Caffeine Sources and Consumption among Saudi Adults Living with Diabetes and Its Potential Effect on HbA1c
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Medical History, Anthropometric Measurement, and Lifestyle
2.3. Estimating Caffeine Consumption
2.3.1. 24-h Dietary Recall
2.3.2. Caffeine Food Frequency Questionnaire
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Source and Amount of Caffeine Consumption by Saudi Adults Living with Diabetes
3.3. Caffeine Intake and Other Health Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, A. Effects of caffeine on human behavior. Food Chem. Toxicol. 2002, 40, 1243–1255. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013, 36, S67–S74. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 22 January 2021).
- World Health Organization. WHO Reveals Leading Causes of Death and Disability Worldwide: 2000–2019. Available online: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019 (accessed on 21 January 2021).
- Van Dieren, S.; Uiterwaal, C.S.P.M.; van der Schouw, Y.T.; van der A, D.L.; Boer, J.M.A.; Spijkerman, A.; Grobbee, D.E.; Beulens, J.W.J. Coffee and tea consumption and risk of type 2 diabetes. Diabetologia 2009, 52, 2561–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Globalization of Diabetes. Role Diet Lifestyle Genes 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol. 2014, 63, 136–142. [Google Scholar] [CrossRef] [Green Version]
- McCusker, R.R.; Goldberger, B.A.; Cone, E.J. Caffeine content of specialty coffees. J. Anal. Toxicol. 2003, 27, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Preedy, V.R. Caffeine: Chemistry, Analysis, Function and Effects; Royal Society of Chemistry: Cambridge, UK, 2012. [Google Scholar]
- National Center for Biotechnology Information. Caffeine. PubChem Componund Summary for CID 2519. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caffeine (accessed on 15 November 2019).
- Poole, R.; Ewings, S.; Parkes, J.; Fallowfield, J.A.; Roderick, P. Misclassification of coffee consumption data and the development of a standardised coffee unit measure. BMJ Nutr. Prev. Health 2019, 2, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.A.; Boozer, C.N.; Geliebter, A. Coffee, diabetes, and weight control. Am. J. Clin. Nutr. 2006, 84, 682–693. [Google Scholar] [CrossRef] [Green Version]
- Bhupathiraju, S.N.; Pan, A.; Malik, V.S.; Manson, J.E.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am. J. Clin. Nutr. 2012, 97, 155–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louie, J.C.; Atkinson, F.; Petocz, P.; Brand-Miller, J.C. Delayed effects of coffee, tea and sucrose on postprandial glycemia in lean, young, healthy adults. Asia Pac. J. Clin. Nutr. 2008, 17, 657–662. [Google Scholar] [PubMed]
- Van Dam, R.M.; Willett, W.C.; Manson, J.E.; Hu, F.B. Coffee, caffeine, and risk of type 2 diabetes: A prospective cohort study in younger and middle-aged US women. Diabetes Care 2006, 29, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Matusheski, N.; Bidel, S.; Tuomilehto, J. Coffee and Type 2 Diabetes Risk. In Coffee Emerging Health Effects and Disease Prevention; Chapter 8; Chu, Y.F., Ed.; John Wiley & Sons: Ames, IA, USA, 2012. [Google Scholar]
- Natella, F.; Scaccini, C. Role of coffee in modulation of diabetes risk. Nutr. Rev. 2012, 70, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Satija, A.; Bhupathiraju, S.N.; Hu, Y.; Sun, Q.; Han, J.; Lopez-Garcia, E.; Willett, W.; Van Dam, R.M.; Hu, F.B. Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation 2015, 132, 2305–2315. [Google Scholar] [CrossRef] [Green Version]
- Institute for Scientific Information on Coffee. Sources of Caffiene. Available online: https://www.coffeeandhealth.org/topic-overview/sources-of-caffeine/ (accessed on 10 October 2019).
