An Artificial-Intelligence-Discovered Functional Ingredient, NRT_N0G5IJ, Derived from Pisum sativum, Decreases HbA1c in a Prediabetic Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. NRT_N0G5IJ Discovery and Production
2.2. Sample Preparation and Mass Spectrometry Analysis
2.3. Cell Culture and Assays
2.4. Glucose Uptake Assay
2.5. Mouse Model of Diabetes
2.6. Double-Blind, Placebo-Controlled Trial of NRT_N0G5IJ in a Prediabetic Population
- Provided written informed consent,
- Aged between 18 and 75 years, inclusive,
- HbA1c of >5.7% and <6.4% (38.8–47 mmol/mol),
- Non-smoker or an ex-smoker (10 years or more),
- BMI 20–35 kg/m²,
- Stable body weight (±5%) in the last 3 months (as self-reported by the subject),
- Willing to maintain existing dietary habits and physical activity levels throughout the trial period,
- Able to communicate well with the investigator, to understand and comply with the requirements of the study, and judged suitable for the study in the opinion of the investigator.
- Diagnosed diabetes with an HbA1c > 6.4% (47 mmol/mol),
- BMI less than 20 (underweight) or greater than 35 (morbidly obese),
- Significant acute or chronic coexisting illness such as cardiovascular disease, chronic kidney or liver disease, gastrointestinal disorder, endocrinological disorder, immunological disorder, metabolic disease, or any condition which contraindicates, in the investigator’s judgement, entry to the study,
- Consumption of more than the recommended alcohol guidelines i.e., >21 alcohol units/week for males and >14 units/week for females,
- Currently or recently (within 3 months of study entry) taking any medication, which, in the opinion of the investigator, could interfere with the outcome of the study, including insulin, acetylsalicylic acid, and thyroxine,
- Taking hypolipidemic agents and/or beta-blockers,
- Known allergy to any of the components of the test product,
- History of drug or alcohol abuse,
- Present or recent use (within 3 months of pre-screening) of dietary supplements that may affect the level of blood glucose,
- Low haemoglobin or haematocrit,
- Pregnant, lactating, or wishing to become pregnant during the study,
- Participation in a clinical trial with an investigational product within 90 days of pre-screening, or plans to participate in another study during the study period,
- History of noncompliance.
2.7. Statistics
3. Results
3.1. NRT_N0G5IJ Improves Glucose Uptake in Human Skeletal Muscle Cells
3.2. NRT_N0G5IJ Normalises Blood Glucose Regulation and Decreases HbA1c Concentrations in Diabetic Mice
3.3. NRT_N0G5IJ Decreases HbA1c in Humans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; 2017. [Google Scholar]
- National Institute of Diabetes and Digestive and Kidney Diseases. Insulin Resistance & Prediabetes. Available online: https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/prediabetes-insulin-resistance (accessed on 7 May 2021).
- Cerf, M.E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Hostalek, U. Global epidemiology of prediabetes—Present and future perspectives. Clin. Diabetes Endocrinol. 2019, 5, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020; Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services: Atlanta, GA, USA, 2020.
- Turner, N.; Zeng, X.-Y.; Osborne, B.; Rogers, S.; Ye, J.-M. Repurposing Drugs to Target the Diabetes Epidemic. Trends Pharmacol. Sci. 2016, 37, 379–389. [Google Scholar] [CrossRef]
- Bhatt, H.B. Thoughts on the progression of type 2 diabetes drug discovery. Expert Opin. Drug Discov. 2014, 10, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association Standards of Medical Care in Diabetes—2013. Diabetes Care 2012, 36, S11–S66. [CrossRef] [Green Version]
- Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, H.C.; Pogue, J.; Mann, J.F.E.; Lonn, E.; Dagenais, G.R.; McQueen, M.; Yusuf, S. HOPE investigators The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: A prospective epidemiological analysis. Diabetologia 2005, 48, 1749–1755. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Al Suwaidi, J.; Khalil, C.A. Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed. Res. Int. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lage, M.J.; Boye, K.S. The relationship between HbA1c reduction and healthcare costs among patients with type 2 diabetes: Evidence from a U.S. claims database. Curr. Med. Res. Opin. 2020, 36, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The Future of Peptide-based Drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef]
- Li-Chan, E.C. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Horizon 2020. Health. Available online: https://ec.europa.eu/programmes/horizon2020/en/area/health (accessed on 5 October 2020).
