Characteristics of Distinct Dietary Patterns in Rural Bangladesh: Nutrient Adequacy and Vulnerability to Shocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Food Consumption and Socio-Demographic Data
2.3. Vulnerability of Dietary Patterns
2.4. Statistical Analysis
3. Results
3.1. Dietary Patterns in Bangladesh
3.2. Energy and Nutrient Intakes of Dietary Patterns
3.3. Predictors of Dietary Patterns in Bangladesh
3.4. Vulnerability of Dietary Patterns to Potential Shocks
4. Discussion
4.1. Summary of Main Results
4.2. Comparison with Previous Studies
4.3. Strengths and Limitations
4.4. Implications Including Policy Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. Population Growth-Bangladesh 2019; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Osmani, S.R.; Ahmed, A.; Ahmed, T.; Hossain, N.; Huq, S.; Shahan, A. Strategic Review of Food Security and Nutrition in Bangladesh Executive Summary; WFP: Rome, Italy, 2016. [Google Scholar]
- Das, S.; Shah, M.F.; Islam, M.S.; Biswas, T.; Mahfuz, M.; Ahmed, T. Prevalence and Sociodemographic Determinants of Household-Level Double Burden of Malnutrition in Bangladesh. Public Health Nutr. 2019, 22, 1425–1432. [Google Scholar] [CrossRef] [Green Version]
- Biswas, T.; Islam, A.; Islam, M.S.; Pervin, S.; Rawal, L.B. Overweight and Obesity among Children and Adolescents in Bangladesh: A Systematic Review and Meta-Analysis. Public Health 2017, 142, 94–101. [Google Scholar] [CrossRef]
- National Institute of Population Research and Training; The DHS Program; ICF. Demographic and Health Survey 2017–2018 Key Indicators; NIPORT; ICF: Rockville, MD, USA, 2019. [Google Scholar]
- Development Initiatives. 2018 Global Nutrition Report: Shining a Light to Spur Action on Nutrition; Development Initiatives Poverty Research Ltd.: Bristol, UK, 2018. [Google Scholar]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global Nutrition Transition and the Pandemic of Obesity in Developing Countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. In Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020. [Google Scholar]
- Chen, C.; Noble, I.; Hellmann, J.; Coffee, J.; Murillo, M.; Chawla, N. University of Notre Dame Global Adaptation Index Country Index Technical Report; ND-GAIN: South Bend, IN, USA, 2015. [Google Scholar]
- Rahaman, M.A.; Rahman, M.M.; Hossain, M.S. Climate-Resilient Agricultural Practices in Different Agro-ecological Zones of Bangladesh. In Handbook of Climate Change Resilience; Leal Filho, W., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–27. [Google Scholar]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.F.; Tucker, K.L. Are Dietary Patterns Useful for Understanding the Role of Diet in Chronic Disease? Am. J. Clin. Nutr. 2001, 73, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Cespedes, E.M.; Hu, F.B. Dietary Patterns: From Nutritional Epidemiologic Analysis to National Guidelines; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- International Food Policy Research Institute. Bangladesh Climate Change Adaptation Survey (BCCAS), Round I; International Food Policy Research Institute, Data Analysis Technical Assistance, Center for Development Research, Eds.; Harvard Dataverse: Washington, DC, USA, 2014. [Google Scholar]
