, P.; et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur. Hear. J. 1999, 20, 683–693. [Google Scholar] [CrossRef]
- Tessari, P.; Cecchet, D.; Cosma, A.; Puricelli, L.; Millioni, R.; Vedovato, M.; Tiengo, A. Insulin resistance of amino acid and protein metabolism in type 2 diabetes. Clin. Nutr. 2011, 30, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Siew, E.; Pupim, L.; Majchrzak, K.; Shintani, A.; Flakoll, P.; Ikizler, T. Insulin resistance is associated with skeletal muscle protein breakdown in non-diabetic chronic hemodialysis patients. Kidney Int. 2007, 71, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Ikizler, T.; Block, G.; Avram, M.M.; Kopple, J.D. Malnutrition-inflammation complex syndrome in dialysis patients: Causes and consequences. Am. J. Kidney Dis. 2003, 42, 864–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, P.C.; Ganda, A.; Lin, J.; Onat, D.; Harxhi, A.; Iyasere, J.E.; Uriel, N.; Cotter, G. Inflammatory activation: Cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Hear. Fail. Rev. 2012, 17, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Opasich, C.; Aquilani, R.; Dossena, M.; Foppa, P.; Catapano, M.; Pagani, S.; Pasini, E.; Ferrari, R.; Tavazzi, L.; Pastoris, O. Biochemical analysis of muscle biopsy in overnight fasting patients with severe chronic heart failure. Eur. Hear. J. 1996, 17, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Pastoris, O.; Aquilani, R.; Foppa, P.; Bovio, G.; Segagni, S.; Baiardi, P.; Catapano, M.; Maccario, M.; Salvadeo, A.; Dossena, M. Altered muscle energy metabolism in post-absorptive patients with chronic renal failure. Scand. J. Urol. Nephrol. 1997, 31, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Cicoira, M.; Bolger, A.P.; Doehnera, W.; Rauchhausac, M.; Davos, C.H.; Sharmaa, R.; Al-Nasser, F.O.; Coats, A.J.; D’Ankerad, S. High Tumour Necrosis Factor-Α Levels Are Associated with Exercise Intolerance And Neurohormonal Activation In Chronic Heart Failure Patients. Cytokine 2001, 15, 80–86. [Google Scholar] [CrossRef]
- Cynober, L.A. Plasma amino acid levels with a note on membrane transport: Characteristics, regulation, and metabolic significance. Nutrients 2002, 18, 761–766. [Google Scholar] [CrossRef]
- Luo, Y.; Yoneda, J.; Ohmori, H.; Sasaki, T.; Shimbo, K.; Eto, S.; Kato, Y.; Miyano, H.; Kobayashi, T.; Sasahira, T.; et al. Cancer Usurps Skeletal Muscle as an Energy Repository. Cancer Res. 2014, 74, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Pasini, E.; Aquilani, R.; Testa, C.; Baiardi, P.; Angioletti, S.; Boschi, F.; Verri, M.; Dioguardi, F. Pathogenic Gut Flora in Patients with Chronic Heart Failure. JACC: Heart Fail. 2016, 4, 220–227. [Google Scholar] [CrossRef]
- Koppe, L.; Mafra, D.; Fouque, D. Probiotics and chronic kidney disease. Kidney Int. 2015, 88, 958–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaziri, N.D.; Yuan, J.; Norris, K. Role of Urea in Intestinal Barrier Dysfunction and Disruption of Epithelial Tight Junction in Chronic Kidney Disease. Am. J. Nephrol. 2013, 37, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacko, A.; Cummings, J.H. Nitrogen losses from the human small bowel: Obligatory losses and the effect of physical form of food. Gut 1988, 29, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Crenn, P.; Messing, B.; Cynober, L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008, 27, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Levillain, O.; Hus-Citharel, A.; Morel, F.; Bankir, L. Localization of arginine synthesis along rat nephron. Am. J. Physiol. Physiol. 1990, 259, F916–F923. [Google Scholar] [CrossRef] [PubMed]
- Azuma, J.; Sawamura, A.; Awata, N.; Ohta, H.; Hamaguchi, T.; Harada, H.; Takihara, K.; Hasegawa, H.; Yamagami, T.; Ishiyama, T.; et al. Therapeutic effect of taurine in congestive heart failure: A double-blind crossover trial. Clin. Cardiol. 1985, 8, 276–282. [Google Scholar] [CrossRef]
- Aquilani, R.; La Rovere, M.T.; Febo, O.; Boschi, F.; Iadarola, P.; Corbellini, D.; Viglio, S.; Bongiorno, A.I.; Pastoris, O.; Verri, M. Preserved muscle protein metabolism in obese patients with chronic heart failure. Int. J. Cardiol. 2012, 160, 102–108. [Google Scholar] [CrossRef]