- Reunanen, A.; Heliövaara, M.; Aho, K. Coffee consumption and risk of type 2 diabetes mellitus. Lancet 2003, 361, 702–703. [Google Scholar] [CrossRef]
- Saremi, A.; Tulloch-Reid, M.; Knowler, W.C. Coffee consumption and the incidence of type 2 diabetes. Diabetes Care 2003, 26, 2211–2212. [Google Scholar] [CrossRef] [Green Version]
- Lane, J.D.; Lane, A.J.; Surwit, R.S.; Kuhn, C.M.; Feinglos, M.N. Pilot study of caffeine abstinence for control of chronic glucose in type 2 diabetes. J. Caffeine Res. 2012, 2, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.D.; Feinglos, M.N.; Surwit, R.S. Caffeine increases ambulatory glucose and postprandial responses in coffee drinkers with type 2 diabetes. Diabetes Care 2008, 31, 221–222. [Google Scholar] [CrossRef] [Green Version]
- Whitsett, T.L.; Manion, C.V.; Christensen, H.D. Cardiovascular effects of coffee and caffeine. Am. J. Cardiol. 1984, 53, 918–922. [Google Scholar] [CrossRef]
- Jee, S.H.; He, J.; Whelton, P.K.; Suh, I.; Klag, M.J. The effect of chronic coffee drinking on blood pressure: A meta-analysis of controlled clinical trials. Hypertension 1999, 33, 647–652. [Google Scholar] [CrossRef] [Green Version]
- Al-Othman, A.; Al-Musharaf, S.; Al-Daghri, N.M.; Yakout, S.; Alkharfy, K.M.; Al-Saleh, Y.; Al-Attas, O.S.; Alokail, M.S.; Moharram, O.; Sabico, S. Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents. Nutr. J. 2012, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Alneami, Y.M.; Coleman, C.L. Risk factors for and barriers to control type-2 diabetes among Saudi population. Glob. J. Health Sci. 2016, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, J.S.; Leitão, L.; Magriço, R.; Bigotte Vieira, M.; Viegas Dias, C.; Oliveira, A.; Carvalho, D.; Claggett, B. Caffeine Consumption and Mortality in Diabetes: An Analysis of NHANES 1999–2010. Front. Endocrinol. 2018, 9. [Google Scholar] [CrossRef]
- Alshawi, A.H. The Effect of Coffee Consumption on Blood Glucose: A Review. Pak. J. Nutr. 2020, 19, 420–429. [Google Scholar] [CrossRef]
- Rezk, N.L.; Ahmed, S.; Iqbal, M.; Rezk, O.A.; Ahmed, A.M. Comparative evaluation of caffeine content in Arabian coffee with other caffeine beverages. Afr. J. Pharm. Pharmacol. 2018, 12, 19–26. [Google Scholar]
- Whitehead, N.; White, H. Systematic review of randomised controlled trials of the effects of caffeine or caffeinated drinks on blood glucose concentrations and insulin sensitivity in people with diabetes mellitus. J. Hum. Nutr. Diet. 2013, 26, 111–125. [Google Scholar] [CrossRef]
- Rochat, C.; Eap, C.; Bochud, M.; Chatelan, A. Caffeine Consumption in Switzerland: Results from the First National Nutrition Survey MenuCH. Nutrients 2019, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinfeldt, L.; Anand, J.; Murayi, T. Food reporting patterns in the USDA automated multiple-pass method. Procedia Food Sci. 2013, 2, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Agricultural Research Service. Food Data Central Search Results. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/1104274/nutrients (accessed on 15 May 2019).