- Shaheen, N.; Rahim, A.; Mohiduzzaman, M.; Banu, C.P.; Bari, M.; Tukun, A.B.; Mannan, M.; Bhattacharjee, L.; Stadlmayr, B. Food Composition Table for Bangladesh; Institute of Nutrition and Food Science, Centre for Advanced Research in Sciences: Dhaka, Bangladesh, 2013; Volume 187. [Google Scholar]
- National Sample Survey Office. Nutritional Intake in India, 2011–2012. NSS 68th Round; Government of India: New Delhi, India, 2014. [Google Scholar]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.; Harris, F.; Hillier, J.; Vetter, S.H.; Smith, P.; Kulkarni, B.; Dangour, A.D.; Haines, A. Environmental Impacts of Dietary Shifts in India: A Modelling Study using Nationally-Representative Data. Environ. Int. 2019, 126, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, O.I.; Lividini, K.; Smitz, M.-F.; Fiedler, J.L. Estimating Micronutrient Intakes from Household Consumption and Expenditures Surveys (HCES): An Example from Bangladesh. Food Nutr. Bull. 2012, 33, S208–S213. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
- Krefis, A.C.; Schwarz, N.G.; Nkrumah, B.; Acquah, S.; Loag, W.; Sarpong, N.; Adu-Sarkodie, Y.; Ranft, U.; May, J. Principal Component Analysis of Socioeconomic Factors and Their Association with Malaria in Children from the Ashanti Region, Ghana. Malar. J. 2010, 9, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, S.; Kumaranayake, L. Constructing Socio-Economic Status Indices: How to Use Principal Components Analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Sibhatu, K.T.; Krishna, V.V.; Qaim, M. Production Diversity and Dietary Diversity in Smallholder Farm Households. Proc. Natl. Acad. Sci. USA 2015, 112, 10657–10662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, J.; Matthews, A. Trade Dimensions of Food Security; OECD: Paris, France, 2015. [Google Scholar]
- Chen, Y.; McClintock, T.R.; Segers, S.; Parvez, F.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Hasan, R.; Sarwar, G.; Ahsan, H. Prospective Investigation of Major Dietary Patterns and Risk of Cardiovascular Mortality in Bangladesh. Int. J. Cardiol. 2013, 167, 1495–1501. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Mengling, L.; Parvez, F.; Binhuan, W.; Fen, W.; Eunus, M.; Bangalore, S.; Ahmed, A.; Islam, T.; Rakibuz-Zaman, M. Association of Major Dietary Patterns and Blood Pressure Longitudinal Change in Bangladesh. J. Hypertens. 2015, 33, 1193. [Google Scholar] [CrossRef] [Green Version]
