Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Collection of Human Milk Samples
2.3. Measurements of Cytokines and Chemokines in Human Milk
2.4. Data Analyses
2.5. Ethics
3. Results
3.1. Background Characteristics of Mothers and Infants
3.2. Positive Rates of Cytokines in Human Milk
3.3. Levels of Cytokines in Human Milk
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duijts, L.; Ramadhani, M.K.; Moll, H.A. Breastfeeding protects against infectious diseases during infancy in industrialized countries. A systematic review. Matern. Child. Nutr. 2009, 5, 199–210. [Google Scholar] [CrossRef]
- Lamberti, L.M.; Fischer Walker, C.L.; Noiman, A.; Victora, C.; Black, R.E. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health 2011, 11 (Suppl. 3), S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessandro, A.; Scaloni, A.; Zolla, L. Human milk proteins: An interactomics and updated functional overview. J. Proteome Res. 2010, 9, 3339–3373. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Karmaus, W.; Davis, S.; Gangur, V. Immune markers in breast milk and fetal and maternal body fluids: A systematic review of perinatal concentrations. J. Hum. Lact. 2011, 27, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; López de Pablo, Á.L.; de Sáenz Pipaón, M.; Ramiro-Cortijo, D. A Review of Bioactive Factors in Human Breastmilk: A Focus on Prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Farquhar, C.; Mbori-Ngacha, D.A.; Redman, M.W.; Bosire, R.K.; Lohman, B.L.; Piantadosi, A.L.; Goodman, R.B.; Ruzinski, J.T.; Emery, S.R.; Crudder, C.H.; et al. CC and CXC chemokines in breastmilk are associated with mother-to-child HIV-1 transmission. Curr. HIV Res. 2005, 3, 361–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuaillon, E.; Viljoen, J.; Dujols, P.; Cambonie, G.; Rubbo, P.A.; Nagot, N.; Bland, R.M.; Badiou, S.; Newell, M.L.; Van de Perre, P. Subclinical mastitis occurs frequently in association with dramatic changes in inflammatory/anti-inflammatory breast milk components. Pediatric Res. 2017, 81, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottcher, M.F.; Jenmalm, M.C.; Bjorksten, B.; Garofalo, R.P. Chemoattractant factors in breast milk from allergic and nonallergic mothers. Pediatric Res. 2000, 47, 592–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudloff, S.; Niehues, T.; Rutsch, M.; Kunz, C.; Schroten, H. Inflammation markers and cytokines in breast milk of atopic and nonatopic women. Allergy 1999, 54, 206–211. [Google Scholar] [CrossRef]
- Li, L.; Han, Z.; Niu, X.; Zhang, G.; Jia, Y.; Zhang, S.; He, C. Probiotic Supplementation for Prevention of Atopic Dermatitis in Infants and Children: A Systematic Review and Meta-analysis. Am. J. Clin. Dermatol. 2019, 20, 367–377. [Google Scholar] [CrossRef]
- Prescott, S.L.; Wickens, K.; Westcott, L.; Jung, W.; Currie, H.; Black, P.N.; Stanley, T.V.; Mitchell, E.A.; Fitzharris, P.; Siebers, R.; et al. Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-gamma and breast milk transforming growth factor-beta and immunoglobin A detection. Clin. Exp. Allergy 2008, 38, 1606–1614. [Google Scholar] [CrossRef]
- In, J. Introduction of a pilot study. Korean J. Anesth. 2017, 70, 601–605. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Fukudome, H.; Ueno, H.M.; Watanabe-Matsuhashi, S.; Nakano, T.; Kobayashi, T.; Ishimaru, K.; Nakao, A. Effects of Probiotic Supplementation on TGF-β1, TGF-β2, and IgA Levels in the Milk of Japanese Women: An Open-Label Pilot Study. Front Nutr. 2019, 6, 128. [Google Scholar] [CrossRef]
