Healthy Food on Instagram Social Network: Vegan, Homemade and Clean Eating
Abstract
:1. Introduction
1.1. Theoretical Background
1.1.1. Social Media and Social Networks
1.1.2. Social Media
1.1.3. Social Networks
1.1.4. Social Media Analysis
1.1.5. Social Network Analysis
2. Materials and Methods
- Data acquisition: Instagram social network was used for data. Instagram Scraper (https://github.com/rarcega/instagram-scraper, accessed on 15 March 2021) was used to obtain data. The software extracted messages that used the hashtag #healthyfood. The extracted data contained 2,045,653 messages created by 427,936 individual users. First, the user ID was encoded by random number algorithm so that it could not be converted back to a user ID. This information was used only to identify the number of users and is in no way associated with the downloaded hashtags. Subsequently, hashtags were extracted from the text of message into a separate database.
- Content transformation: All letters were transformed into lower-case letters to prevent potential duplicates (e.g., the software might consider #Organic, #organic, and #ORGANIC as three different hashtags). The dataset was imported into Gephi 0.9.2 software via the default import module. Hashtag network was created based on hashtag interdependence (see Figure 2). Gephi is a leading visualization and exploration open-source software for graphs and networks [88]. To use social network analysis methods, it was necessary to create a network of hashtags based on the rule: Nodes = Hashtags and Edges = their representation in one message.
- 3.
- Hashtag reduction: Before using the community and modularity analysis, process a hashtag reduction that removes micro-communities. Many micro-communities are caused by an extensive number of hashtags that contain local hashtags, for example, a bakery in the Czech Republic—Prague Motol—#bakerypraguemotol #croissantfrombakerypraguemotol or hashtags created by the users themselves #surnameandname.
- 4.
- Data mining: The following methods were used to describe the hashtag network:
- (a)
- Frequency: The frequency is a value that expresses the hashtag frequency within a network.
- (b)
- Eigenvector centrality: This is an extension of degree centrality, which measures the influence of hashtags in a network. Eigenvector centrality is calculated based on the premise that connections to hashtags with high values of degree centrality values have a significant influence than links with hashtags of similar or lower values of degree centrality values. A high eigenvector centrality value means that a hashtag is connected to many hashtags with a high degree centrality value. Eigenvector centrality was calculated as follows:
- (c)
- Betweenness Centrality: The value of Betweenness Centrality is highest for a hashtag if the paths between any two hashtags in the network always pass through this hashtag. Hashtags with a high degree of Betweenness Centrality can be referred to as network bottlenecks [89]. These hashtags are important in the network because they act as interconnectors or otherwise as bridges between remote parts of the network. The value of the Betweenness Centrality for the hashtag v in the graph G = (V, E) is calculated using the following relation:
- (d)
- Community analysis and modularity: The most complex networks contain hashtags that are mutually interconnected to a more significant extent than they are connected to the rest of the network. Cluster of such hashtags are called communities [90]. Modularity represents an index that identifies the cohesion of communities within a given network [91]. The purpose is to identify hashtags communities that are mutually interconnected to a greater degree than other hashtags. Networks with high modularity show strong links between hashtags inside the community and weaker links between hashtags in other communities [92]. The community analysis then identifies the number of different community in the network based on the modularity detection analysis [93], as follows:
- (e)
- Visualization of the network: Network visualization aims to identify individual communities and their mutual position. After importing the data into the Gephi program, the network’s visualization is concentrated in the basic square without visualizing the different relationships between individual hashtags. This visualization is unsatisfactory in identifying communities and their mutual positions but does not affect the analysis of hashtag-level and network-wide characteristics. In the field of visualization, it is possible to use the ForceAtlas2 algorithm. ForceAtlas2 is an improved version of the ForceAtlas algorithm, which focuses on large networks. This method is based on reduced samples’ visual representation to define network communities and their types [94]. The advantage over ForceAtlas is its speed and ease of computing. The ideal number of hashtags is 10,000–100,000 [95].
- 5.
- Knowledge representation—a procedure that uses visualization tools to represent the results of data mining. Knowledge representation is based on the synthesis of individual values and outputs from the data evaluation phase.
3. Results and Discussion
3.1. Visual Analysis
3.2. Limitation of Research
3.3. Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No | Hashtag | Notes | No | Hashtag | Notes |
---|---|---|---|---|---|
1 | #healthyfood | 41 | #plantbased | ||
2 | #healthylifestyle | 42 | #healthyrecipes | ||
3 | #food | * | 43 | #gym | |
4 | #healthy | * | 44 | #workout | |
5 | #foodie | * | 45 | #photooftheday | * |
6 | #foodporn | * | 46 | #eatclean | |
7 | #instafood | * | 47 | #picoftheday | * |
8 | #healthyeating | * | 48 | #instadaily | * |
9 | #foodphotography | * | 49 | #glutenfree | |
10 | #fitness | 50 | #cleaneating | ||
11 | #yummy | * | 51 | #follow | * |
12 | #foodstagram | * | 52 | #keto | |
13 | #foodblogger | * | 53 | #restaurant | |
14 | #foodlover | * | 54 | #fitfam | |
15 | #delicious | * | 55 | #organic | |
16 | #weightloss | 56 | #lowcarb | ||
17 | #health | * | 57 | #eat | * |
18 | #instagood | * | 58 | #healthylife | |
19 | #homemade | 59 | #like | * | |
20 | #vegan | 60 | #wellness | ||
21 | #love | * | 61 | #homecooking | |
22 | #nutrition | 62 | #foodiesofinstagram | * | |
23 | #dinner | * | 63 | #foodpics | * |
24 | #healthyliving | * | 64 | #bodybuilding | |
25 | #diet | 65 | #weightlosstransformation | ||
26 | #weightlossjourney | 66 | #exercise | ||
27 | #lunch | * | 67 | #foodblog | |
28 | #breakfast | * | 68 | #healthybreakfast | |
29 | #tasty | * | 69 | #protein | |
30 | #bhfyp | * | 70 | #chef | |
31 | #cooking | 71 | #veganrecipes | ||
32 | #fit | 72 | #weightlossmotivation | ||
33 | #motivation | 73 | #salad | ||
34 | #foodies | * | 74 | #eathealthy | |
35 | #foodgasm | * | 75 | #training | |
36 | #fitnessmotivation | 76 | #healthychoices | ||
37 | #veganfood | 77 | #fitfood | ||
38 | #vegetarian | 78 | #vegetables | ||
39 | #lifestyle | 79 | #dieta | ||
40 | * | 80 | #yum |
References
- O’Day, E.B.; Heimberg, R.G. Social Media Use, Social Anxiety, and Loneliness: A Systematic Review. Comput. Hum. Behav. Rep. 2021, 3, 100070. [Google Scholar] [CrossRef]
- Shafi, R.M.A.; Nakonezny, P.A.; Miller, K.A.; Desai, J.; Almorsy, A.G.; Ligezka, A.N.; Morath, B.A.; Romanowicz, M.; Croarkin, P.E. Altered Markers of Stress in Depressed Adolescents after Acute Social Media Use. J. Psychiatr. Res. 2021, 136, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Serenko, A.; Turel, O.; Bohonis, H. The Impact of Social Networking Sites Use on Health-Related Outcomes among UK Adolescents. Comput. Hum. Behav. Rep. 2021, 3, 100058. [Google Scholar] [CrossRef]
- Tankovska, H. Daily Social Media Time among Teens and Young Adults Worldwide 2017. Available online: https://www.statista.com/statistics/800821/average-daily-time-spent-social-media-teens-young-adults/ (accessed on 1 April 2021).