- Waid, J.L.; Sinharoy, S.S.; Ali, M.; Stormer, A.E.; Thilsted, S.H.; Gabrysch, S. Dietary Patterns and Determinants of Changing Diets in Bangladesh from 1985 to 2010. Curr. Dev. Nutr. 2018, 3, nzy091. [Google Scholar] [CrossRef]
- Sibhatu, K.T.; Qaim, M. Meta-Analysis of the Association between Production Diversity, Diets, and Nutrition in Smallholder Farm Households. Food Policy 2018, 77, 1–18. [Google Scholar] [CrossRef]
- Bennett, M.K. International Contrasts in Food Consumption. Geogr. Rev. 1941, 31, 365–376. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Chern, W.S.; Gale, F. How Will Rising Income Affect the Structure of Food Demand? China Food Agric. 2001, 63, 10–13. [Google Scholar]
- Headey, D.D. Developmental Drivers of Nutritional Change: A Cross-Country Analysis. World Dev. 2013, 42, 76–88. [Google Scholar] [CrossRef]
- Kearney, J. Food Consumption Trends and Drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- Nahar, Q.; Choudhury, S.; Faruque, M.; Sultana, S.; Siddiquee, M. Desirable Dietary Pattern for Bangladesh. Final Res. Results 2013, 15, 226–244. [Google Scholar]
- Gil, A.; Ortega, R.M.; Maldonado, J. Wholegrain Cereals and Bread: A Duet of the Mediterranean Diet for the Prevention of Chronic Diseases. Public Health Nutr. 2011, 14, 2316–2322. [Google Scholar] [CrossRef] [PubMed]
- Fahey, M.T.; Thane, C.W.; Bramwell, G.D.; Coward, W.A. Conditional Gaussian Mixture Modelling for Dietary Pattern Analysis. J. R. Stat. Soc. Ser. A 2007, 170, 149–166. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Food Balance Sheets (Old Methodology); FAOSTAT: Rome, Italy, 2019. [Google Scholar]
- Harris-Fry, H.; Shrestha, N.; Costello, A.; Saville, N.M. Determinants of Intra-Household Food Allocation between Adults in South Asia—A Systematic Review. Int. J. Equity Health 2017, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Bishwajit, G. Nutrition Transition in South Asia: The Emergence of Non-Communicable Chronic Diseases. F1000 Res. 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- De Brauw, A.; Waid, J.; Meisner, C.A.; Akter, F.; Khan, B.F. Food Systems for Healthier Diets in Bangladesh: Towards a Research Agenda; IFPRI: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
Characteristic | Rice and Low Diversity n (%) | Wheat and High Diversity n (%) | Pulses and Vegetables n (%) | Meat and Fish n (%) | Total n (%) |
---|---|---|---|---|---|
Total | 263 (32.9) | 262 (32.8) | 259 (32.4) | 16 (2.0) | 800 (100.0) |
Age group a (years) | |||||
≤35 | 53 (20.2) | 99 (37.8) | 68 (26.3) | 3 (18.8) | 223 (27.9) |
36–45 | 95 (36.1) | 62 (23.7) | 64 (24.7) | 4 (25.0) | 225 (28.1) |
46–55 | 55 (20.9) | 55 (21.0) | 65 (25.1) | 6 (37.5) | 181 (22.6) |
>55 | 60 (22.8) | 46 (17.6) | 62 (23.9) | 3 (18.8) | 171 (21.4) |
Religion a | |||||
Muslim | 247 (93.9) | 223 (85.1) | 230 (88.8) | 11 (68.8) | 711 (88.9) |
Hindu/other | 16 (6.1) | 39 (14.9) | 29 (11.2) | 5 (31.3) | 89 (11.1) |
Educational level a | |||||
None | 156 (59.3) | 102 (38.9) | 119 (45.9) | 4 (25.0) | 381 (47.6) |