- Böttcher, M.F.; Abrahamsson, T.R.; Fredriksson, M.; Jakobsson, T.; Björkstén, B. Low breast milk TGF-beta2 is induced by Lactobacillus reuteri supplementation and associates with reduced risk of sensitization during infancy. Pediatr. Allergy Immunol. 2008, 19, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Boyle, R.J.; Ismail, I.H.; Kivivuori, S.; Licciardi, P.V.; Robins-Browne, R.M.; Mah, L.J.; Axelrad, C.; Moore, S.; Donath, S.; Carlin, J.B.; et al. Lactobacillus GG treatment during pregnancy for the prevention of eczema: A randomized controlled trial. Allergy 2011, 66, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Hoppu, U.; Isolauri, E.; Laakso, P.; Matomäki, J.; Laitinen, K. Probiotics and dietary counselling targeting maternal dietary fat intake modifies breast milk fatty acids and cytokines. Eur. J. Nutr. 2012, 51, 211–219. [Google Scholar] [CrossRef]
- Kuitunen, M.; Kukkonen, A.K.; Savilahti, E. Impact of maternal allergy and use of probiotics during pregnancy on breast milk cytokines and food antibodies and development of allergy in children until 5 years. Int. Arch. Allergy Immunol. 2012, 159, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Savilahti, E.M.; Kukkonen, A.K.; Kuitunen, M.; Savilahti, E. Soluble CD14, α-and β-defensins in breast milk: Association with the emergence of allergy in a high-risk population. Innate Immun. 2015, 21, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Banks, J.M.; Williams, A.G. The role of the nonstarter lactic acid bacteria in Cheddar cheese ripening. Int. J. Dairy Technol. 2004, 57, 145–152. [Google Scholar] [CrossRef]
- Cha, Y.S.; Seo, J.G.; Chung, M.J.; Cho, C.W.; Youn, H.J. A mixed formulation of lactic acid bacteria inhibits trinitrobenzene-sulfonic-acid-induced inflammatory changes of the colon tissue in mice. J. Microbiol. Biotechnol. 2014, 24, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.K.; Kwak, M.J.; Seo, J.G.; Chung, M.J.; Kim, J.F. Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health. J. Biotechnol. 2015, 214, 169–170. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Kim, M.S.; Yoon, Y.S.; Chung, M.J.; Yum, D.Y. Use of selected lactic acid bacteria in the eradication of Helicobacter pylori infection. J. Microbiol. 2014, 52, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Ara, K.; Meguro, S.; Hase, T.; Tokimitsu, I.; Otsuji, K.; Kawai, S.; Ito, S.; Iino, H. Effect of Spore-bearing Lactic Acid-forming Bacteria ( Bacillus coagulans SANK 70258) Administration on the Intestinal Environment, Defecation Frequency, Fecal Characteristics and Dermal Characteristics in Humans and Rats. Microb. Ecol. Health Dis. 2002, 14, 4–13. [Google Scholar] [CrossRef]
- Zuccotti, G.; Meneghin, F.; Aceti, A.; Barone, G.; Callegari, M.L.; Di Mauro, A.; Fantini, M.P.; Gori, D.; Indrio, F.; Maggio, L.; et al. Probiotics for prevention of atopic diseases in infants: Systematic review and meta-analysis. Allergy 2015, 70, 1356–1371. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Dawod, B.; Marshall, J.S. Cytokines and Soluble Receptors in Breast Milk as Enhancers of Oral Tolerance Development. Front. Immunol. 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.; Espinosa-Martos, I.; Garcia-Carral, C.; Manzano, S.; McGuire, M.K.; Meehan, C.L.; McGuire, M.A.; Williams, J.E.; Foster, J.; Sellen, D.W.; et al. What’s Normal? Immune Profiling of Human Milk from Healthy Women Living in Different Geographical and Socioeconomic Settings. Front Immunol. 2017, 8, 696. [Google Scholar] [CrossRef]