- Bondesson, E. A nutritional analysis on the by-product coffee husk and its potential utilization in food production. In Epsilon Archive for Student Projects; SLU: Uppsala, Sweden, 2015. [Google Scholar]
- Latosinska, M.; Latosinska, J. Introductory chapter: Caffeine, a major component of nectar of the gods and favourite beverage of kings, popes, artists and revolutionists, a drug or a poison. In The Question of Caffeine; Latosinska, J.N., Latosinska, M., Eds.; IntechOpen: London, UK, 2017; pp. 1–26. [Google Scholar]
- Willett, W. Nutritional Epidemiology, Food Frequency Methods; Oxford University Press: Oxford, UK, 2013; pp. 70–95. [Google Scholar]
- World Health Organization. Body Mass Index (BMI) Classification; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Bland, J.M.; Altman, D.G. The use of transformation when comparing two means. BMJ 1996, 312, 1153. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. Statistical Software Release 11; Stata Corporation: College Station, TX, USA, 2009. [Google Scholar]
- Alfawaz, H.A.; Khan, N.; Yakout, S.M.; Khattak, M.N.; Alsaikhan, A.A.; Almousa, A.A.; Alsuwailem, T.A.; Almjlad, T.M.; Alamri, N.A.; Alshammari, S.G. Prevalence, Predictors, and Awareness of Coffee Consumption and Its Trend among Saudi Female Students. Int. J. Environ. Res. Public Health 2020, 17, 7020. [Google Scholar] [CrossRef]
- Butt, M.S.; Sultan, M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. [Google Scholar] [CrossRef]
- Verster, J.C.; Koenig, J. Caffeine intake and its sources: A review of national representative studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1250–1259. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. [Google Scholar]
- Fitt, E.; Pell, D.; Cole, D. Assessing caffeine intake in the United Kingdom diet. Food Chem. 2013, 140, 421–426. [Google Scholar] [CrossRef]
- Yamada, M.; Sasaki, S.; Murakami, K.; Takahashi, Y.; Okubo, H.; Hirota, N.; Notsu, A.; Todoriki, H.; Miura, A.; Fukui, M.; et al. Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations. Public Health Nutr. 2010, 13, 663–672. [Google Scholar] [CrossRef]
- Fulgoni, V.L., 3rd; Keast, D.R.; Lieberman, H.R. Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. Am. J. Clin. Nutr. 2015, 101, 1081–1087. [Google Scholar] [CrossRef]
- Torres-Collado, L.; García-de la Hera, M.; Navarrete-Muñoz, E.M.; Compañ-Gabucio, L.M.; Gonzalez-Palacios, S.; Vioque, J. Coffee Drinking and Associated Factors in an Elderly Population in Spain. Int. J. Environ. Res. Public Health 2018, 15, 1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, J.D.; Hwang, A.L.; Feinglos, M.N.; Surwit, R.S. Exaggeration of postprandial hyperglycemia in patients with type 2 diabetes by administration of caffeine in coffee. Endocr. Pract. 2007, 13, 239–243. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, G.; Caballero, B.; Appel, L.; Chen, L. Habitual coffee consumption and risk of hypertension: A systematic review and meta-analysis of prospective observational studies. Am. J. Clin. Nutr. 2011, 93, 1212–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.M.; Jenkins, E.; Hamilton, P.; Lunt, M.J.; Kerr, D. Influence of caffeine on the frequency and perception of hypoglycemia in free-living patients with type 1 diabetes. Diabetes Care 2000, 23, 455–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkaabi, J.; Al-Dabbagh, B.; Saadi, H.; Gariballa, S.; Yasin, J. Effect of traditional arabic coffee consumption on the glycemic index of khalas dates tested in healthy and diabetic subjects. Asia Pac. J. Clin. Nutr. 2013, 22, 565–573. [Google Scholar] [PubMed]
