Effects of Dietary Patterns during Pregnancy on Preterm Birth: A Birth Cohort Study in Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Data Collection
2.3. Related Definitions and Classification Standards
2.4. Statistical Analysis
3. Results
3.1. Analysis of Dietary Pattern during Pregnancy
3.2. General Characteristics and Birth Outcomes by Dietary Pattern
3.3. The Relationship between the Scores of Maternal Dietary Patterns and Preterm Birth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, J.P.; Chawanpaiboon, S.; Watananirun, K.; Lumbiganon, P.; Petzold, M.; Moller, A.-B.; Thinkhamrop, J.; Laopaiboon, M.; Seuc, A.H.; Hogan, D.; et al. Global, regional and national levels and trends of preterm birth rates for 1990 to 2014: Protocol for development of World Health Organization estimates. Reprod. Health 2016, 13, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walani, S.R. Global burden of preterm birth. Int. J. Gynecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.-B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef] [Green Version]
- WHO. Preterm Birth. 2018. Available online: http://www.who.int/en/news-room/fact-sheets/detail/preterm-birth (accessed on 5 May 2021).
- Jing, S.; Chen, C.; Gan, Y.; Vogel, J.; Zhang, J. Incidence and trend of preterm birth in China, 1990–2016: A systematic review and meta-analysis. BMJ Open 2020, 10, e039303. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Wojdyla, D.; Say, L.; Bertran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Giurgescu, C.; Wagner, C.L. Evidence of an Association Between Vitamin D Deficiency and Preterm Birth and Preeclampsia: A Critical Review. J. Midwifery Women’s Health 2019, 64, 613–629. [Google Scholar] [CrossRef]
- Rogne, T.; Tielemans, M.J.; Chong, M.F.-F.; Yajnik, C.S.; Krishnaveni, G.V.; Poston, L.; Jaddoe, V.W.V.; Steegers, E.A.P.; Joshi, S.; Chong, Y.-S.; et al. Associations of Maternal Vitamin B12 Concentration in Pregnancy With the Risks of Preterm Birth and Low Birth Weight: A Systematic Review and Meta-Analysis of Individual Participant Data. Am. J. Epidemiol. 2017, 185, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Pei-Qun, X.; Yi, C.; Lian, Z. Analysis on the correlations between vitamin D, vitamin E, calcium, zinc levels during pregnancy and premature delivery. Matern. Child Health Care China 2020, 35, 3758–3760. [Google Scholar] [CrossRef]
- Solans, M.; Coenders, G.; Marcos-Gragera, R.; Castelló, A.; Gràcia-Lavedan, E.; Benavente, Y.; Moreno, V.; Pérez-Gómez, B.; Amiano, P.; Fernández-Villa, T.; et al. Compositional analysis of dietary patterns. Stat. Methods Med Res. 2019, 28, 2834–2847. [Google Scholar] [CrossRef]
- Yan, H.; Dang, S.; Zhang, Y.; Luo, S. Dietary patterns of Chinese women of childbearing age during pregnancy and their relationship to the neonatal birth weight. Nutr. J. 2020, 19, 1–13. [Google Scholar] [CrossRef]
- Englund-Ögge, L.; Brantsaeter, A.L.; Sengpiel, V.; Haugen, M.; Birgisdottir, B.E.; Myhre, R.; Meltzer, H.M.; Jacobsson, B. Maternal dietary patterns and preterm delivery: Results from large prospective cohort study. BMJ 2014, 348, g1446. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.L.; Sotres-Alvarez, D.; Siega-Riz, A.M. Maternal Dietary Patterns during the Second Trimester Are Associated with Preterm Birth. J. Nutr. 2015, 145, 1857–1864. [Google Scholar] [CrossRef]