- Castellote, C.; Casillas, R.; Ramirez-Santana, C.; Perez-Cano, F.J.; Castell, M.; Moretones, M.G.; Lopez-Sabater, M.C.; Franch, A. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011, 141, 1181–1187. [Google Scholar] [CrossRef]
- Da Costa, T.H.M.; Haisma, H.; Wells, J.C.K.; Mander, A.P.; Whitehead, R.G.; Bluck, L.J.C. How much human milk do infants consume? Data from 12 countries using a standardized stable isotope methodology. J. Nutr. 2010, 140, 2227–2232. [Google Scholar] [CrossRef] [Green Version]
- Ueno, H.M.; Higurashi, S.; Shimomura, Y.; Wakui, R.; Matsuura, H.; Shiota, M.; Kubouchi, H.; Yamamura, J.-I.; Toba, Y.; Kobayashi, T. Association of DHA Concentration in Human Breast Milk with Maternal Diet and Use of Supplements: A Cross-Sectional Analysis of Data from the Japanese Human Milk Study Cohort. Curr. Dev. Nutr. 2020, 4, nzaa105. [Google Scholar] [CrossRef]
- Ochiai, S.; Shimojo, N.; Morita, Y.; Tomiita, M.; Arima, T.; Inoue, Y.; Nakaya, M.; Uehara, N.; Sato, Y.; Mori, C.; et al. Cytokine biomarker candidates in breast milk associated with the development of atopic dermatitis in 6-month-old infants. Int. Arch. Allergy Immunol. 2013, 160, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Chollet-Hinton, L.S.; Stuebe, A.M.; Casbas-Hernandez, P.; Chetwynd, E.; Troester, M.A. Temporal trends in the inflammatory cytokine profile of human breastmilk. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2014, 9, 530–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregori, S.; Roncarolo, M.G. Engineered T Regulatory Type 1 Cells for Clinical Application. Front Immunol. 2018, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Suda, Y.; Nakao, A.; Oh-Oka, K.; Suzuki, K.; Ishimaru, K.; Sato, M.; Tanaka, T.; Nagai, A.; Yamagata, Z. Maternal psychosocial factors determining the concentrations of transforming growth factor-beta in breast milk. Pediatr. Allergy Immunol. 2011, 22, 853–861. [Google Scholar] [CrossRef]
- Savilahti, E.; Saarinen, K.M. Colostrum TGF-beta-1 associates with the duration of breast-feeding. Eur. J. Nutr. 2007, 46, 238242. [Google Scholar] [CrossRef]
- Dunstan, J.A.; Roper, J.; Mitoulas, L.; Hartmann, P.E.; Simmer, K.; Prescott, S.L. The effect of supplementation with fish oil during pregnancy on breast milk immunoglobulin A, soluble CD14, cytokine levels and fatty acid composition. Clin. Exp. Allergy 2004, 34, 1237–1242. [Google Scholar] [CrossRef]
Nutrients | Probiotic Tablets | Origin | Function and References |
---|---|---|---|
Energy (kcal) | 1.2 | ||
Protein (g) | 0–0.1 | ||
Fat (g) | 0–0.1 | ||
Carbohydrates (g) | 0.7 | ||
Sodium (mg) | 0–2 | ||
Lactobacillus casei LC5 (CFU) | 5 × 109 | Cheese | Anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells [20]. |
Bifidobacterium longum BG7 (CFU) | 5 × 109 | Infant feces | Suppresses Helicobacter pylori-induced interreukin-8 production in human gastric cell lines [22]. |
Bacillus coagulans SANK70258 (CFU) | 2 × 108 | Green malt | Increase in persons whose defecation frequency [23]. |