- Crist, G.H.; Xu, B.; Lanoue, K.F.; Lang, C.H. Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J. 1998, 12, 1301–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keijzers, G.B.; De Galan, B.E.; Tack, C.J.; Smits, P. Caffeine can decrease insulin sensitivity in humans. Diabetes Care 2002, 25, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
General Characteristics | All Participants (n = 100) | Females (n = 50) | Males (n = 50) | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | |
Age * (years) | 56.2 | 14.0 | 57.1 | 14.4 | 55.3 | 13.7 | 0.650 |
Height * (cm) | 161.9 | 8.1 | 157.4 | 7.0 | 166.5 | 6.3 | 0.001 |
Weight * (kg) | 89.2 | 14.5 | 88.5 | 20.8 | 89.8 | 15.9 | 0.708 |
BMI * (kg/m2) | 33.7 | 6.5 | 35.0 | 7.1 | 32.3 | 5.7 | 0.035 |
BMI category † (n, %) | |||||||
Normal weight | 6 | 6% | 3 | 6% | 3 | 6% | |
Overweight | 26 | 26% | 10 | 20% | 16 | 32% | 0.038 |
Obese | 68 | 68% | 37 | 74% | 31 | 62% | |
Waist circumference * (cm) | 98 | 15 | 99 | 17 | 97 | 13 | 0.444 |
Following special Diet † (yes, n, %) | 36 | 36% | 18 | 36% | 18 | 36% | 1.000 |
Diabetes Diet (self-assessment of balanced diet) | 30 | 83% | 14 | 78% | 16 | 89% | 0.212 |
Diabetes Diet and other diet e.g., low fat diet or low salt diet or for losing weight | 6 | 17% | 4 | 22% | 2 | 11% | |
Duration of having diabetes (year) | 14 | 10 | 13 | 8 | 15 | 11 | 0.305 |
Diabetes treatment † (n, %) | |||||||
Oral antidiabetic drugs only | 37 | 37% | 21 | 42% | 16 | 32% | |
Insulin | 22 | 22% | 9 | 18% | 13 | 26% | 0.490 |
Oral antidiabetic drugs and Insulin | 41 | 41% | 20 | 40% | 21 | 42% | |
Dietary characteristics * | |||||||
Total energy (Kcal) | 2392 | 610 | 2194 | 614 | 2589 | 544 | 0.001 |
Protein (g) | 102 | 46 | 80 | 34 | 123 | 46 | 0.001 |
Fat (g) | 77 | 34 | 70 | 34 | 83 | 34 | 0.053 |
Energy from fat (Kcal) | 708 | 349 | 746 | 387 | 746 | 305 | 0.273 |
Carbohydrate (g) | 318 | 95 | 303 | 106 | 333 | 81 | 0.121 |
Having chronic disease † (n, %) | |||||||
Blood pressure (yes) | 60 | 60% | 33 | 66% | 27 | 54% | 0.221 |
Cholesterol (yes) | 74 | 74% | 38 | 76% | 36 | 72% | 0.648 |
Other disease (yes) | 28 | 28% | 16 | 32% | 12 | 24% | 0.373 |
Smoking † (n, %) | |||||||
Yes | 17 | 17% | 5 | 10% | 12 | 24% | 0.001 |
I have given up | 23 | 23% | 1 | 2% | 22 | 44% | |
Physical activity † (n, %) | |||||||
Never | 28 | 28% | 17 | 34% | 11 | 22% | 0.119 |
Once a week | 21 | 21% | 14 | 28% | 7 | 14% | |
Twice a week | 12 | 12% | 5 | 10% | 7 | 14% | |
More than four times week | 39 | 39% | 14 | 28% | 25 | 50% |
Source of Caffeine | All Participants | Females | Males | Adjusted Difference in Means (95%CI) * | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean (SD) | Median (IQR) | N | Mean (SD) | Median (IQR) | N | Mean (SD) | Median (IQR) | p-Value | ||
Caffeine-FFQ (mg/day) | 100 | 194 (165) | 151 (81, 233) | 50 | 127 (107) | 99 (52, 181) | 50 | 261 (185.0) | 218(121, 345) | 90.70 (13.8, 167.6) | 0.021 |
Caffeine/body weight (mg/kg) | 2.3 (2.0) | 1.8 (0.9, 2.8) | 50 | 1.5 (1.4) | 1.2 (0.7, 1.9) | 50 | 3.0 (2.4) | 2.3 (1.5, 3.4) | 1.29 (2.27, 0.35) | 0.011 | |
Tea | 95 | 116(108) | 76 (44, 180) | 46 | 79 (75) | 72 (31, 103) | 49 | 150 (123) | 110(72, 187) | 31.51(21.77,84.80) | 0.243 |