- Essig, M.; Escoubet, B.; De Zuttere, D.; Blanchet, F.; Arnoult, F.; Dupuis, E.; Michel, C.; Mignon, F.; Mentre, F.; Clerici, C.; et al. Cardiovascular remodelling and extracellular fluid excess in early stages of chronic kidney disease. Nephrol. Dial. Transplant. 2008, 23, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Plumley, D.A.; Austgen, T.R.; Salloum, R.M.; Souba, W.W. Role of the Lungs in Maintaining Amino Acid Homeostasis. J. Parenter. Enter. Nutr. 1990, 14, 569–573. [Google Scholar] [CrossRef]
- Aquilani, R.; La Rovere, M.T.; Febo, O.; Baiardi, P.; Boschi, F.; Iadarola, P.; Viglio, S.; Dossena, M.; Bongiorno, A.I.; Pastoris, O.; et al. Lung anabolic activity in patients with chronic heart failure: Potential implications for clinical practice. Nutrients 2012, 28, 1002–1007. [Google Scholar] [CrossRef]
- Griffin, S.V.; Shankland, S.J. Renal hyperplasia and hypertrophy. In Seldin and Giebisch’s The Kidney: Physiology and Pathophysiology, 4th ed.; Alpern, R.J., Hebert, S.C., Eds.; Academic Press: Cambridge, MA, USA, 2008; Volume 1, pp. 723–742. [Google Scholar]
- Garibotto, G. Kidney Protein Dynamics and Ammoniagenesis in Humans with Chronic Metabolic Acidosis. J. Am. Soc. Nephrol. 2004, 15, 1606–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolan, E.; Saunders, B.; Harris, R.C.; Bicudo, J.E.P.W.; Bishop, D.J.; Sale, C.; Gualano, B. Comparative physiology investigations support a role for histidine-containing dipeptides in intracellular acid–base regulation of skeletal muscle. Comp. Biochem. Physiol. Part. A Mol. Integr. Physiol. 2019, 234, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Barrett, E.J. Human protein metabolism: Its measurement and regulation. Am. J. Physiol. Metab. 2002, 283, E1105–E1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, B.; Kalman, J.; Mayer, L.; Fillit, H.M.; Packer, M. Elevated Circulating Levels of Tumor Necrosis Factor in Severe Chronic Heart Failure. N. Engl. J. Med. 1990, 323, 236–241. [Google Scholar] [CrossRef]
- Rao, M.; Wong, C.; Kanetsky, P.A.; Girndt, M.; Stenvinkel, P.; Reilly, M.P.; Raj, D.S.C. Cytokine gene polymorphism and progression of renal and cardiovascular diseases. Kidney Int. 2007, 72, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Zoico, E.; Roubenoff, R. The Role of Cytokines in Regulating Protein Metabolism and Muscle Function. Nutr. Rev. 2002, 60, 39–51. [Google Scholar] [CrossRef]
- Li, Y.-P.; Schwartz, R.J.; Waddell, I.D.; Holloway, B.R.; Reid, M.B. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor α. FASEB J. 1998, 12, 871–880. [Google Scholar] [CrossRef]
- Vary, T.C.; Owens, E.L.; Beers, J.K.; Verner, K.; Cooney, R.N. Sepsis Inhibits Synthesis of Myofibrillar And Sarcoplasmic Proteins. Shock 1996, 6, 13–18. [Google Scholar] [CrossRef]
- Guttridge, D.C.; Mayo, M.W.; Madrid, L.V.; Wang, C.-Y., Jr. NF-kappa B-Induced Loss of MyoD Messenger RNA: Possible Role in Muscle Decay and Cachexia. Science 2000, 289, 2363–2366. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Moody, M.R.; Engel, D.J.; Walker, S.; Clubb, F.J.; Sivasubramanian, N.; Mann, D.L.; Reid, M.B. Cardiac-Specific Overexpression of Tumor Necrosis Factor-α Causes Oxidative Stress and Contractile Dysfunction in Mouse Diaphragm. Circulation 2000, 102, 1690–1696. [Google Scholar] [CrossRef] [Green Version]
- Ebisui, C.; Tsujinaka, T.; Morimoto, T.; Kan, K.; Iijima, S.; Yano, M.; Kominami, E.; Tanaka, K.; Monden, M. Interleukin-6 Induces Proteolysis by Activating Intracellular Proteases (Cathepsins B and L, Proteasome) in C2C12 Myotubes. Clin. Sci. 1995, 89, 431–439. [Google Scholar] [CrossRef]
- Ritz, E. Intestinal-Renal Syndrome: Mirage or Reality? Blood Purif. 2011, 31, 70–76. [Google Scholar] [CrossRef]
- Adey, D.; Kumar, R.; McCarthy, J.T.; Nair, K.S. Reduced synthesis of muscle proteins in chronic renal failure. Am. J. Physiol. Metab. 2000, 278, E219–E225. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Mogensen, K.M.; Robinson, M.K. Pathophysiology of Critical Illness and Role of Nutrition. Nutr. Clin. Pract. 2019, 34, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Jünger, M.; Steins, A.; Hahn, M.; Häfner, H.-M. Microcirculatory Dysfunction in Chronic Venous Insufficiency (CVI). Microcirculation 2000, 7, 3–12. [Google Scholar] [CrossRef]