Total Population | Probiotic Group | Control Group | p Value | |
---|---|---|---|---|
(n = 60) | (n = 41) | (n = 19) | (Probiotic vs. Control) | |
Baseline characteristics | ||||
Age (y) | 33 (30–36) | 33 (27–39) | 33 (23–43) | 0.981 |
Height (cm) | 160 (155–164) | 159 (150–169) | 161 (154–168) | 0.105 |
Weight (kg) | 53 (49–57) | 54 (45–63) | 53 (46–61) | 0.633 |
BMI (kg/m2) | 21 (19–23) | 21 (19–23) | 20 (18–22) | 0.137 |
Gestational age (w) | 39 (38–40) | 39 (37–41) | 39 (37–41) | 0.775 |
Infant birth weight (g) | 3078 (2923–3354) | 3110 (2642–3578) | 3083 (2802–3274) | 0.415 |
Days postpartum (d) | 41 (37–46) | 44 (34–48) | 42 (32–52) | 0.583 |
Clinical history of allergies | ||||
Any | 60/60 (100%) | 41/41 (100%) | 19/19 (100%) | 1.000 |
Asthma | 6/60 (10%) | 3/41 (7%) | 3/19 (16%) | 0.370 |
Atopic dermatitis | 22/60 (37%) | 16/41 (39%) | 6/19 (32%) | 0.578 |
Allergic rhinitis | 47/60 (78%) | 34/41 (83%) | 13/19 (68%) | 0.578 |
Variable | Total Positive Rates (n = 180) | Probiotic Group (n = 41) | Control Group (n = 19) | Supplement | Time | ||||
---|---|---|---|---|---|---|---|---|---|
[%] | 1 Mo | 2 Mo | 3 Mo | 1 Mo | 2 Mo | 3 Mo | Effect | Effect | |
Proinflammatory cytokines | |||||||||
IL-1β | 5.6 | 4.9 | 0 | 7.3 | 10.5 | 5.3 | 10.5 | 0.210 | 0.689 |
IL-6 | 30.6 | 41.5 | 17.1 | 31.7 | 42.1 | 31.6 | 21.1 | 0.838 | 0.115 |
IL-17 | 1.7 | 0 | 0 | 2.4 | 5.3 | 0 | 5.3 | 0.227 | 0.484 |
TNF-α | 12.2 | 9.8 | 14.6 | 19.5 | 15.8 | 0 | 5.3 | 0.155 | 0.576 |
Anti-inflammatory cytokines | |||||||||
IL-1RA | 63.9 | 82.9 | 58.5 | 58.5 | 84.2 | 57.9 | 31.6 | 0.236 | 0.0002 * |
IL-10 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | – | – |
Th1-related cytokines | |||||||||
IL-12 (p70) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | – | – |
Th2-related cytokines | |||||||||
IL-4 | 1.7 | 0 | 0 | 2.4 | 5.3 | 0 | 5.3 | 0.227 | 0.484 |
IL-5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | – | – |
IL-13 | 7.8 | 0 | 7.3 | 7.3 | 5.3 | 21.1 | 15.8 | 0.039 | 0.093 |
Th9-related cytokines | |||||||||
IL-9 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | – | – |
Chemokines | |||||||||
IL-8 | 99.4 | 100 | 100 | 100 | 94.7 | 100 | 100 | 0.996 | 0.995 |
Eotaxin | 13.9 | 19.5 | 9.8 | 9.8 | 15.8 | 15.8 | 15.8 | 0.615 | 0.293 |
IP-10 | 93.9 | 95.1 | 92.7 | 90.2 | 94.7 | 94.7 | 100 | 0.332 | 0.703 |
MIP-1α | 11.1 | 9.8 | 2.4 | 24.4 | 10.5 | 5.3 | 10.5 | 0.495 | 0.087 |
MIP-1β | 97.2 | 100 | 95.1 | 92.7 | 100 | 100 | 100 | 0.997 | 0.124 |
RANTES | 30.6 | 43.9 | 19.5 | 29.3 | 31.6 | 31.6 | 26.3 | 0.884 | 0.167 |
Growth factors | |||||||||
IL-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | – | – |
IL-7 | 60.6 | 70.7 | 58.5 | 48.8 | 68.4 | 68.4 | 52.6 | 0.622 | 0.026 * |
FGF-basic | 2.8 | 0 | 2.4 | 4.9 | 5.3 | 0 | 5.3 | 0.685 | 0.282 |
G-CSF | 29.4 | 31.7 | 26.8 | 31.7 | 31.6 | 31.6 | 21.1 | 0.783 | 0.689 |
GM-CSF | 54.4 | 53.7 | 53.7 | 51.2 | 57.9 | 52.6 | 63.2 | 0.527 | 1.000 |
PDGF-BB | 91.1 | 95.1 | 85.4 | 85.4 | 100 | 94.7 | 94.7 | 0.100 | 0.113 |
VEGF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | – | – |
Variable [pg/mL, Mean 95% CI] | Probiotic Group (n = 41) | Control Group (n = 19) | Supplement × Time | Supplement | Time | ||||
---|---|---|---|---|---|---|---|---|---|
1 Mo | 2 Mo | 3 Mo | 1 Mo | 2 Mo | 3 Mo | Interaction | Effect | Effect | |