- Longobardi, C.; Settanni, M.; Fabris, M.A.; Marengo, D. Follow or Be Followed: Exploring the Links between Instagram Popularity, Social Media Addiction, Cyber Victimization, and Subjective Happiness in Italian Adolescents. Child. Youth Serv. Rev. 2020, 113, 104955. [Google Scholar] [CrossRef]
- Cho, M.; Furey, L.D.; Mohr, T. Communicating Corporate Social Responsibility on Social Media. Bus. Prof. Commun. Q. 2017, 80, 52–69. [Google Scholar] [CrossRef]
- Pilař, L.; Kvasničková Stanislavská, L.; Poláková, J.; Rojík, S.; Kvasnička, R.; Gresham, G. Customer Experience with Organic Food: Global View. Emir. J. Food Agric. 2018, 30. [Google Scholar] [CrossRef]
- Pilař, L.; Kvasničková Stanislavská, L.; Kvasnička, R. Healthy Food on the Twitter Social Network: Vegan, Homemade, and Organic Food. Int. J. Environ. Res. Public Health 2021, 18, 3815. [Google Scholar] [CrossRef]
- Brambilla, M.; Javadian Sabet, A.; Hosseini, M. The Role of Social Media in Long-Running Live Events: The Case of the Big Four Fashion Weeks Dataset. Data Brief 2021, 35, 106840. [Google Scholar] [CrossRef]
- Mardon, R.; Molesworth, M.; Grigore, G. YouTube Beauty Gurus and the Emotional Labour of Tribal Entrepreneurship. J. Bus. Res. 2018, 92, 443–454. [Google Scholar] [CrossRef]
- Jaini, P.A.; Hsu, J.; Manjunath, P.; Haliburton, J.R. 39.5 General psychiatry residents’ attitudes toward discussing social media’s influence on mental health with adolescent and young adult patients. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, S220. [Google Scholar] [CrossRef]
- Keles, B.; McCrae, N.; Grealish, A. A Systematic Review: The Influence of Social Media on Depression, Anxiety and Psychological Distress in Adolescents. Int. J. Adolesc. Youth 2020, 25, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Berryman, C.; Ferguson, C.J.; Negy, C. Social Media Use and Mental Health among Young Adults. Psychiatr. Q. 2018, 89, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ivie, E.J.; Pettitt, A.; Moses, L.J.; Allen, N.B. A Meta-Analysis of the Association between Adolescent Social Media Use and Depressive Symptoms. J. Affect. Disord. 2020, 275, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Standiford, M.; Cody, P. Social Media and Adolescent Health. Curr. Pediatr. Rep. 2018, 6, 132–138. [Google Scholar] [CrossRef]
- Egan, K.G.; Moreno, M.A. Alcohol References on Undergraduate Males’ Facebook Profiles. Am. J. Mens Health 2011, 5, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Romo, D.L.; Garnett, C.; Younger, A.P.; Soren, K.; Stockwell, M.S.; Catallozzi, M.; Neu, N. Understanding Adolescent Social Media Use: Association With Sexual Risk and Parental Monitoring Factors That Can Influence Protection. J. Adolesc. Health 2016, 58, S16–S17. [Google Scholar] [CrossRef]
- Shafi, R.M.A.; Romanowicz, M.; Croarkin, P.E. #SwitchedOn: A Call for Assessing Social Media Use of Adolescents. Lancet Psychiatry 2018, 5, e27. [Google Scholar] [CrossRef] [Green Version]
- Blundell, K.-L.; Forwood, S. Using a Social Media App, Instagram, to Affect What Undergraduate University Students Choose to Eat. Appetite 2021, 157, 104887. [Google Scholar] [CrossRef]
- Lassen, A.D.; Lehmann, C.; Andersen, E.W.; Werther, M.N.; Thorsen, A.V.; Trolle, E.; Gross, G.; Tetens, I. Gender Differences in Purchase Intentions and Reasons for Meal Selection among Fast Food Customers—Opportunities for Healthier and More Sustainable Fast Food. Food Qual. Prefer. 2016, 47, 123–129. [Google Scholar] [CrossRef]
- Carrillo, E.; Varela, P.; Salvador, A.; Fiszman, S. MAIN FACTORS UNDERLYING CONSUMERS’ FOOD CHOICE: A FIRST STEP FOR THE UNDERSTANDING OF ATTITUDES TOWARD “HEALTHY EATING.”. J. Sens. Stud. 2011, 26, 85–95. [Google Scholar] [CrossRef]
- Auxier, B.; Anderson, M. Social Media Use in 2021. Available online: https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/ (accessed on 1 April 2021).