- Garibotto, G.; Russo, R.; Sofia, A.; Sala, M.R.; Robaudo, C.; Moscatelli, P.; Deferrari, G.; Tizianello, A. Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int. 1994, 45, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
- Cicoira, M.; Kalra, P.R.; Anker, S.D. Growth hormone resistance in chronic heart failure and its therapeutic implications. J. Card. Fail. 2003, 9, 219–226. [Google Scholar] [CrossRef]
- Kobayashi, S.; Maesato, K.; Moriya, H.; Ohtake, T.; Ikeda, T. Insulin resistance in patients with chronic kidney disease. Am. J. Kidney Dis. 2005, 45, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Long, W.; Fryburg, D.A.; Barrett, E.J. The Regulation of Body and Skeletal Muscle Protein Metabolism by Hormones and Amino Acids. J. Nutr. 2006, 136, 212S–217S. [Google Scholar] [CrossRef] [Green Version]
- Guazzi, M.; Gatto, P.; Giusti, G.; Pizzamiglio, F.; Previtali, I.; Vignati, C.; Arena, R. Pathophysiology of cardiorenal syndrome in decompensated heart failure: Role of lung–right heart–kidney interaction. Int. J. Cardiol. 2013, 169, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Hanberg, J.S.; Sury, K.; Wilson, F.P.; Brisco, M.A.; Ahmad, T.; Ter Maaten, J.M.; Broughton, J.S.; Assefa, M.; Tang, W.W.; Parikh, C.R.; et al. Reduced Cardiac Index Is Not the Dominant Driver of Renal Dysfunction in Heart Failure. J. Am. Coll. Cardiol. 2016, 67, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; Maestri, R.; Boselli, M.; Achilli, M.P.; Arrigoni, N.; Bruni, M.; Dossena, M.; Verri, M.; Buonocore, D.; Pasini, E.; et al. The relationship between plasma amino acids and circulating albumin and haemoglobin in postabsorptive stroke patients. PLoS ONE 2019, 14, e0219756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anagnostou, A.; Schade, S.; Ashkinaz, M.; Barone, J.; Fried, W. Effect of protein deprivation on erythropoiesis. Blood 1977, 50, 1093–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Branched-Chain Amino Acids and Immunity. J. Nutr. 2006, 136, 288S–293S. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Rennie, M.J.; Bohé, J.; Smith, K.; Wackerhage, H.; Greenhaff, P. Branched-Chain Amino Acids as Fuels and Anabolic Signals in Human Muscle. J. Nutr. 2006, 136, 264S–268S. [Google Scholar] [CrossRef]
- Cano, N.J.M.; Fouque, D.; Leverve, X.M. Application of Branched-Chain Amino Acids in Human Pathological States: Renal Failure. J. Nutr. 2006, 136, 299S–307S. [Google Scholar] [CrossRef] [Green Version]
- Krajmalnik-Brown, R.; Ilhan, Z.-E.; Kang, D.-W.; DiBaise, J.K. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutr. Clin. Pr. 2012, 27, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.J. Disorders of Hydrogen Ion Metabolism. In Strauss and Welt’s Diseases of the Kidney, 3rd ed.; Early, L.E., Gottschalk, C.W., Eds.; Little Brown: Boston, MA, USA, 1979; pp. 1543–1579. [Google Scholar]
- Condino, A.M.; Aquilani, R.; Pasini, E.; Iadarola, P.; Viglio, S.; Verri, M.; D’Agostino, L.; Boschi, F. Plasma kinetic of ingested essential amino acids in healthy elderly people. Aging Clin. Exp. Res. 2013, 25, 711–714. [Google Scholar] [CrossRef]
- Aquilani, R.; Opasich, C.; Gualco, A.; Verri, M.; Testa, A.; Pasini, E.; Viglio, S.; Iadarola, P.; Pastoris, O.; Dossena, M.; et al. Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur. J. Hear. Fail. 2008, 10, 1127–1135. [Google Scholar] [CrossRef]
- Aquilani, R.; D’Antona, G.; Baiardi, P.; Gambino, A.; Iadarola, P.; Viglio, S.; Pasini, E.; Verri, M.; Barbieri, A.; Boschi, F. Essential Amino Acids and Exercise Tolerance in Elderly Muscle-Depleted Subjects with Chronic Diseases: A Rehabilitation without Rehabilitation? BioMed Res. Int. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Cano, N.J.; Franch, H.; Fouque, D.; Himmelfarb, J.; Kalantar-Zadeh, K.; Kuhlmann, M.K.; Stenvinkel, P.; TerWee, P.; Teta, D.; et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: A consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013, 84, 1096–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, T.J.; Shur, N.F.; Smith, A.C. “Exercise as medicine” in chronic kidney disease. Scand. J. Med. Sci. Sports 2016, 26, 985–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Ortiz, H.; Pedreros-Rosales, C.; Vera-Calzaretta, A.; González-Burboa, A.; Martín, C.Z.-S.; Oliveros-Romero, M.S. Exercise training in advanced chronic kidney disease. Revista Médica De Chile 2019, 147, 1443–1448. [Google Scholar] [CrossRef]