- Kennedy, K.; Cal, R.; Casey, R.; Lopez, C.; Adelfio, A.; Molloy, B.; Wall, A.M.; Holton, T.A.; Khaldi, N. The anti-ageing effects of a natural peptide discovered by artificial intelligence. Int. J. Cosmet. Sci. 2020, 42, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Wall, A.; Kennedy, K.; Cal, R.; Casey, R.; Holton, T.; Adelfio, A.; Khaldi, N. pep_35E7UW, a natural peptide with cutaneous anti-ageing effects discovered within the Oryza sativa proteome through machine learning. J. Dermatol. Cosmetol. 2020, 4, 109–116. [Google Scholar] [CrossRef]
- Kennedy, K.; Keogh, B.; Lopez, C.; Adelfio, A.; Molloy, B.; Kerr, A.; Wall, A.M.; Jalowicki, G.; Holton, T.A.; Khaldi, N. An Artificial Intelligence Characterised Functional Ingredient, Derived from Rice, Inhibits TNF-α and Significantly Improves Physical Strength in an Inflammaging Population. Foods 2020, 9, 1147. [Google Scholar] [CrossRef] [PubMed]
- Rein, D.; Ternes, P.; Demin, R.; Gierke, J.; Helgason, T.; Schön, C.; Gierke, J. Artificial intelligence identified peptides modulate inflammation in healthy adults. Food Funct. 2019, 10, 6030–6041. [Google Scholar] [CrossRef] [Green Version]
- Cal, R.; Davis, H.; Kerr, A.; Wall, A.; Molloy, B.; Chauhan, S.; Trajkovic, S.; Holyer, I.; Adelfio, A.; Khaldi, N. Preclinical Evaluation of a Food-Derived Functional Ingredient to Address Skeletal Muscle Atrophy. Nutrients 2020, 12, 2274. [Google Scholar] [CrossRef]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Del Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 2016, 7, 354–395. [Google Scholar] [CrossRef]
- Casey, R.; Adelfio, A.; Connolly, M.; Wall, A.; Holyer, I.; Khaldi, N. Discovery through Machine Learning and Preclinical Validation of Novel Anti-Diabetic Peptides. Biomedicines 2021, 9, 276. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Della-Morte, D.; Palmirotta, R.; Rehni, A.K.; Pastore, D.; Capuani, B.; Pacifici, F.; De Marchis, M.L.; Dave, K.R.; Bellia, A.; Fogliame, G.; et al. Pharmacogenomics and pharmacogenetics of thiazolidinediones: Role in diabetes and cardiovascular risk factors. Pharmacogenomics 2014, 15, 2063–2082. [Google Scholar] [CrossRef] [Green Version]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J. Diabetes 2014, 5, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.; Wall, A.; Khaldi, N. Using Artificial Intelligence to Reduce Global Healthcare Costs through Discovery and Development of Nutritional Interventions. Int. J. Nurs. Didact. 2020, 10. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Lin, C.-H.; Huang, T.-H.; Chuang, S.-Y. In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients 2019, 11, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjørholt, C.; Åkerfeldt, M.C.; Biden, T.J.; Laybutt, D.R. Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of β-cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes 2005, 54, 2755–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chodavarapu, H.; Grobe, N.; Somineni, H.K.; Salem, E.S.B.; Madhu, M.; Elased, K.M. Rosiglitazone Treatment of Type 2 Diabetic db/db Mice Attenuates Urinary Albumin and Angiotensin Converting Enzyme 2 Excretion. PLoS ONE 2013, 8, e62833. [Google Scholar] [CrossRef]
- Carmona, M.C.; Louche, K.; Nibbelink, M.; Prunet, B.; Bross, A.; Desbazeille, M.; Dacquet, C.; Renard, P.; Casteilla, L.; Pénicaud, L. Fenofibrate prevents Rosiglitazone-induced body weight gain in ob/ob mice. Int. J. Obes. 2005, 29, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Provilus, A.; Abdallah, M.; McFarlane, S.I. Weight gain associated with antidiabetic medications. Therapy 2011, 8, 113–120. [Google Scholar] [CrossRef]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.W.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. Br. Med. J. 2000, 321, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Lamb, E. Glycated haemoglobin, diabetes, and mortality in men. Analytical information is required for generalisation of data. BMJ 2001, 322, 996–997. [Google Scholar]
- Khaw, K.-T.; Wareham, N.; Luben, R.; Bingham, S.; Oakes, S.; Welch, A.; Day, N. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and Nutrition (EPIC-Norfolk). BMJ 2001, 322, 15. [Google Scholar] [CrossRef] [Green Version]