- Vidal, L.; Ares, G.; Machín, L.; Jaeger, S.R. Using Twitter Data for Food-Related Consumer Research: A Case Study on “What People Say When Tweeting about Different Eating Situations”. Food Qual. Prefer. 2015, 45, 58–69. [Google Scholar] [CrossRef]
- Pilař, L.; Poláková, J.; Gresham, G.; Rojík, S.; Tichá, I. Why people use hashtags when visiting farmers´ markets. In Proceedings of the Agrarian Perspectives XXVI: Competitiveness of European Agriculture and Food Sectors, Prague, Czech Republic, 13–15 September 2017. [Google Scholar]
- Zhang, K.; Geng, Y.; Zhao, J.; Liu, J.; Li, W. Sentiment Analysis of Social Media via Multimodal Feature Fusion. Symmetry 2020, 12, 2010. [Google Scholar] [CrossRef]
- Childers, C.C.; Lemon, L.L.; Hoy, M.G. #Sponsored #Ad: Agency Perspective on Influencer Marketing Campaigns. J. Curr. Issues Res. Advert. 2019, 40, 258–274. [Google Scholar] [CrossRef]
- De Veirman, M.; Cauberghe, V.; Hudders, L. Marketing through Instagram Influencers: The Impact of Number of Followers and Product Divergence on Brand Attitude. Int. J. Advert. 2017, 36, 798–828. [Google Scholar] [CrossRef] [Green Version]
- Pilař, L.; Balcarová, T.; Rojík, S.; Tichá, I.; Poláková, J. Customer Experience with Farmers’ Markets: What Hashtags Can Reveal. Int. Food Agribus. Manag. Rev. 2018, 21, 755–770. [Google Scholar] [CrossRef]
- Walsh, M.J.; Baker, S.A. Clean Eating and Instagram: Purity, Defilement, and the Idealization of Food. Food Cult. Soc. 2020, 23, 570–588. [Google Scholar] [CrossRef]
- Amato, G.; Bolettieri, P.; Monteiro de Lira, V.; Muntean, C.I.; Perego, R.; Renso, C. Social Media Image Recognition for Food Trend Analysis. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; ACM: New York, NY, USA, 2017; pp. 1333–1336. [Google Scholar]
- Hudders, L.; De Jans, S.; De Veirman, M. The Commercialization of Social Media Stars: A Literature Review and Conceptual Framework on the Strategic Use of Social Media Influencers. Int. J. Advert. 2020, 1–49. [Google Scholar] [CrossRef]
- De Jans, S.; Spielvogel, I.; Naderer, B.; Hudders, L. Digital Food Marketing to Children: How an Influencer’s Lifestyle Can Stimulate Healthy Food Choices among Children. Appetite 2021, 162, 105182. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.E.; Hardman, C.A.; Halford, J.C.G.; Christiansen, P.; Boyland, E.J. “It’s Just Addictive People That Make Addictive Videos”: Children’s Understanding of and Attitudes towards Influencer Marketing of Food and Beverages by YouTube Video Bloggers. Int. J. Environ. Res. Public Health 2020, 17, 449. [Google Scholar] [CrossRef] [Green Version]
- Goodman, M.K.; Jaworska, S. Mapping Digital Foodscapes: Digital Food Influencers and the Grammars of Good Food. Geoforum 2020, 117, 183–193. [Google Scholar] [CrossRef]
- Marks, R.J.; De Foe, A.; Collett, J. The Pursuit of Wellness: Social Media, Body Image and Eating Disorders. Child. Youth Serv. Rev. 2020, 119, 105659. [Google Scholar] [CrossRef]
- Byrne, E.; Kearney, J.; MacEvilly, C. The Role of Influencer Marketing and Social Influencers in Public Health. Proc. Nutr. Soc. 2017, 76, E103. [Google Scholar] [CrossRef] [Green Version]
- Perloff, R.M. Social Media Effects on Young Women’s Body Image Concerns: Theoretical Perspectives and an Agenda for Research. Sex Roles 2014, 71, 363–377. [Google Scholar] [CrossRef]
- Vaterlaus, J.M.; Patten, E.V.; Roche, C.; Young, J.A. #Gettinghealthy: The Perceived Influence of Social Media on Young Adult Health Behaviors. Comput. Hum. Behav. 2015, 45, 151–157. [Google Scholar] [CrossRef]
- Nelson, A.M.; Fleming, R. Gender Differences in Diet and Social Media: An Explorative Study. Appetite 2019, 142, 104383. [Google Scholar] [CrossRef]
- Hawks, J.R.; Madanat, H.; Walsh-Buhi, E.R.; Hartman, S.; Nara, A.; Strong, D.; Anderson, C. Narrative Review of Social Media as a Research Tool for Diet and Weight Loss. Comput. Hum. Behav. 2020, 111, 106426. [Google Scholar] [CrossRef]
- Kelly, Y.; Zilanawala, A.; Booker, C.; Sacker, A. Social Media Use and Adolescent Mental Health: Findings From the UK Millennium Cohort Study. EClinicalMedicine 2018, 6, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Argo, T.; Lowery, L. The Effects of Social Media on Adolescent Health and Well-Being. J. Adolesc. Health 2017, 60, S75–S76. [Google Scholar] [CrossRef]
- Barry, C.T.; Sidoti, C.L.; Briggs, S.M.; Reiter, S.R.; Lindsey, R.A. Adolescent Social Media Use and Mental Health from Adolescent and Parent Perspectives. J. Adolesc. 2017, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nereim, C.D.; Bickham, D.S.; Rich, M.O. 234. Social Media and Adolescent Mental Health: Who You Are and What You Do Matter. J. Adolesc. Health 2020, 66, S118–S119. [Google Scholar] [CrossRef]