- Aquilani, R.; Opasich, C.; Dossena, M.; Iadarola, P.; Gualco, A.; Arcidiaco, P.; Viglio, S.; Boschi, F.; Verri, M.; Pasini, E. Increased skeletal muscle amino acid release with light exercise in deconditioned patients with heart failure. J. Am. Coll. Cardiol. 2005, 45, 158–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nystrom, E.M.; Nei, A.M. Metabolic Support of the Patient on Continuous Renal Replacement Therapy. Nutr. Clin. Pract. 2018, 33, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Cicoira, M.; Anker, S.D.; Ronco, C. Cardio-renal cachexia syndromes (CRCS): Pathophysiological foundations of a vicious pathological circle. J. Cachex Sarcopenia Muscle 2011, 2, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Petra, E.; Zoidakis, J.; Vlahou, A. Protein biomarkers for cardiorenal syndrome. Expert Rev. Proteom. 2019, 16, 325–336. [Google Scholar] [CrossRef]
- Vianello, A.; Caponi, L.; Galetta, F.; Franzoni, F.; Taddei, M.; Rossi, M.; Pietrini, P.; Santoro, G. β2-Microglobulin and TIMP1 Are Linked Together in Cardiorenal Remodeling and Failure. Cardiorenal Med. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jungbauer, C.G.; Uecer, E.; Stadler, S.; Birner, C.; Buchner, S.; Maier, L.S.; Luchner, A. N-acteyl-ß-D-glucosaminidase and kidney injury molecule-1: New predictors for long-term progression of chronic kidney disease in patients with heart failure. Nephrology 2016, 21, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Bonventre, J.V. Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrol. Dial. Transplant. 2009, 24, 3265–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | All-CRS 2 (N = 16) |
---|---|
Demographics | |
Age (years) | 56.5 ± 8.5 |
Sex (male/female) | 11/5 |
Anthropometrics | |
Body weight (kg) | 76.0 ± 15.2 |
BMI (kg/m2) | 26.3 ± 3.9 |
Blood | |
Glucose (mg/dL; NV = 80–110) | 96.3 ± 14.1 |
Albumin (g/dL; NV = 3.5–5) | 4.3 ± 0.4 |
Hemoglobin (g/dL; NV = 12–15) | 13.0 ± 2.2 |
Sodium (mEq/L; NV = 135–145) | 136.4 ± 3.5 |
Potassium (mEq/L; NV = 3.5–5.0) | 4.1 ± 0.6 |
NT-pro-BNP | 2940.9 ± 1865.4 |
(pg/mL; NV < 125 for age < 75 years) | |
Clinical characteristics | |
Medication | |
β blockers | 16 pts (100%) |
Diuretics | 16 pts (100%) |
ACE inhibition | 14 pts (87.5%) |
Digoxin | 7 pts (43.7%) |
Functional class | |
NYHA | 3.2 ± 0.5 |
Etiology | |
Ischemic | 10 pts (62.5%) |
Idiopathic dilated cardiomyopathy | 4 pts (25%) |
Valvular | 2 pts (12.5%) |
Arterial blood pressure | |
Systolic blood pressure (mm Hg) | 108.4 ± 12.3 |
Diastolic blood pressure (mm Hg) | 65.5 ± 11.4 |
Hemodynamic variables | |
CI (L/min/m2) | 2.1 ± 0.4 |
SV (mL/beat) | 61.5 ± 13.7 |
SVI (mL/beat/m2) | 32.8 ± 7.5 |
LVEF (%; NV > 55) | 29.3 ± 12.0 |
Physical performance | |
VO2 rest (mL O2/kg/min) | 3.5 ± 0.8 |
VO2 peak (mL O2/kg/min) | 11.8 ± 2.9 |
RER peak | 1.10 ± 0.03 |
Renal function tests | |
Creatinine (mg/dL; NV = 0.6–1.2) | 1.42 ± 0.18 |
eGFR (mL/min/1.73 m2) | 54.9 ± 19.3 |
Urea (mg/dL; NV = 20–40) | 68.2 ± 46.2 |
Variable | C (N = 8) | CRS 2 (N = 16) | p-Value |
---|---|---|---|
Aspartic acid | 112.1 ± 8.858 | 29.83 ± 14.23 | <0.0001 |
Glutamic acid | 198.63 ± 10.61 | 84.97 ± 26.72 | <0.0001 |
Asparagine | 61.04 ± 1.99 | 23.60 ± 11.17 | <0.0001 |
Serine | 88.39 ± 4.25 | 23.17 ± 8.01 | <0.0001 |
Glutamine | 464.88 ± 13.98 | 100.64 ± 43.78 | <0.0001 |
Histidine | 58.00 ± 5.15 | 23.02 ± 33.44 | 0.014 |
Glycine | 268.25 ± 11.97 | 49.08 ± 16.79 | <0.0001 |
Threonine | 111.6 ± 7.3 | 20.62 ± 10.00 | <0.0001 |
Citrulline | 24.57 ± 3.66 | 6.42 ± 1.73 | <0.0001 |
Alanine | 312.63 ± 15.67 | 72.28 ± 20.20 | <0.0001 |
Arginine | 59.27 ± 7.61 | 27.23 ± 11.36 | 0.00019 |