- Ohde, S.; Deshpande, G.A.; Yokomichi, H.; Takahashi, O.; Fukui, T.; Yamagata, Z. HbA1c monitoring interval in patients on treatment for stable type 2 diabetes. A ten-year retrospective, open cohort study. Diabetes Res. Clin. Pract. 2018, 135, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, N.; Khan, W.A.G.; Alhumaidi, M.H.; Ahmed, Y.A.A.R. Use of Glycated Hemoglobin in the Diagnosis of Diabetes Mellitus and Pre-diabetes and Role of Fasting Plasma Glucose, Oral Glucose Tolerance Test. Int. J. Prev. Med. 2013, 4, 1025–1029. [Google Scholar] [PubMed]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. [Google Scholar] [CrossRef] [PubMed]
- McMacken, M.; Shah, S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr. Cardiol. 2017, 14, 342–354. [Google Scholar] [PubMed]
- Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.B.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open 2015, 5, e008222. [Google Scholar] [CrossRef] [Green Version]
- Carter, P.; Achana, F.; Troughton, J.; Gray, L.J.; Khunti, K.; Davies, M.J. A Mediterranean diet improves HbA1c but not fasting blood glucose compared to alternative dietary strategies: A network meta-analysis. J. Hum. Nutr. Diet. 2013, 27, 280–297. [Google Scholar] [CrossRef] [Green Version]
- Adams, K.; Schryver, H.; Tetarenko, T. Mediterranean Diet and Its Effects on Preventing and Managing Type Two Diabetes: A Literature Review. Prim. Health Care Open Access 2017, 7, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N. Prediabetes diagnosis and treatment: A review. World J. Diabetes 2015, 6, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Hamman, R.F.; Wing, R.R.; Edelstein, S.L.; Lachin, J.M.; Bray, G.A.; Delahanty, L.M.; Hoskin, M.A.; Kriska, A.M.; Mayer-Davis, E.J.; Pi-Sunyer, X.; et al. Effect of Weight Loss With Lifestyle Intervention on Risk of Diabetes. Diabetes Care 2006, 29, 2102–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosi, E. Metformin—The gold standard in type 2 diabetes: What does the evidence tell us? Diabetes Obes. Metab. 2009, 11, 3–8. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive peptides with antidiabetic properties: A review. Int. J. Food Sci. Technol. 2019, 54, 1909–1919. [Google Scholar] [CrossRef] [Green Version]
- Schaafsma, G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr. 2009, 63, 1161–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Placebo | Rice NPN | NRT_N0G5IJ | |
---|---|---|---|
Number (n) | 25 | 27 | 25 |
Mean age (range, years) | 58.8 (33–75) | 59.3 (33–75) | 55.8 (26–75) |
Male (n, %) | 10 (40%) | 8 (29.6%) | 11 (44%) |
Female (n, %) | 15 (60%) | 19 (70.4%) | 14 (56%) |
Mean height (range, cm) | 170.58 (152–188) | 167.93 (155–200) | 171.40 (155–190) |
Mean weight (range, kg) | 90.61 (70–115.3) | 90.12 (64.6–129.5) | 88.82 (59.5–123) |
Mean BMI (range, kg/m2) | 31.14 (24.5–34.95) | 31.77 (23.7–34.9) | 30.04 (20.8–34.78) |
Mean HbA1c (range, %) | 5.99 (5.7–6.4) | 6.04 (5.7–6.3) | 6.04 (5.7–6.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, S.; Kerr, A.; Keogh, B.; Nolan, S.; Casey, R.; Adelfio, A.; Murphy, N.; Doherty, A.; Davis, H.; Wall, A.M.; et al. An Artificial-Intelligence-Discovered Functional Ingredient, NRT_N0G5IJ, Derived from Pisum sativum, Decreases HbA1c in a Prediabetic Population. Nutrients 2021, 13, 1635. https://doi.org/10.3390/nu13051635
Chauhan S, Kerr A, Keogh B, Nolan S, Casey R, Adelfio A, Murphy N, Doherty A, Davis H, Wall AM, et al. An Artificial-Intelligence-Discovered Functional Ingredient, NRT_N0G5IJ, Derived from Pisum sativum, Decreases HbA1c in a Prediabetic Population. Nutrients. 2021; 13(5):1635. https://doi.org/10.3390/nu13051635
Chicago/Turabian StyleChauhan, Sweeny, Alish Kerr, Brian Keogh, Stephanie Nolan, Rory Casey, Alessandro Adelfio, Niall Murphy, Aoife Doherty, Heidi Davis, Audrey M. Wall, and et al. 2021. "An Artificial-Intelligence-Discovered Functional Ingredient, NRT_N0G5IJ, Derived from Pisum sativum, Decreases HbA1c in a Prediabetic Population" Nutrients 13, no. 5: 1635. https://doi.org/10.3390/nu13051635
APA StyleChauhan, S., Kerr, A., Keogh, B., Nolan, S., Casey, R., Adelfio, A., Murphy, N., Doherty, A., Davis, H., Wall, A. M., & Khaldi, N. (2021). An Artificial-Intelligence-Discovered Functional Ingredient, NRT_N0G5IJ, Derived from Pisum sativum, Decreases HbA1c in a Prediabetic Population. Nutrients, 13(5), 1635. https://doi.org/10.3390/nu13051635