- Barthorpe, A.; Winstone, L.; Mars, B.; Moran, P. Is Social Media Screen Time Really Associated with Poor Adolescent Mental Health? A Time Use Diary Study. J. Affect. Disord. 2020, 274, 864–870. [Google Scholar] [CrossRef]
- Woods, H.C.; Scott, H. #Sleepyteens: Social Media Use in Adolescence Is Associated with Poor Sleep Quality, Anxiety, Depression and Low Self-Esteem. J. Adolesc. 2016, 51, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCrae, N.; Gettings, S.; Purssell, E. Social Media and Depressive Symptoms in Childhood and Adolescence: A Systematic Review. Adolesc. Res. Rev. 2017, 2, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Hoare, E.; Milton, K.; Foster, C.; Allender, S. The Associations between Sedentary Behaviour and Mental Health among Adolescents: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raudsepp, L.; Kais, K. Longitudinal Associations between Problematic Social Media Use and Depressive Symptoms in Adolescent Girls. Prev. Med. Rep. 2019, 15, 100925. [Google Scholar] [CrossRef]
- Khan, A.; Uddin, R.; Islam, S.M.S. Social Media Use Is Associated with Sleep Duration and Disturbance among Adolescents in Bangladesh. Health Policy Technol. 2019, 8, 313–315. [Google Scholar] [CrossRef]
- Burnette, C.B.; Kwitowski, M.A.; Mazzeo, S.E. “I Don’t Need People to Tell Me I’m Pretty on Social Media:” A Qualitative Study of Social Media and Body Image in Early Adolescent Girls. Body Image 2017, 23, 114–125. [Google Scholar] [CrossRef]
- Jarman, H.K.; Marques, M.D.; McLean, S.A.; Slater, A.; Paxton, S.J. Social Media, Body Satisfaction and Well-Being among Adolescents: A Mediation Model of Appearance-Ideal Internalization and Comparison. Body Image 2021, 36, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Beeres, D.T.; Andersson, F.; Vossen, H.G.M.; Galanti, M.R. Social Media and Mental Health Among Early Adolescents in Sweden: A Longitudinal Study With 2-Year Follow-Up (KUPOL Study). J. Adolesc. Health 2020, 68. [Google Scholar] [CrossRef]
- Kreski, N.; Platt, J.; Rutherford, C.; Olfson, M.; Odgers, C.; Schulenberg, J.; Keyes, K.M. Social Media Use and Depressive Symptoms Among United States Adolescents. J. Adolesc. Health 2021, 68, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Merrill, R.A.; Liang, X. Associations between Adolescent Media Use, Mental Health, and Risky Sexual Behaviors. Child. Youth Serv. Rev. 2019, 103, 1–9. [Google Scholar] [CrossRef]
- Weinstein, E.; Kleiman, E.M.; Franz, P.J.; Joyce, V.W.; Nash, C.C.; Buonopane, R.J.; Nock, M.K. Positive and Negative Uses of Social Media among Adolescents Hospitalized for Suicidal Behavior. J. Adolesc. 2021, 87, 63–73. [Google Scholar] [CrossRef]
- Kaplan, A.M.; Haenlein, M. Users of the World, Unite! The Challenges and Opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Gruzd, A.; Staves, K.; Wilk, A. Connected Scholars: Examining the Role of Social Media in Research Practices of Faculty Using the UTAUT Model. Comput. Hum. Behav. 2012, 28, 2340–2350. [Google Scholar] [CrossRef]
- Correa, T.; Hinsley, A.W.; de Zúñiga, H.G. Who Interacts on the Web?: The Intersection of Users’ Personality and Social Media Use. Comput. Hum. Behav. 2010, 26, 247–253. [Google Scholar] [CrossRef]
- Otieno, D.O.; Matoke, V.B. Social Media as Tool for Conducting Academic Research. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 4, 962–967. [Google Scholar]
- Tran, V.T.; Hue Do, H. An Impact of Social Media and Online Travel Information Search in Vietnam. J. Tour. Res. Hosp. 2016, 5. [Google Scholar] [CrossRef]
- Sloan, L.; Quan-Haase, A. The SAGE Handbook of Social Media Research Methods; SAGE Publications Ltd.: London, UK, 2016; ISBN 9781473916326. [Google Scholar]
- Barnes, J.A. Class and Committees in a Norwegian Island Parish. Hum. Relat. 1954, 7, 39–58. [Google Scholar] [CrossRef]
- Tichy, N.M.; Tushman, M.L.; Fombrun, C. Social Network Analysis For Organizations. Acad. Manag. Rev. 1979, 4, 507–519. [Google Scholar] [CrossRef]
- Coiera, E. Social Networks, Social Media, and Social Diseases. BMJ 2013, 346, f3007. [Google Scholar] [CrossRef] [PubMed]
- Serrat, O. Social Network Analysis. In Knowledge Solutions; Springer: Singapore, 2017; pp. 39–43. [Google Scholar]
- Hansen, D.L.; Shneiderman, B.; Smith, M.A.; Himelboim, I. Introduction to social media and social networks. In Analyzing Social Media Networks with NodeXL; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–10. [Google Scholar]
- Zeng, D.; Chen, H.; Lusch, R.; Li, S.-H. Social Media Analytics and Intelligence. IEEE Intell. Syst. 2010, 25, 13–16. [Google Scholar] [CrossRef]
- Stieglitz, S.; Dang-Xuan, L.; Bruns, A.; Neuberger, C. Social Media Analytics. Wirtschaftsinformatik 2014, 56, 101–109. [Google Scholar] [CrossRef]