Tyrosine | 56.25 ± 6.11 | 16.12 ± 3.90 | <0.0001 |
Cysteine | 77.13 ± 5.14 | 15.47 ± 6.37 | <0.0001 |
Valine | 160.0 ± 15.8 | 49.84 ± 12.79 | <0.0001 |
Methionine | 9.7 ± 2.8 | 3.22 ± 1.49 | <0.0001 |
Tryptophan | 50.1 ± 4.9 | 15.64 ± 7.93 | <0.0001 |
Phenylalanine | 51.3 ± 5.1 | 11.61 ± 3.17 | <0.0001 |
Isoleucine | 47.4 ± 4.1 | 10.61 ± 3.35 | <0.0001 |
Leucine | 79.1 ± 8.5 | 21.03 ± 6.93 | <0.0001 |
Lysine | 107 ± 11.4 | 37.65 ± 12.95 | <0.0001 |
Ornithine | 56.38 ± 6.39 | 63.88 ± 20.73 | 0.36 |
TAAs | 2453.78 ± 49.54 | 626.56 ± 176.22 | <0.0001 |
BCAAs | 286.5 ± 13.57 | 81.47 ± 22.41 | <0.0001 |
EAAs | 612.2 ± 20.3 | 170.21 ± 48.64 | <0.0001 |
Variable | C (N = 8) | CRS 2 (N = 16) | p-Value |
---|---|---|---|
Aspartic acid | 111.83 ± 10.48 | 43.48 ± 15.53 | <0.0001 |
Glutamic acid | 206.13 ± 11.15 | 154.01 ± 52.32 | 0.004 |
Asparagine | 112.65 ± 157.39 | 41.27 ± 10.38 | 0.001 |
Serine | 90.83 ± 4.21 | 42.10 ± 14.69 | <0.0001 |
Glutamine | 467.25 ± 11.67 | 128.17 ± 31.67 | <0.0001 |
Histidine | 58.38 ± 6.02 | 37.92 ± 27.40 | 0.043 |
Glycine | 258.38 ± 27.54 | 90.67 ± 38.11 | <0.0001 |
Threonine | 106.63 ± 11.10 | 28.83 ± 8.42 | <0.0001 |
Citrulline | 25.07 ± 2.90 | 9.77 ± 3.26 | <0.0001 |
Alanine | 327.63 ± 15.60 | 125.82 ± 37.67 | <0.0001 |
Arginine | 59.44 ± 5.85 | 36.21 ± 16.75 | 0.001 |
Tyrosine | 51.75 ± 5.70 | 36.04 ± 12.97 | 0.003 |
Cysteine | 79.38 ± 7.76 | 26.00 ± 27.58 | 0.0006 |
Valine | 153.88 ± 13.48 | 79.44 ± 26.50 | <0.0001 |
Methionine | 10.75 ± 1.75 | 6.61 ± 3.47 | 0.003 |
Tryptophan | 51.13 ± 4.64 | 35.09 ± 15.89 | 0.003 |
Phenylalanine | 46.25 ± 5.68 | 22.99 ± 7.37 | <0.0001 |
Isoleucine | 45.75 ± 5.01 | 19.27 ± 5.27 | <0.0001 |
Leucine | 78.13 ± 6.36 | 43.50 ± 12.10 | <0.0001 |
Lysine | 115.75 ± 11.03 | 59.02 ± 17.97 | <0.0001 |
Ornithine | 55.38 ± 6.72 | 98.37 ± 30.20 | 0.0009 |
TAAs | 2377.56 ± 151.78 | 1040.19 ± 210.78 | <0.0001 |
BCAAs | 277.75 ± 12.96 | 142.21 ± 42.71 | <0.0001 |
EAAs | 608.25 ± 19.95 | 294.75 ± 71.74 | <0.0001 |
Variable | (A-V) C (N = 8) | (A-V) CRS 2 (N = 16) | p-Value |
---|---|---|---|
Aspartic acid | 0.27 ± 14.35 | −13.65 ± 20.73 | 0.10 |
Glutamic acid | −7.50 ± 21.05 | −69.04 ± 70.60 | 0.027 |
Asparagine | −51.61 ± 157.21 | −17.67 ± 16.03 | 0.023 |
Serine | −2.44 ± 6.45 | −18.93 ± 18.59 | 0.032 |
Glutamine | −2.38 ± 23.05 | −27.53 ± 54.47 | 0.08 |
Histidine | −0.38 ± 5.04 | −14.90 ± 48.43 | 0.023 |
Glycine | 9.88 ± 29.98 | −41.60 ± 32.73 | 0.001 |
Threonine | 4.97 ± 14.84 | −8.21 ± 10.40 | 0.11 |
Citrulline | −0.50 ± 5.65 | −3.35 ± 2.67 | 0.14 |
Alanine | −15.00 ± 20.54 | −53.53 ± 38.40 | 0.012 |
Arginine | −0.16 ± 10.21 | −8.98 ± 14.61 | 0.14 |
Tyrosine | 4.50 ± 9.10 | −19.92 ± 13.23 | 0.0006 |
Cysteine | −2.25 ± 8.10 | −10.53 ± 27.13 | 0.95 |
Valine | 6.12 ± 19.39 | −29.60 ± 25.15 | 0.017 |
Methionine | −1.05 ± 1.93 | −3.39 ± 4.45 | 0.037 |
Tryptophan | −1.03 ± 7.65 | −19.45 ± 18.86 | 0.008 |
Phenylalanine | 5.05 ± 6.56 | −11.38 ± 7.94 | 0.006 |
Isoleucine | 1.65 ± 5.72 | −8.66 ± 5.96 | 0.023 |
Leucine | 0.97 ± 7.25 | −22.47 ± 14.06 | 0.002 |
Lysine | −8.75 ± 16.73 | −21.37 ± 21.05 | 0.020 |
Ornithine | 1.00 ± 10.49 | −34.50 ± 32.73 | 0.004 |
TAAs | 76.22 ± 138.9 | −413.63 ± 333.21 | 0.020 |
BCAAs | 8.75 ± 23.87 | −60.74 ± 43.95 | 0.006 |
EAAs | 7.95 ± 24.07 | −124.54 ± 92.02 | 0.004 |
Variable | Ratio C (N = 8) | Ratio CRS 2 (N = 16) | p-Value |
---|---|---|---|
Aspartic acid | 1.00 ± 0.13 | 0.77 ± 0.48 | 0.09 |
Glutamic acid | 0.97 ± 0.10 | 0.87 ± 1.22 | 0.027 |
Asparagine | 0.96 ± 0.35 | 0.62 ± 0.33 | 0.032 |
Serine | 0.98 ± 0.07 | 0.63 ± 0.33 | 0.017 |
Glutamine | 1.00 ± 0.05 | 0.84 ± 0.44 | 0.10 |
Histidine | 1.00 ± 0.09 | 0.61 ± 0.11 | 0.014 |
Glycine | 1.05 ± 0.13 | 0.97 ± 1.71 | 0.0006 |
Threonine | 1.05 ± 0.14 | 0.75 ± 0.37 | 0.014 |
Citrulline | 1.00 ± 0.24 | 0.70 ± 0.21 | 0.010 |
Alanine | 0.96 ± 0.06 | 0.61 ± 0.23 | 0.003 |
Arginine | 1.01 ± 0.17 | 0.83 ± 0.34 | 0.09 |
Tyrosine | 1.10 ± 0.17 | 0.53 ± 0.33 | 0.002 |
Cysteine | 0.98 ± 0.11 | 0.93 ± 0.45 | 0.54 |
Valine | 1.04 ± 0.12 | 0.68 ± 0.26 | 0.008 |
Methionine | 0.90 ± 0.17 | 0.78 ± 0.90 | 0.017 |
Tryptophan | 0.98 ± 0.15 | 0.56 ± 0.47 | 0.020 |