Primary school | 96 (36.5) | 123 (46.9) | 113 (43.7) | 7 (43.7) | 339 (42.4) |
Secondary/Tertiary | 11 (4.2) | 37 (14.1) | 27 (10.4) | 5 (31.3) | 80 (10.0) |
Household size | |||||
1–4 | 89 (33.8) | 159 (60.7) | 119 (46.0) | 7 (43.8) | 374 (46.8) |
5–7 | 136 (51.7) | 86 (32.8) | 116 (44.8) | 8 (50.0) | 346 (43.2) |
>7 | 38 (14.6) | 17 (6.5) | 24 (9.3) | 1 (6.3) | 80 (10.0) |
Farm production | |||||
≤5 | 97 (36.9) | 72 (27.5) | 86 (33.2) | 3 (18.7) | 258 (32.2) |
6–10 | 125 (47.5) | 129 (49.2) | 124 (47.9) | 10 (62.5) | 388 (48.5) |
>10 | 41 (15.6) | 61 (23.3) | 49 (18.9) | 3 (18.8) | 154 (19.3) |
Household wealth | |||||
Poor | 146 (55.5) | 69 (26.3) | 101 (39.0) | 4 (25.0) | 320 (40.0) |
Medium | 39 (14.8) | 6.1 (23.3) | 58 (22.4) | 2 (12.5) | 160 (20.0) |
Rich | 78 (29.7) | 132 (50.4) | 100 (38.6) | 10 (62.5) | 320 (40.0) |
Region of residence | |||||
Northern | 83 (31.6) | 50 (19.1) | 59 (22.8) | 8 (50.0) | 200 (25.0) |
Eastern | 100 (38.0) | 99 (37.8) | 97 (37.4) | 4 (25.0) | 300 (37.5) |
Central | 39 (14.8) | 50 (19.1) | 49 (18.9) | 2 (12.5) | 140 (17.5) |
Southern | 41 (15.6) | 63 (24.0) | 54 (20.8) | 2 (12.5) | 160 (20.0) |
WHO Recommendation | Rice and Low Diversity (n = 263) | Wheat and High Diversity (n = 262) | Pulses and Vegetables (n = 259) | Meat and Fish (n = 16) | Total (n = 800) | |
---|---|---|---|---|---|---|
Total energy (kcal/capita/day) mean (95% CI) | 2812.86 (27310.8–2893.3) | 3054.7 (2956.6–3152.8) | 2918.7 (2839.1–2998.3) | 3225.1 (2750.9–3699.3) | 2933.5 (2883.5–2983.5) | |
Macro-nutrient (mean % of total energy) | ||||||
Carbohydrate | 55–75 | 78.9 | 70.6 | 76.1 | 75.2 | 75.2 |
Fat | 15–30 | 9.1 | 16.2 | 11.4 | 12.5 | 12.2 |
Protein | 10–15 | 9.0 | 11.0 | 9.7 | 10.1 | 9.9 |
Fruit and vegetables (mean in grams) | 400 | 218.9 | 380.7 | 284.4 | 248.6 | 293.7 |
Met WHO recommendation (%) | ||||||
Carbohydrate | 100.0 | 97.7 | 100.0 | 100.0 | 99.2 | |
Fat | 3.0 | 48.1 | 8.5 | 25.0 | 20.0 | |
Protein | 10.0 | 37.0 | 29.0 | 37.5 | 25.4 | |
Fruit and vegetables | 3.4 | 36.6 | 15.4 | 12.5 | 18.4 |
Predictor | Rice and Low Diversity (n = 263) | Wheat and High Diversity (n = 262) | Pulses and Vegetables (n = 259) | Meat and Fish (n = 16) | ||||
---|---|---|---|---|---|---|---|---|
AOR † (95% CI) | p-Value | AOR † (95% CI) | p-Value | AOR † (95% CI) | p-Value | UOR ¶ (95% CI) | p-Value | |
Household wealth | <0.001 | <0.001 | 0.49 | 0.19 | ||||
Poor | 1 | 1 | 1 | 1 | ||||
Medium | 0.46 (0.29–0.73) | 1.94 (1.23–3.06) | 1.21 (0.58–2.53) | 1.00 (0.18–5.52) | ||||
Rich | 0.41 (0.27–0.61) | 2.66 (1.77–4.02) | 0.91 (0.54–1.51) | 2.55 (0.79–8.21) | ||||
Age group (years) | 0.04 | 0.10 | 0.16 | 0.57 | ||||
≤35 | 1 | 1 | 1 | 1 | ||||
36–45 | 1.75 (1.11–2.74) | 0.63 (0.41–0.97) | 0.87 (0.47–1.63) | 1.32 (0.29–6.00) | ||||
46–55 | 1.00 (0.61–1.64) | 0.66 (0.42–1.04) | 1.36 (0.51–3.66) | 2.51 (0.62–10.20) | ||||