- Callau, A.À.; Albert, M.Y.P.; Rota, J.J.; Giné, D.S. Landscape Characterization Using Photographs from Crowdsourced Platforms: Content Analysis of Social Media Photographs. Open Geosci. 2019, 11, 558–571. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. A Rapid Indicator of Cultural Ecosystem Service Usage at a Fine Spatial Scale: Content Analysis of Social Media Photographs. Ecol. Indic. 2015, 53, 187–195. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, Q.; Wu, K. Understanding Social Media Data for Disaster Management. Nat. Hazards 2015, 79, 1663–1679. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Q.; Gao, J.; Ni, M. A Deep Learning Approach for Detecting Traffic Accidents from Social Media Data. Transp. Res. Part C Emerg. Technol. 2018, 86, 580–596. [Google Scholar] [CrossRef] [Green Version]
- Yusof, N.F.A.; Lin, C.; He, Y. Sentiment Analysis in Social Media. In Encyclopedia of Social Network Analysis and Mining; Springer: New York, NY, USA, 2018; pp. 2386–2399. [Google Scholar]
- Nemes, L.; Kiss, A. Social Media Sentiment Analysis Based on COVID-19. J. Inf. Telecommun. 2021, 5, 1–15. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, Y.; Zhang, D.; Zhou, L. The Public’s Opinions on a New School Meals Policy for Childhood Obesity Prevention in the U.S.: A Social Media Analytics Approach. Int. J. Med. Inform. 2017, 103, 83–88. [Google Scholar] [CrossRef]
- Qiu, J.; Lin, Z.; Shuai, Q. Investigating the Opinions Distribution in the Controversy on Social Media. Inf. Sci. 2019, 489, 274–288. [Google Scholar] [CrossRef]
- Vaughan, L. Web Hyperlink Analysis. In Encyclopedia of Social Measurement; Elsevier: Amsterdam, The Netherlands, 2005; pp. 949–954. [Google Scholar]
- Pallavicini, F.; Cipresso, P.; Mantovani, F. Beyond Sentiment. In Sentiment Analysis in Social Networks; Elsevier: Amsterdam, The Netherlands, 2017; pp. 13–29. [Google Scholar]
- Perez, C.; Germon, R. Graph Creation and Analysis for Linking Actors: Application to Social Data. In Automating Open Source Intelligence; Elsevier: Amsterdam, The Netherlands, 2016; pp. 103–129. [Google Scholar]
- Himelboim, I. Social Network Analysis (Social Media). In The International Encyclopedia of Communication Research Methods; Wiley: Hoboken, NJ, USA, 2017; pp. 1–15. [Google Scholar]
- Hansen, D.L.; Shneiderman, B.; Smith, M.A.; Himelboim, I. Calculating and visualizing network metrics. In Analyzing Social Media Networks with NodeXL; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–94. [Google Scholar]
- Pilař, L.; Kvasničková Stanislavská, L.; Kvasnička, R.; Bouda, P.; Pitrová, J. Framework for Social Media Analysis Based on Hashtag Research. Appl. Sci. 2021, 11, 3697. [Google Scholar] [CrossRef]
- Chang, H.-C.; Iyer, H. Trends in Twitter Hashtag Applications: Design Features for Value-Added Dimensions to Future Library Catalogues. Libr. Trends 2012, 61, 248–258. [Google Scholar] [CrossRef]
- Pilař, L.; Kvasničková Stanislavská, L.; Pitrová, J.; Krejčí, I.; Tichá, I.; Chalupová, M. Twitter Analysis of Global Communication in the Field of Sustainability. Sustainability 2019, 11, 6958. [Google Scholar] [CrossRef] [Green Version]
- Kvasničková Stanislavská, L.; Pilař, L.; Margarisová, K.; Kvasnička, R. Corporate Social Responsibility and Social Media: Comparison between Developing and Developed Countries. Sustainability 2020, 12, 5255. [Google Scholar] [CrossRef]
- Pilar, L.; Moulis, P.; Pitrová, J.; Bouda, P.; Gresham, G.; Balcarová, T.; Rojík, S. Education and Business as a Key Topics at the Instagram Posts in the Area of Gamification. J. Effic. Responsib. Educ. Sci. 2019, 12, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media, Menlo Park, CA, USA, 17–20 May 2009. [Google Scholar]
- Mittal, R.; Bhatia, M.P.S. Discovering Bottlenecks Entities in Multi-Layer Social Networks. J. Discret. Math. Sci. Cryptogr. 2019, 22, 241–252. [Google Scholar] [CrossRef]
- McCurdie, T.; Sanderson, P.; Aitken, L.M. Applying Social Network Analysis to the Examination of Interruptions in Healthcare. Appl. Ergon. 2018, 67, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E.J.; Girvan, M. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [Green Version]
- Knoke, D.; Yang, S. Social Network Analysis; SAGE Publications: Thousand Oaks, CA, USA, 2008; Volume 154, ISBN 9781412927499. [Google Scholar]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Shneiderman, B.; Himelboim, I. Mapping Twitter Topic Networks: From Polarized Crowds to Community Clusters. Available online: http://www.pewinternet.org/2014/02/20/mapping-twitter-topic-networks-from-polarized-crowds-to-community-clusters/ (accessed on 1 April 2021).
- Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE 2014, 9, e98679. [Google Scholar] [CrossRef]
- Wahl, D.R.; Villinger, K.; König, L.M.; Ziesemer, K.; Schupp, H.T.; Renner, B. Healthy Food Choices Are Happy Food Choices: Evidence from a Real Life Sample Using Smartphone Based Assessments. Sci. Rep. 2017, 7, 17069. [Google Scholar] [CrossRef] [Green Version]
- Lea, E.; Worsley, A. Influences on Meat Consumption in Australia. Appetite 2001, 36, 127–136. [Google Scholar] [CrossRef]
- Rosenfeld, D.L.; Burrow, A.L. The Unified Model of Vegetarian Identity: A Conceptual Framework for Understanding Plant-Based Food Choices. Appetite 2017, 112, 78–95. [Google Scholar] [CrossRef]
- Bresnahan, M.; Zhuang, J.; Zhu, X. Why Is the Vegan Line in the Dining Hall Always the Shortest? Understanding Vegan Stigma. Stigma Health 2016, 1, 3–15. [Google Scholar] [CrossRef]
- Cole, M.; Morgan, K. Vegaphobia: Derogatory Discourses of Veganism and the Reproduction of Speciesism in UK National Newspapers1. Br. J. Sociol. 2011, 62, 134–153. [Google Scholar] [CrossRef] [PubMed]
- Wright, L. The Vegan Studies Project: Food, Animals, and Gender in the Age of Terror; University of Georgia Press: Athens, GA, USA, 2015; ISBN 0820348562. [Google Scholar]
- Markowski, K.L.; Roxburgh, S. “If I Became a Vegan, My Family and Friends Would Hate Me:” Anticipating Vegan Stigma as a Barrier to Plant-Based Diets. Appetite 2019, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Saari, U.A.; Herstatt, C.; Tiwari, R.; Dedehayir, O.; Mäkinen, S.J. The Vegan Trend and the Microfoundations of Institutional Change: A Commentary on Food Producers’ Sustainable Innovation Journeys in Europe. Trends Food Sci. Technol. 2021, 107, 161–167. [Google Scholar] [CrossRef]
- Harrington, S.; Collis, C.; Dedehayir, O. It’s Not (Just) about the f-Ckin’animals: How Veganism Is Changing, and Why That Matters. In Alternative Food Politics: From Margins to Mainstream; Taylor & Francis Group: Milton, UK; Abingdon, UK, 2019; pp. 135–150. [Google Scholar]
- Banis, D. Everything Is Ready To Make 2019 The “Year Of The Vegan”. Are you? Available online: https://www.forbes.com/sites/davidebanis/2018/12/31/everything-is-ready-to-make-2019-the-year-of-the-vegan-are-you/?sh=4e56148e57df (accessed on 1 April 2021).
- Couch, S.C.; Glanz, K.; Zhou, C.; Sallis, J.F.; Saelens, B.E. Home Food Environment in Relation to Children’s Diet Quality and Weight Status. J. Acad. Nutr. Diet. 2014, 114, 1569–1579.e1. [Google Scholar] [CrossRef] [Green Version]
- Smith, A. Clean Eating’s Surprising Normalisation: The Case of Nigella Lawson. Discourse Context Media 2020, 35, 100376. [Google Scholar] [CrossRef]
- Allen, M.; Dickinson, K.; Prichard, I. The Dirt on Clean Eating: A Cross Sectional Analysis of Dietary Intake, Restrained Eating and Opinions about Clean Eating among Women. Nutrients 2018, 10, 1266. [Google Scholar] [CrossRef] [Green Version]
- Ambwani, S.; Sellinger, G.; Rose, K.L.; Richmond, T.K.; Sonneville, K.R. “It’s Healthy Because It’s Natural.” Perceptions of “Clean” Eating among U.S. Adolescents and Emerging Adults. Nutrients 2020, 12, 1708. [Google Scholar] [CrossRef] [PubMed]
- Ramage, S.; Farmer, A.; Eccles, K.A.; McCargar, L. Healthy Strategies for Successful Weight Loss and Weight Maintenance: A Systematic Review. Appl. Physiol. Nutr. Metab. 2014, 39, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Cava, E.; Yeat, N.C.; Mittendorfer, B. Preserving Healthy Muscle during Weight Loss. Adv. Nutr. 2017, 8, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finucane, M.M.; Stevens, G.A.; Cowan, M.J.; Danaei, G.; Lin, J.K.; Paciorek, C.J.; Singh, G.M.; Gutierrez, H.R.; Lu, Y.; Bahalim, A.N.; et al. National, Regional, and Global Trends in Body-Mass Index since 1980: Systematic Analysis of Health Examination Surveys and Epidemiological Studies with 960 Country-Years and 9·1 Million Participants. Lancet 2011, 377, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Revels, S.; Kumar, S.A.P.; Ben-Assuli, O. Predicting Obesity Rate and Obesity-Related Healthcare Costs Using Data Analytics. Health Policy Technol. 2017, 6, 198–207. [Google Scholar] [CrossRef]
- Frank, A.P.; de Souza Santos, R.; Palmer, B.F.; Clegg, D.J. Determinants of Body Fat Distribution in Humans May Provide Insight about Obesity-Related Health Risks. J. Lipid Res. 2019, 60, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Formica, V.; Morelli, C.; Riondino, S.; Renzi, N.; Nitti, D.; Di Daniele, N.; Roselli, M.; Tesauro, M. Obesity and Common Pathways of Cancer and Cardiovascular Disease. Endocr. Metab. Sci. 2020, 1, 100065. [Google Scholar] [CrossRef]
- Le Brocq, S.; Clare, K.; Bryant, M.; Roberts, K.; Tahrani, A. Obesity and COVID-19: A Call for Action from People Living with Obesity. Lancet Diabetes Endocrinol. 2020, 8, 652–654. [Google Scholar] [CrossRef]