Phenylalanine | 1.11 ± 0.15 | 0.56 ± 0.28 | 0.002 |
Isoleucine | 1.04 ± 0.13 | 0.59 ± 0.26 | 0.002 |
Leucine | 1.01 ± 0.09 | 0.53 ± 0.28 | 0.002 |
Lysine | 0.92 ± 0.14 | 0.68 ± 0.28 | 0.007 |
Ornithine | 1.03 ± 0.19 | 0.70 ± 0.27 | 0.007 |
TAAs | 1.03 ± 0.06 | 0.65 ± 0.29 | 0.008 |
BCAAs | 1.03 ± 0.09 | 0.62 ± 0.26 | 0.003 |
EAAs | 1.00 ± 0.04 | 0.62 ± 0.28 | 0.003 |
Variable | C (N = 8) | M-CKD eGFR ≥ 60 mL/min/1.73 m2 (N = 5) | MS-CKD eGFR < 60 mL/min/1.73 m2 (N = 11) | p-Value | p-Value C vs. M-CKD | p-Value C vs. MS-CKD | p-Value M-CKD vs. MS-CKD |
---|---|---|---|---|---|---|---|
Aspartic acid | 112.1 ± 8.858 | 30.49 ± 19.76 | 29.53 ± 12.13 | 0.00046 | 0.009 | 0.0007 | 1.00 |
Glutamic acid | 198.63 ± 10.61 | 80.48 ± 29.08 | 87.01 ± 26.80 | 0.00045 | 0.005 | 0.001 | 0.99 |
Asparagine | 61.04 ± 1.99 | 20.21 ± 9.20 | 25.13 ± 12.04 | 0.00040 | 0.003 | 0.002 | 0.94 |
Serine | 88.39 ± 4.25 | 21.80 ± 8.97 | 23.79 ± 7.92 | 0.00046 | 0.007 | 0.0009 | 1.00 |
Glutamine | 464.88 ± 13.98 | 100.16 ± 33.41 | 100.86 ± 49.28 | 0.00045 | 0.013 | 0.0006 | 1.00 |
Histidine | 58.00 ± 5.15 | 21.52 ± 32.02 | 23.71 ± 35.57 | 0.050 | 0.18 | 0.066 | 1.00 |
Glycine | 268.25 ± 11.97 | 47.53 ± 18.66 | 49.78 ± 16.79 | 0.00046 | 0.009 | 0.0007 | 1.00 |
Threonine | 111.6 ± 7.3 | 21.63 ± 8.88 | 20.16 ± 10.85 | 0.00045 | 0.015 | 0.0005 | 0.99 |
Citrulline | 24.57 ± 3.66 | 5.98 ± 2.48 | 6.62 ± 1.37 | 0.00044 | 0.004 | 0.001 | 0.98 |
Alanine | 312.63 ± 15.67 | 67.30 ± 7.58 | 74.55 ± 23.89 | 0.00046 | 0.007 | 0.0009 | 1.00 |
Arginine | 59.27 ± 7.61 | 28.52 ± 17.02 | 26.64 ± 8.75 | 0.0009 | 0.011 | 0.002 | 1.00 |
Tyrosine | 56.25 ± 6.11 | 14.81 ± 3.74 | 16.72 ± 3.99 | 0.00035 | 0.002 | 0.002 | 0.85 |
Cysteine | 77.13 ± 5.14 | 12.73 ± 6.32 | 16.72 ± 6.27 | 0.00037 | 0.002 | 0.002 | 0.89 |
Valine | 160.0 ± 15.8 | 47.73 ± 12.95 | 50.80 ± 13.24 | 0.00044 | 0.005 | 0.001 | 0.99 |
Methionine | 9.7 ± 2.8 | 3.12 ± 1.27 | 3.26 ± 1.64 | 0.00043 | 0.004 | 0.001 | 0.98 |
Tryptophan | 50.1 ± 4.9 | 17.44 ± 11.53 | 14.82 ± 6.22 | 0.00046 | 0.008 | 0.0008 | 1.00 |
Phenylalanine | 51.3 ± 5.1 | 9.99 ± 2.41 | 12.35 ± 3.30 | 0.00033 | 0.001 | 0.002 | 0.81 |
Isoleucine | 47.4 ± 4.1 | 10.41 ± 2.53 | 10.70 ± 3.78 | 0.00045 | 0.006 | 0.001 | 1.00 |
Leucine | 79.1 ± 8.5 | 19.98 ± 6.28 | 21.50 ± 7.45 | 0.00043 | 0.004 | 0.001 | 0.98 |
Lysine | 107 ± 11.4 | 32.37 ± 7.34 | 40.05 ± 14.48 | 0.00037 | 0.002 | 0.002 | 0.89 |
Ornithine | 56.38 ± 6.39 | 60.34 ± 28.54 | 65.48 ± 17.59 | 0.43 | - | - | - |
TAAs | 2453.78 ± 49.54 | 601.46 ± 166.72 | 637.97 ± 187.10 | 0.00046 | 0.007 | 0.0009 | 1.00 |
BCAAs | 286.5 ± 13.57 | 78.12 ± 20.75 | 83.00 ± 23.94 | 0.00045 | 0.005 | 0.001 | 0.99 |
EAAs | 612.2 ± 20.3 | 162.67 ± 45.03 | 173.63 ± 51.92 | 0.00046 | 0.007 | 0.0009 | 1.00 |
Variable | C (N = 8) | M-CKD eGFR ≥ 60 mL/min/1.73 m2 (N = 5) | MS-CKD eGFR < 60 mL/min/1.73 m2 (N = 11) | p-Value | p-Value C vs. M-CKD | p-Value C vs. MS-CKD | p-Value M-CKD vs. MS-CKD |
---|---|---|---|---|---|---|---|
Aspartic acid | 111.83 ± 10.48 | 36.54 ± 15.10 | 46.63 ± 15.35 | 0.00029 | 0.0010 | 0.003 | 0.71 |
Glutamic acid | 206.13 ± 11.15 | 155.13 ± 34.08 | 153.49 ± 60.34 | 0.014 | 0.034 | 0.037 | 0.94 |
Asparagine | 112.65 ± 157.39 | 39.04 ± 11.23 | 42.2 8 ± 10.37 | 0.005 | 0.017 | 0.013 | 0.96 |
Serine | 90.83 ± 4.21 | 43.43 ± 20.09 | 41.49 ± 12.69 | 0.00045 | 0.006 | 0.001 | 1.00 |
Glutamine | 467.25 ± 11.67 | 130.22 ± 28.59 | 127.24 ± 34.27 | 0.00044 | 0.015 | 0.0005 | 0.99 |
Histidine | 58.38 ± 6.02 | 38.37 ± 27.63 | 37.72 ± 28.64 | 0.12 | - | - | - |
Glycine | 258.38 ± 27.54 | 96.28 ± 51.79 | 88.13 ± 32.90 | 0.00044 | 0.018 | 0.00048 | 0.98 |
Threonine | 106.63 ± 11.10 | 33.64 ± 6.98 | 26.64 ± 8.37 | 0.00031 | 0.048 | 0.00021 | 0.76 |
Citrulline | 25.07 ± 2.90 | 8.27 ± 3.65 | 10.45 ± 2.99 | 0.00034 | 0.001 | 0.002 | 0.81 |
Alanine | 327.63 ± 15.60 | 126.17 ± 48.59 | 125.65 ± 34.40 | 0.00044 | 0.005 | 0.001 | 0.99 |
Arginine | 59.44 ± 5.85 | 32.47 ± 8.91 | 37.91 ± 19.47 | 0.005 | 0.017 | 0.013 | 0.96 |
Tyrosine | 51.75 ± 5.70 | 32.30 ± 9.96 | 37.74 ± 14.23 | 0.008 | 0.014 | 0.038 | 0.78 |
Cysteine | 79.38 ± 7.76 | 11.81 ± 5.83 | 32.45 ± 31.32 | 0.0010 | 0.001 | 0.023 | 0.38 |