ratio of the geometric means (95%CI) † | p-value | ||||||||||
Coffee | 52 | 94 (128) | 56 (10, 102) | 22 | 66 (77) | 47 (9, 94) | 30 | 114 (154) | 56 (18, 130) | 0.53 (0.22, 1.24) | 0.139 |
Arabic coffee (Gahwa) | 95 | 8 (12) | 3 (1, 8) | 48 | 9 (12) | 4 (2, 9) | 47 | 7 (12) | 2 (1, 8) | 1.5 (0.67, 3.20) | 0.338 |
Energy drink | 12 | 31(45) | 8 (5, 52) | 5 | 29 (47) | 8 (7, 11) | 7 | 33.5 (34) | 8 (3, 89) | 0.89 (0.01, 61.9) | 0.947 |
Soft drink | 56 | 19 (31) | 8 (5, 13) | 28 | 14.5(20) | 8 (5, 13) | 28 | 24 (39) | 8 (5, 19) | 0.74 (0.36, 1.5) | 0.406 |
Chocolate | 90 | 6 (11) | 2.3 (1, 5) | 45 | 6 (12) | 3 (1, 5) | 45 | 6 (11) | 2 (1, 5) | 1.9 (0.89, 4.1) | 0.654 |
Health Outcome | All Participants † | Female ‡ | Male ‡ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean (SD) | Change in Health Outcome/100 mg Caffeine * (95%CI) | p Value | N | Mean (SD) | Change in Health Outcome/100 mg Caffeine (95%CI) | p Value | N | Mean (95%CI) | Change in Health Outcome/100 mg Caffeine (95%CI) | p Value | |
HbA1c | 100 | 8.5 (2.1) | 0.3 (−0.3, 0.3) | 0.866 | 50 | 8.5 (2.3) | 0.3 (−0.4, 1.0) | 0.348 | 50 | 8.6 (2.01) | −0.1 (−0.4, 0.3) | 0.661 |
Cholesterol (mmol/L) | 85 | 172.6 (53.0) | 3.4 (−4.7, 11.7) | 0.400 | 40 | 172.5 (58.2) | 4.3 (−16.2, 24.8) | 0.672 | 45 | 172.8 (48.66) | 4.1(−4.8, 13.1) | 0.358 |
HDL (mg/dL) | 81 | 47.7 (21.8) | 1.5 (−1.97, 5.02) | 0.389 | 39 | 50.6 (24.3) | 3.2 (−5.6, 11.9) | 0.464 | 42 | 44.9 (19.03) | 1.1 (−2.5, 4.9) | 0.519 |
LDL (mg/dL) | 75 | 100.9 (45.6) | 0.72 (−6.4, 8.1) | 0.844 | 34 | 102.3 (48.3) | 9.9 (−7.5, 27.4) | 0.252 | 41 | 99.7(43.80) | −1.6 (−10.1, 6.9) | 0.706 |
Triglyceride (mg/dL) | 87 | 137.5 (100.2) | 2.0 (−13.1, 17.1) | 0.791 | 42 | 141.9 (116.1) | −6.7 (−45.4, 31.8) | 0.724 | 45 | 133.4 (84.01) | 3.5 (−11.9, 19.1) | 0.645 |
Blood pressure (mmHg) | ||||||||||||
Diastolic | 96 | 71.0 (10.6) | −1.1 (−2.4, 0.33) | 0.135 | 48 | 68.4 (9.5) | −0.9 (−3.8, 2.0) | 0.529 | 48 | 73.5 (11.06) | −1.1 (−2.7, 0.6) | 0.194 |
Systolic | 96 | 140.8(21.9) | −0.7 (−3.9, 2.4) | 0.646 | 48 | 139.7 (20.5) | −1.5 (−7.8, 4.7) | 0.624 | 48 | 141.9 (23.33) | −0.4 (−4.3, 3.64) | 0.855 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albar, S.A.; Almaghrabi, M.A.; Bukhari, R.A.; Alghanmi, R.H.; Althaiban, M.A.; Yaghmour, K.A. Caffeine Sources and Consumption among Saudi Adults Living with Diabetes and Its Potential Effect on HbA1c. Nutrients 2021, 13, 1960. https://doi.org/10.3390/nu13061960
Albar SA, Almaghrabi MA, Bukhari RA, Alghanmi RH, Althaiban MA, Yaghmour KA. Caffeine Sources and Consumption among Saudi Adults Living with Diabetes and Its Potential Effect on HbA1c. Nutrients. 2021; 13(6):1960. https://doi.org/10.3390/nu13061960
Chicago/Turabian StyleAlbar, Salwa Ali, Merfat Abdulrahman Almaghrabi, Rawabi Ahmed Bukhari, Rawan Hussein Alghanmi, Maha Ali Althaiban, and Khaled A. Yaghmour. 2021. "Caffeine Sources and Consumption among Saudi Adults Living with Diabetes and Its Potential Effect on HbA1c" Nutrients 13, no. 6: 1960. https://doi.org/10.3390/nu13061960
APA StyleAlbar, S. A., Almaghrabi, M. A., Bukhari, R. A., Alghanmi, R. H., Althaiban, M. A., & Yaghmour, K. A. (2021). Caffeine Sources and Consumption among Saudi Adults Living with Diabetes and Its Potential Effect on HbA1c. Nutrients, 13(6), 1960. https://doi.org/10.3390/nu13061960