- Lee, H.; Choi, E.-K.; Lee, S.-H.; Han, K.-D.; Rhee, T.-M.; Park, C.-S.; Lee, S.-R.; Choe, W.-S.; Lim, W.-H.; Kang, S.-H.; et al. Atrial Fibrillation Risk in Metabolically Healthy Obesity: A Nationwide Population-Based Study. Int. J. Cardiol. 2017, 240, 221–227. [Google Scholar] [CrossRef]
- Tiggemann, M.; Slater, A. NetTweens: The Internet and Body Image Concerns in Preteenage Girls. J. Early Adolesc. 2014, 34, 606–620. [Google Scholar] [CrossRef] [Green Version]
- Meier, E.P.; Gray, J. Facebook Photo Activity Associated with Body Image Disturbance in Adolescent Girls. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidani, J.E.; Shensa, A.; Hoffman, B.; Hanmer, J.; Primack, B.A. The Association between Social Media Use and Eating Concerns among US Young Adults. J. Acad. Nutr. Diet. 2016, 116, 1465–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saul, J.S.; Rodgers, R.F. Adolescent Eating Disorder Risk and the Online World. Child Adolesc. Psychiatr. Clin. N. Am. 2018, 27, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Arseniev-Koehler, A.; Lee, H.; McCormick, T.; Moreno, M.A. #Proana: Pro-Eating Disorder Socialization on Twitter. J. Adolesc. Health 2016, 58, 659–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralidhara, S.; Paul, M.J. #Healthy Selfies: Exploration of Health Topics on Instagram. JMIR Public Health Surveill. 2018, 4, e10150. [Google Scholar] [CrossRef] [Green Version]
- Cavazza, N.; Graziani, A.R.; Guidetti, M. Impression Formation via #foodporn: Effects of Posting Gender-Stereotyped Food Pictures on Instagram Profiles. Appetite 2020, 147, 104565. [Google Scholar] [CrossRef]
- Ventura, V.; Cavaliere, A.; Iannò, B. #Socialfood: Virtuous or Vicious? A Systematic Review. Trends Food Sci. Technol. 2021, 110, 674–686. [Google Scholar] [CrossRef]
- Mejova, Y.; Haddadi, H.; Noulas, A.; Weber, I. #FoodPorn. In Proceedings of the 5th International Conference on Digital Health 2015—DH ’15, Florence, Italy, 18–20 May 2015; pp. 51–58. [Google Scholar]
- Mejova, Y.; Abbar, S.; Haddadi, H. Fetishizing Food in Digital Age: #food Porn around the World. In Proceedings of the 10th International AAAI Conference on Web and Social Media (ICWSM 2016), Cologne, Germany, 17–20 May 2016. [Google Scholar]
- Hessel, J.; Chenhao, T.; Lee, L. Science, AskScience and BadScience: On the Coexistence of Highly Related Communities. In Proceedings of the 10th International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016. [Google Scholar]
- Coates, A.E.; Hardman, C.A.; Halford, J.C.G.; Christiansen, P.; Boyland, E.J. Social Media Influencer Marketing and Children’s Food Intake: A Randomized Trial. Pediatrics 2019, 143, e20182554. [Google Scholar] [CrossRef] [Green Version]
- Littlejohns, T.J.; Chong, A.Y.; Allen, N.E.; Arnold, M.; Bradbury, K.E.; Mentzer, A.J.; Soilleux, E.J.; Carter, J.L. Genetic, Lifestyle, and Health-Related Characteristics of Adults without Celiac Disease Who Follow a Gluten-Free Diet: A Population-Based Study of 124,447 Participants. Am. J. Clin. Nutr. 2021, 113, 622–629. [Google Scholar] [CrossRef]
- Silvester, J.A.; Weiten, D.; Graff, L.A.; Walker, J.R.; Duerksen, D.R. Living Gluten-Free: Adherence, Knowledge, Lifestyle Adaptations and Feelings towards a Gluten-Free Diet. J. Hum. Nutr. Diet. 2016, 29, 374–382. [Google Scholar] [CrossRef]
- Niland, B.; Cash, B.D. Health Benefits and Adverse Effects of a Gluten-Free Diet in Non-Celiac Disease Patients. Gastroenterol. Hepatol. 2018, 14, 82–91. [Google Scholar]
- Parra-Fernández, M.L.; Manzaneque-Cañadillas, M.; Onieva-Zafra, M.D.; Fernández-Martínez, E.; Fernández-Muñoz, J.J.; Prado-Laguna, M.D.C.; Brytek-Matera, A. Pathological Preoccupation with Healthy Eating (Orthorexia Nervosa) in a Spanish Sample with Vegetarian, Vegan, and Non-Vegetarian Dietary Patterns. Nutrients 2020, 12, 3907. [Google Scholar] [CrossRef] [PubMed]
- Strahler, J. The Dark Side of Healthy Eating: Links between Orthorexic Eating and Mental Health. Nutrients 2020, 12, 3662. [Google Scholar] [CrossRef] [PubMed]
- Brytek-Matera, A.; Onieva-Zafra, M.D.; Parra-Fernández, M.L.; Staniszewska, A.; Modrzejewska, J.; Fernández-Martínez, E. Evaluation of Orthorexia Nervosa and Symptomatology Associated with Eating Disorders among European University Students: A Multicentre Cross-Sectional Study. Nutrients 2020, 12, 3716. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.G.; Lefevre, C.E. Instagram Use Is Linked to Increased Symptoms of Orthorexia Nervosa. Eat. Weight Disord. 2017, 22, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Bostock, E.C.S.; Kirkby, K.C.; Taylor, B.V.; Hawrelak, J.A. Consumer Reports of “Keto Flu” Associated With the Ketogenic Diet. Front. Nutr. 2020, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caprio, M.; Infante, M.; Moriconi, E.; Armani, A.; Fabbri, A.; Mantovani, G.; Mariani, S.; Lubrano, C.; Poggiogalle, E.; Migliaccio, S.; et al. Very-Low-Calorie Ketogenic Diet (VLCKD) in the Management of Metabolic Diseases: Systematic Review and Consensus Statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Investig. 2019, 42, 1365–1386. [Google Scholar] [CrossRef] [PubMed]