Valine | 153.88 ± 13.48 | 78.79 ± 32.25 | 79.74 ± 25.25 | 0.00046 | 0.007 | 0.0009 | 1.00 |
Methionine | 10.75 ± 1.75 | 6.45 ± 3.29 | 6.68 ± 3.70 | 0.013 | 0.062 | 0.021 | 1.00 |
Tryptophan | 51.13 ± 4.64 | 31.57 ± 10.19 | 36.69 ± 18.12 | 0.013 | 0.042 | 0.027 | 0.98 |
Phenylalanine | 46.25 ± 5.68 | 20.59 ± 8.91 | 24.08 ± 6.75 | 0.00040 | 0.003 | 0.002 | 0.94 |
Isoleucine | 45.75 ± 5.01 | 19.25 ± 6.31 | 19.28 ± 5.07 | 0.00046 | 0.007 | 0.0009 | 1.00 |
Leucine | 78.13 ± 6.36 | 43.58 ± 13.99 | 43.46 ± 11.89 | 0.00046 | 0.009 | 0.0007 | 1.00 |
Lysine | 115.75 ± 11.03 | 62.10 ± 23.14 | 57.62 ± 16.23 | 0.00046 | 0.009 | 0.0007 | 1.00 |
Ornithine | 55.38 ± 6.72 | 99.14 ± 35.47 | 98.02 ± 29.40 | 0.004 | 0.028 | 0.007 | 1.00 |
TAAs | 2377.56 ± 151.78 | 1034.19 ± 248.63 | 1042.92 ± 204.67 | 0.00046 | 0.008 | 0.0008 | 1.00 |
BCAAs | 277.75 ± 12.96 | 141.62 ± 51.16 | 142.48 ± 41.10 | 0.00045 | 0.006 | 0.001 | 1.00 |
EAAs | 608.25 ± 19.95 | 295.97 ± 86.42 | 294.19 ± 68.79 | 0.00046 | 0.008 | 0.0008 | 1.00 |
Variable | C (N = 8) | M-CKD eGFR ≥ 60 mL/min/1.73 m2 (N = 5) | MS-CKD eGFR < 60 mL/min/1.73 m2 (N=11) | p-Value | p-Value C vs. M-CKD | p-Value C vs. MS-CKD | p-Value M-CKD vs. MS-CKD |
---|---|---|---|---|---|---|---|
Aspartic acid | 0.27 ± 14.35 | −6.05 ± 21.62 | −17.10 ± 20.38 | 0.14 | - | - | - |
Glutamic acid | −7.50 ± 21.05 | −74.65 ± 56.04 | −66.48 ±7 8.73 | 0.09 | - | - | - |
Asparagine | −51.61 ± 157.21 | −18.83 ± 11.79 | −17.14 ± 18.13 | 0.067 | - | - | - |
Serine | −2.44 ± 6.45 | −21.63 ± 24.06 | −17.71 ± 16.77 | 0.10 | - | - | - |
Glutamine | −2.38 ± 23.05 | −30.06 ± 53.39 | −26.38 ± 57.49 | 0.19 | - | - | - |
Histidine | −0.38 ± 5.04 | −16.86 ± 29.60 | −14.01 ± 56.25 | 0.057 | - | - | - |
Glycine | 9.88 ± 29.98 | −48.74 ± 45.88 | −38.35 ± 26.97 | 0.006 | 0.051 | 0.008 | 1.00 |
Threonine | 4.97 ± 14.84 | −12.01 ± 9.50 | −6.48 ± 10.76 | 0.19 | - | - | - |
Citrulline | −0.50 ± 5.65 | −2.30 ± 1.98 | −3.83 ± 2.89 | 0.22 | - | - | - |
Alanine | −15.00 ± 20.54 | −58.87 ± 51.47 | −51.10 ± 33.64 | 0.042 | 0.13 | 0.064 | 1.00 |
Arginine | −0.16 ± 10.21 | −3.94 ± 16.48 | −11.27 ± 13.90 | 0.25 | - | - | - |
Tyrosine | 4.50 ± 9.10 | −17.49 ± 13.04 | −21.02 ± 13.80 | 0.003 | 0.054 | 0.003 | 0.97 |
Cysteine | −2.25 ± 8.10 | 0.92 ± 4.04 | −15.73 ± 31.66 | 0.56 | - | - | - |
Valine | 6.12 ± 19.39 | −31.06 ± 25.46 | −28.94 ± 26.23 | 0.057 | - | - | - |
Methionine | −1.05 ± 1.93 | −3.33 ± 4.43 | −3.42 ± 4.68 | 0.11 | - | - | - |
Tryptophan | −1.03 ± 7.65 | −14.13 ± 17.42 | −21.87 ± 19.78 | 0.026 | 0.29 | 0.022 | 0.91 |
Phenylalanine | 5.05 ± 6.56 | −10.60 ± 7.40 | −11.73 ± 8.50 | 0.022 | 0.16 | 0.023 | 0.99 |
Isoleucine | 1.65 ± 5.72 | −8.84 ± 6.88 | −8.58 ± 5.86 | 0.08 | - | - | - |
Leucine | 0.97 ± 7.25 | −23.60 ± 16.03 | −21.96 ± 13.88 | 0.009 | 0.030 | 0.019 | 0.98 |
Lysine | −8.75 ± 16.73 | −29.74 ± 26.63 | −17.57 ± 18.17 | 0.056 | - | - | - |
Ornithine | 1.00 ± 10.49 | −38.80 ± 44.59 | −32.54 ± 28.25 | 0.016 | 0.10 | 0.020 | 1.00 |
TAAs | 76.22 ± 138.9 | −432.73 ± 384.01 | −404.95 ± 327.56 | 0.065 | - | - | - |
BCAAs | 8.75 ± 23.87 | −63.50 ± 47.20 | −59.48 ± 44.73 | 0.022 | 0.08 | 0.037 | 1.00 |
EAAs | 7.95 ± 24.07 | −133.30 ± 100.00 | −120.56 ± 92.98 | 0.014 | 0.034 | 0.037 | 0.94 |
Variable | M-CKD eGFR ≥ 60 mL/min/1.73 m2 (N = 5) | MS-CKD eGFR < 60 mL/min/1.73 m2 (N = 11) | p-Values |
---|---|---|---|
Serum osmolarity (mOsm/L; NV = 290–320) | 271.36 ± 5.35 | 277.08 ± 16.38 | 0.78 |
Plasma bilirubin (mg/dL; NV = 0.5–1.0) | 0.80 ± 0.34 | 1.10 ± 0.53 | 0.28 |
Serum sodium (mEq/L; NV = 135–145) | 137.80 ± 3.11 | 135.82 ± 3.63 | 0.31 |
Serum creatinine (mg/dL; NV = 0.6–1.2) | 1.02 ± 0.08 | 1.60 ± 0.44 | 0.002 |
Serum potassium (mEq/L; NV = 3.5–5.0) | 4.22 ± 0.59 | 4.10 ± 0.58 | 0.95 |
Plasma urea (mg/dL; NV = 20–40) | 50.80 ± 24.45 | 76.09 ± 52.39 | 0.26 |
Plasma glucose (mg/dL; NV = 80–110) | 93.20 ± 10.13 | 97.73 ± 15.84 | 0.61 |
Blood hemoglobin (g/dL; NV = 12–15) | 13.34 ± 2.53 | 12.93 ± 2.18 | 0.67 |
Serum albumin (g/dL; NV = 3.5–5) | 4.07 ± 0.58 | 4.54 ± 0.31 | 0.08 |
Total cholesterol (mg/dL; NV < 200) | 146.40 ± 22.39 | 162.09 ± 53.35 | 0.61 |