>55 | 1.17 (0.71–1.92) | 0.60 (0.37–0.98) | 1.42 (0.47–4.31) | 1.31 (0.26–6.57) | ||||
Religion | 0.02 | 0.25 | 0.84 | 0.03 | ||||
Muslim | 1 | 1 | 1 | 1 | ||||
Other | 0.49 (0.27–0.91) | 1.35 (0.81–2.25) | 1.06 (0.58–1.93) | 3.79 (1.28–11.17) | ||||
Educational status | 0.002 | 0.74 | 0.74 | 0.01 | ||||
None | 1 | 1 | 1 | 1 | ||||
Primary school | 0.71 (0.50–1.01) | 1.10 (0.77–1.57) | 1.21 (0.63–2.31) | 1.99 (0.58–6.80) | ||||
Secondary/Tertiary | 0.37 (0.18–0.77) | 1.23 (0.71–2.15) | 1.31 (0.48–3.63) | 1.28 (1.65–23.95) | ||||
Household size | <0.001 | <0.001 | 0.80 | 0.93 | ||||
1–4 | 1 | 1 | 1 | 1 | ||||
5–7 | 2.30 (1.59–3.32) | 0.43 (0.30–0.62) | 1.06 (0.70–1.62) | 1.24 (0.45–3.46) | ||||
>7 | 4.15 (2.28–7.58) | 0.28 (0.15–0.54) | 0.87 (0.41–1.83) | 0.66 (0.08–5.47) | ||||
Farm production | 0.35 | 0.22 | 0.93 | 0.51 | ||||
<5 | 1 | 1 | 1 | 1 | ||||
6–10 | 0.81 (0.56–1.18) | 1.22 (0.83–1.80) | 0.94 (0.61–1.44) | 2.07 (0.56–7.60) | ||||
>10 | 0.70 (0.42–1.17) | 1.54 (0.94–2.52) | 0.91 (0.50–1.64) | 1.56 (0.31–7.81) | ||||
Region of residence | <0.001 | 0.005 | 0.74 | 0.20 | ||||
Northern | 2.43 (1.46–4.03) | 0.43 (0.26–0.70) | 0.87 (0.45–1.69) | 3.29 (0.69–15.72) | ||||
Eastern | 1.32 (0.81–2.17) | 0.79 (0.50–1.25) | 1.02 (0.61–1.70) | 1.07 (0.19–5.89) | ||||
Central | 1.20 (0.68–2.12) | 0.74 (0.44–1.25) | 1.18 (0.56–2.48) | 1.14 (0.16–8.24) | ||||
Southern | 1 | 1 | 1 | 1 |
Pattern | V1 | V2 | V3 | Vulnerability Rank |
---|---|---|---|---|
Rice and low diversity | 84.16 | 85.19 | 85.20 | 1 * |
Wheat and high diversity | 63.00 | 69.45 | 69.54 | 4 |
Pulses and vegetables | 76.40 | 79.04 | 79.06 | 2 |
Meat and fish | 75.50 | 78.81 | 78.81 | 3 |
Overall | 74.55 | 77.92 | 77.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, Z.; Scheelbeek, P.F.D.; Sanin, K.I.; Thomas, T.S.; Ahmed, T.; Prentice, A.M.; Green, R. Characteristics of Distinct Dietary Patterns in Rural Bangladesh: Nutrient Adequacy and Vulnerability to Shocks. Nutrients 2021, 13, 2049. https://doi.org/10.3390/nu13062049
Ali Z, Scheelbeek PFD, Sanin KI, Thomas TS, Ahmed T, Prentice AM, Green R. Characteristics of Distinct Dietary Patterns in Rural Bangladesh: Nutrient Adequacy and Vulnerability to Shocks. Nutrients. 2021; 13(6):2049. https://doi.org/10.3390/nu13062049
Chicago/Turabian StyleAli, Zakari, Pauline F. D. Scheelbeek, Kazi Istiaque Sanin, Timothy S. Thomas, Tahmeed Ahmed, Andrew M. Prentice, and Rosemary Green. 2021. "Characteristics of Distinct Dietary Patterns in Rural Bangladesh: Nutrient Adequacy and Vulnerability to Shocks" Nutrients 13, no. 6: 2049. https://doi.org/10.3390/nu13062049
APA StyleAli, Z., Scheelbeek, P. F. D., Sanin, K. I., Thomas, T. S., Ahmed, T., Prentice, A. M., & Green, R. (2021). Characteristics of Distinct Dietary Patterns in Rural Bangladesh: Nutrient Adequacy and Vulnerability to Shocks. Nutrients, 13(6), 2049. https://doi.org/10.3390/nu13062049