- Siegel, B.I.; Johnson, M.; Dawson, T.E.; Kurzen, E.; Holt, P.J.; Wolf, D.S.; Orenstein, E.W. Reducing Prescribing Errors in Hospitalized Children on the Ketogenic Diet. Pediatr. Neurol. 2021, 115, 42–47. [Google Scholar] [CrossRef]
- Pittman, Q.J. A Gut Feeling about the Ketogenic Diet in Epilepsy. Epilepsy Res. 2020, 166, 106409. [Google Scholar] [CrossRef]
- Mohorko, N.; Černelič-Bizjak, M.; Poklar-Vatovec, T.; Grom, G.; Kenig, S.; Petelin, A.; Jenko-Pražnikar, Z. Weight Loss, Improved Physical Performance, Cognitive Function, Eating Behavior, and Metabolic Profile in a 12-Week Ketogenic Diet in Obese Adults. Nutr. Res. 2019, 62, 64–77. [Google Scholar] [CrossRef]
- Xiong, Y.; Cho, M.; Boatwright, B. Hashtag Activism and Message Frames among Social Movement Organizations: Semantic Network Analysis and Thematic Analysis of Twitter during the #MeToo Movement. Public Relat. Rev. 2019, 45, 10–23. [Google Scholar] [CrossRef]
- Giroux, N.F. The Keto Diet and Long-Term Weight Loss: Is It a Safe Option? Inq. J. 2020, 12, 1. [Google Scholar]
No. | Hashtag | Fr | No. | Hashtag | Fr |
---|---|---|---|---|---|
1 | #healthyfood | 2,455,746 | 21 | #plantbased * | 141,981 |
2 | #healthylifestyle | 938,430 | 22 | #healthyrecipes | 141,165 |
3 | #fitness | 387,684 | 23 | #gym | 139,368 |
4 | #weightloss | 317,019 | 24 | #workout | 135,423 |
5 | #vegan * | 306,533 | 25 | #slimmingworld | 132,084 |
6 | #homemade * | 304,428 | 26 | #glutenfree * | 109,932 |
7 | #diet * | 253,830 | 27 | #keto | 99,309 |
8 | #nutrition | 247,698 | 28 | #restaurant | 98,934 |
9 | #dinner | 247,485 | 29 | #fitfam | 94,002 |
10 | #healthyliving | 240,522 | 30 | #organic | 93,807 |
11 | #weightlossjourney | 233,076 | 31 | #lowcarb | 89,631 |
12 | #lunch | 232,473 | 32 | #healthylife | 83,016 |
13 | #breakfast | 220,212 | 33 | #wellness | 80,529 |
14 | #cooking | 210,120 | 34 | #homecooking | 80,334 |
15 | #fit | 204,525 | 35 | #slimmingworlduk | 77,448 |
16 | #motivation | 189,900 | 36 | #bodybuilding | 77,145 |
17 | #eatclean * | 173,729 | 37 | #weightlosstransformation | 74,259 |
18 | #fitnessmotivation | 162,123 | 38 | #healthybreakfast | 72,708 |
19 | #vegetarian * | 144,513 | 39 | #protein | 70,788 |
20 | #lifestyle | 143,058 | 40 | #chef | 70,644 |
Number of Communities * | Size of Community | Name of Community | Key Hashtags |
---|---|---|---|
2 | 60.60% | Active Healthy lifestyle | #healthylifestyle, #healthy, #healthyeating, #fitness, #weightloss, #health, #diet, #weightlossjourney, #fit, #fitnessmotivation |
0 | 24.63% | Healthy food bloggers | #food, #foodie, #foodporn, #instafood, #foodphotograph, y, #yummy, #foodstagram#foodblogger#foodlover#delicious#instagood#homemade#love#dinner#lunch#breakfast#tasty#bhfyp#cooking#foodies#foodgasm#instagram#photooftheday |
1 | 10.99% | Diets | #vegan#vegetarian#veganfood#glutenfree#plantbased#vegetables#veggies#organic#veganrecipes#veggie#veganlife#vegetarianfood#vegetarianrecipes#natural#superfood#green#veganuary#dairyfree#veganfoodshare#vegansofig,#wholefood |
3 | 3.79% | Keto | #keto #lowcarb #ketodiet #easyrecipes #ketorecipes #ketolifestyle #ketomeals #ketofood #ketolife #intermittentfasting #ketogenic #ketoweightloss #ketosis#lchf #sugarfree |
(a) Active Healthy Lifestyle and Keto Community | (b) Diets vs. Keto Communities | |||
---|---|---|---|---|
Hashtag | Betweenes Centrality | Hashtag | Betweenes Centrality | |
1 | #health | 0.00201 | #veg | 0.00692 |
2 | #healthyfood | 0.00201 | #vegan | 0.00374 |
3 | #healthy | 0.00177 | #veganfood | 0.00353 |
4 | #gym | 0.00169 | #glutenfree | 0.00346 |
5 | #healthyeating | 0.00156 | #easyrecipes | 0.00341 |
6 | #healthylifestyle | 0.00156 | #keto | 0.00337 |
7 | #bodybuilding | 0.00156 | #cauliflower | 0.00332 |
8 | #weightloss | 0.00152 | #veganrecipes | 0.00332 |
9 | #keto | 0.00152 | #lowcarb | 0.00331 |
10 | #fitness | 0.00149 | #goodfood | 0.00324 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilař, L.; Stanislavská, L.K.; Kvasnička, R.; Hartman, R.; Tichá, I. Healthy Food on Instagram Social Network: Vegan, Homemade and Clean Eating. Nutrients 2021, 13, 1991. https://doi.org/10.3390/nu13061991
Pilař L, Stanislavská LK, Kvasnička R, Hartman R, Tichá I. Healthy Food on Instagram Social Network: Vegan, Homemade and Clean Eating. Nutrients. 2021; 13(6):1991. https://doi.org/10.3390/nu13061991
Chicago/Turabian StylePilař, Ladislav, Lucie Kvasničková Stanislavská, Roman Kvasnička, Richard Hartman, and Ivana Tichá. 2021. "Healthy Food on Instagram Social Network: Vegan, Homemade and Clean Eating" Nutrients 13, no. 6: 1991. https://doi.org/10.3390/nu13061991
APA StylePilař, L., Stanislavská, L. K., Kvasnička, R., Hartman, R., & Tichá, I. (2021). Healthy Food on Instagram Social Network: Vegan, Homemade and Clean Eating. Nutrients, 13(6), 1991. https://doi.org/10.3390/nu13061991