Plasma triglycerides (mg/dL; NV = 60–170) | 98.40 ± 33.40 | 112.90 ± 71.05 | 1.00 |
eGFR (mL/min/1.73 m2) | RAP (mmHg) | LVEF (%) | LVEDD (mm) | LVESD (mm) | CI (L/min/m2) | |
---|---|---|---|---|---|---|
Aspartic acid | 0.18 | −0.03 | 0.53 ^ | 0.23 | 0.21 | 0.56 ^ |
Glutamic acid | −0.04 | −0.08 | 0.42 | 0.32 | 0.29 | 0.51 |
Asparagine | −0.11 | 0.46 | 0.49 | −0.03 | −0.04 | 0.14 |
Serine | 0.02 | −0.01 | 0.26 | 0.06 | −0.05 | 0.57 ^ |
Glutamine | 0.28 | −0.04 | 0.44 | 0.38 | 0.28 | 0.58 ^ |
Histidine | −0.03 | −0.14 | 0.16 | 0.42 | 0.34 | 0.12 |
Glycine | −0.23 | −0.12 | −0.37 | 0.05 | 0.04 | −0.06 |
Threonine | 0.20 | −0.33 | 0.35 | 0.24 | 0.14 | 0.18 |
Citrulline | −0.29 | −0.61 ^ | −0.09 | 0.40 | 0.37 | 0.17 |
Alanine | −0.21 | −0.51 | −0.03 | 0.59 ^ | 0.49 | 0.30 |
Arginine | −0.25 | 0.03 | 0.21 | 0.03 | 0.02 | 0.40 |
Tyrosine | −0.14 | −0.06 | 0.57 ^ | −0.10 | −0.02 | 0.21 |
Cysteine | −0.17 | −0.2 | 0.22 | −0.21 | −0.09 | −0.06 |
Valine | 0.17 | −0.30 | 0.57 ^ | 0.11 | 0.02 | 0.22 |
Methionine | −0.09 | −0.17 | 0.19 | −0.15 | −0.11 | −0.12 |
Tryptophan | −0.01 | −0.17 | 0.22 | 0.40 | 0.38 | 0.62 ^ |
Phenylalanine | −0.13 | −0.06 | 0.51 ^ | 0.04 | −0.10 | 0.29 |
Isoleucine | 0.28 | −0.20 | 0.64 † | 0.09 | 0.04 | 0.41 |
Leucine | 0.15 | −0.41 | 0.61 ^ | 0.07 | 0.06 | 0.34 |
Lysine | −0.13 | −0.05 | 0.50 ^ | 0.05 | 0.08 | 0.19 |
Ornithine | −0.30 | 0.22 | −0.15 | 0.12 | −0.09 | −0.11 |
Metabolic Compartments | Effects | Metabolic and Clinical Impacts |
---|---|---|
Protein synthesis | ||
(a) visceral compartment | reduced albumin synthesis [73] reduced erythropoietin synthesis [74] reduced immune cell proliferation, differentiation, function [75,76] | hypoalbuminemia anemia impaired immune response |
(b) somatic compartment (skeletal muscle tissue) | reduced contractile myofibrils [77] | sarcopenia, reduced muscle strength |
Brain | decreased fuel provision decreased neurotransmitter synthesis [78] | altered cognition, behavior, mood, appetite |
Intestine metabolism | reduced energy metabolism reduced protein synthesis [79] | small intestine injury: mucosal barrier disruption bacteria/toxins translocation |
Kidney metabolism | reduced renal mTOR complex signaling [27] | increased tubuli mitochondria dysfunction impaired mitochondria biogenesis reduced protein synthesis reduced nucleotide synthesis increased oxidative stress |
Heart metabolism | mitochondrial dysfunction altered myocardium remodeling increased oxidative stress [10] | inadequate energy production maladaptive remodeling reduced left ventricular ejection fraction |
Lung metabolism | reduced activity of alveolar Na+/K+ pump [50] | accumulation of intralveolar fluid |
Acid-base balance | reduced intracellular protein and AA buffers alterations in intermediate metabolism [80] | exaltation of intracellular acidosis reduced energy production increased oxidative stress |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquilani, R.; Maestri, R.; Dossena, M.; La Rovere, M.T.; Buonocore, D.; Boschi, F.; Verri, M. Altered Amino Acid Metabolism in Patients with Cardiorenal Syndrome Type 2: Is It a Problem for Protein and Exercise Prescriptions? Nutrients 2021, 13, 1632. https://doi.org/10.3390/nu13051632
Aquilani R, Maestri R, Dossena M, La Rovere MT, Buonocore D, Boschi F, Verri M. Altered Amino Acid Metabolism in Patients with Cardiorenal Syndrome Type 2: Is It a Problem for Protein and Exercise Prescriptions? Nutrients. 2021; 13(5):1632. https://doi.org/10.3390/nu13051632
Chicago/Turabian StyleAquilani, Roberto, Roberto Maestri, Maurizia Dossena, Maria Teresa La Rovere, Daniela Buonocore, Federica Boschi, and Manuela Verri. 2021. "Altered Amino Acid Metabolism in Patients with Cardiorenal Syndrome Type 2: Is It a Problem for Protein and Exercise Prescriptions?" Nutrients 13, no. 5: 1632. https://doi.org/10.3390/nu13051632
APA StyleAquilani, R., Maestri, R., Dossena, M., La Rovere, M. T., Buonocore, D., Boschi, F., & Verri, M. (2021). Altered Amino Acid Metabolism in Patients with Cardiorenal Syndrome Type 2: Is It a Problem for Protein and Exercise Prescriptions? Nutrients, 13(5), 1632. https://doi.org/10.3390/nu13051632