Anti-inflammatory cytokines | |||||||||
IL-1RA | 366.33 | 169.95 | 296.49 | 405.15 | 128.742 | 339.51 | 0.854 | 0.916 | 0.132 |
(188.76–543.89) | (108.28–231.62) | (−12.46–605.431) | (144.31–665.99) | (38.15–219.33) | (−114.32–793.34) | ||||
IL-10 | 445.68 | 471.19 | 460.71 | 371.49 | 394.078 | 444.81 | 0.015 * | 0.003 * | 0.001 * |
(423.47–467.89) | (445.05–497.33) | (433.56–487.86) | (338.87–404.11) | (355.68–432.48) | (404.93–484.69) | ||||
Th1-related cytokines | |||||||||
IL-12 (p70) | 411.91 | 438.36 | 425.15 | 371.43 | 379.89 | 381.57 | 0.467 | 0.003 * | 0.094 |
(391.84–431.97) | (419.52–457.21) | (403.91–446.38) | (341.96–400.91) | (352.21–407.58) | (350.38–412.76) | ||||
Th9-related cytokines | |||||||||
IL-9 | 37.32 | 29.58 | 40.07 | 37.99 | 30.42 | 38.38 | 0.919 | 0.992 | 0.070 |
(29.02–45.61) | (25.85–33.31) | (28.13–52.00) | (25.80–50.17) | (24.95–35.91) | (20.85–55.91) | ||||
Chemokines | |||||||||
IL-8 | 85.59 | 65.13 | 152.50 | 132.25 | 110.53 | 772.53 | 0.214 | 0.172 | 0.116 |
(38.57–132.59) | (29.96–100.30) | (−381.71–686.72) | (63.20–201.30) | (58.86–162.20) | (−12.22–1557.27) | ||||
IP-10 | 2015.16 | 1206.67 | 1214.43 | 1936.73 | 1674.03 | 1157.72 | 0.667 | 0.878 | 0.152 |
(837.40–3192.93) | (324.12–2089.22) | (451.34–1977.52) | (195.95–3677.52) | (369.52–2978.53) | (27.32–2288.12) | ||||
MIP-1β | 60.79 | 33.64 | 79.74 | 80.76 | 47.58 | 185.64 | 0.399 | 0.276 | 0.116 |
(31.50–90.08) | (19.85–47.43) | (−41.59–201.06) | (37.73–123.78) | (27.32–67.84) | (7.43–363.86) | ||||
Growth factors | |||||||||
IL-7 | 25.01 | 20.67 | 21.47 | 23.34 | 31.75 | 23.16 | 0.073 | 0.438 | 0.390 |
(19.11–30.91) | (14.51–26.83) | (14.17–28.77) | (14.67–32.01) | (22.70–40.80) | (12.44–33.88) | ||||
GM-CSF | 73.82 | 76.60 | 81.25 | 78.16 | 72.93 | 69.02 | 0.327 | 0.790 | 0.948 |
(57.16–90.48) | (59.16–94.05) | (62.13–100.36) | (53.69–102.63) | (47.31–98.56) | (40.94–97.10) | ||||
PDGF-BB | 6.33 | 7.49 | 7.61 | 6.93 | 10.31 | 9.17 | 0.697 | 0.334 | 0.213 |
(4.95–7.72) | (4.45–10.53) | (4.60–10.62) | (4.89–8.96) | (5.84–14.78) | (4.76–13.59) | ||||
VEGF | 8216.34 | 8807.23 | 8661.96 | 7226.86 | 7712.81 | 7886.36 | 0.695 | 0.041 * | 0.011 * |
(7674.87–8757.81) | (8203.69–9410.76) | (8079.43–9244.48) | (6431.45–8022.26) | (6826.23–8599.39) | (7030.65–8742.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, T.; Fukudome, H.; Ueno, H.M.; Watanabe-Matsuhashi, S.; Nakano, T.; Kobayashi, T.; Ishimaru, K.; Nakao, A. Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study. Nutrients 2021, 13, 2285. https://doi.org/10.3390/nu13072285
Takahashi T, Fukudome H, Ueno HM, Watanabe-Matsuhashi S, Nakano T, Kobayashi T, Ishimaru K, Nakao A. Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study. Nutrients. 2021; 13(7):2285. https://doi.org/10.3390/nu13072285
Chicago/Turabian StyleTakahashi, Tomoki, Hirofumi Fukudome, Hiroshi M. Ueno, Shiomi Watanabe-Matsuhashi, Taku Nakano, Toshiya Kobayashi, Kayoko Ishimaru, and Atsuhito Nakao. 2021. "Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study" Nutrients 13, no. 7: 2285. https://doi.org/10.3390/nu13072285
APA StyleTakahashi, T., Fukudome, H., Ueno, H. M., Watanabe-Matsuhashi, S., Nakano, T., Kobayashi, T., Ishimaru, K., & Nakao, A. (2021). Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study. Nutrients, 13(7), 2285. https://doi.org/10.3390/nu13072285