- Chia, A.-R.; De Seymour, J.V.; Colega, M.; Chen, L.-W.; Chan, Y.-H.; Aris, I.M.; Tint, M.-T.; Quah, P.L.; Godfrey, K.; Yap, F.; et al. A vegetable, fruit, and white rice dietary pattern during pregnancy is associated with a lower risk of preterm birth and larger birth size in a multiethnic Asian cohort: The Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Am. J. Clin. Nutr. 2016, 104, 1416–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikkelsen, T.B.; Østerdal, M.L.; Knudsen, V.K.; Haugen, M.; Meltzer, H.M.; Bakketeig, L.; Olsen, S. Association between a Mediterranean-type diet and risk of preterm birth among Danish women: A prospective cohort study. Acta Obstet. Gynecol. Scand. 2008, 87, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.A.; Maslova, E.; Halldórsson, T.I.; Olsen, S.F. Characterization of Dietary Patterns in the Danish National Birth Cohort in Relation to Preterm Birth. PLoS ONE 2014, 9, e93644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarman, M.; Mathe, N.; Ramazani, F.; Pakseresht, M.; Robson, P.J.; Johnson, S.T.; Bell, R.C.; the APrON and ENRICH Study Teams. Dietary Patterns Prior to Pregnancy and Associations with Pregnancy Complications. Nutrients 2018, 10, 914. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Zang, J.; Tang, H.; Li, W.; Wang, Z.; Zou, S.; Jia, X. Relative validity of food frequency questionnaire for estimating dietary nutrients intake. Wei Sheng Yan Jiu 2016, 45, 743–748. (In Chinese) [Google Scholar] [PubMed]
- The Editorial Board. 2016 Chinese Balance Dietary Pagoda; People’s Medical Publishing House: Beijing, China, 2017. [Google Scholar]
- Cooperative Meta-analysis Group of China Obesity Task Force. Predictive values of body mass index and waist circumfer-ence to risk factors of related diseases in Chinese adult population. Chin. J. Epidemiol. 2002, 23, 5–10. [Google Scholar] [CrossRef]
- Hajianfar, H.; Esmaillzadeh, A.; Feizi, A.; Shahshahan, Z.; Azadbakht, L. Major Maternal Dietary Patterns during Early Pregnancy and Their Association with Neonatal Anthropometric Measurement. BioMed Res. Int. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Capital Institute of Pediatrics; Nine Cities Children Physical Development Investigation Cooperation Group. Growth standard curves of birth weight, length and head circumference of Chinese newborns of different gestation. Chin. J. Pediatr. 2020, 58, 738–746. [Google Scholar]
- He, L.Y.; Du, L.; Jin, H.; Zhu, L. The occurrence and risk factors of preterm birth in Shanghai city. Chin. J. Woman Child Health Res. 2020, 31, 706–711. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Xia, Y.; Zhang, S.M.; Bao, X.; Wu, H.M.; Bian, S.S.; Huang, L.Y.; Niu, K.J. Method of dietary nutritional status assessment and its application in cohort study of nutri-tional epidemiology. Chin. J. Pediatr. 2020, 41, 1145–1150. [Google Scholar] [CrossRef]
- Crozier, S.R.; Robinson, S.M.; Godfrey, K.M.; Cooper, C. Inskip HM. Women’s dietary patterns change little from before to dur-ing pregnancy. J. Nutr. 2009, 139, 1956–1963. [Google Scholar] [CrossRef] [PubMed]
- Cucó, G.; Fernandez-Ballart, J.; Sala, J.; Viladrich, C.; Iranzo, R.; Vila, J.; Arija, V. Dietary patterns and associated lifestyles in pre-conception, pregnancy and postpartum. Eur. J. Clin. Nutr. 2006, 60, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Zong, X.N.; Li, H. Establishment of growth standards for Chinese newborns by gestational ages: Study design and statistical methods. Chin. J. Evid. Based Pediatr. 2020, 15, 251–260. [Google Scholar] [CrossRef]
- Liu, Y.X.; Xu, F.L.; Duan, W.L.; Dong, H.F.; Wang, Y.J.; Zhang, Y.; Zhang, R. A multicenter study of the birth condition of preterm in-fants and the causes of preterm birth in Henan Province, China. Zhongguo Dang Dai Er Ke Za Zhi 2021, 23, 121–126, PMCID:PMC7921542. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Chia, A.-R.; Chen, L.-W.; Lai, J.S.; Wong, C.H.; Neelakantan, N.; Van Dam, R.M.; Chong, M.F.-F. Maternal Dietary Patterns and Birth Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Yang, Y.; Kan, H.; Yu, X.; Yang, Y.; Li, L.; Zhao, M. Relationship between dietary inflammatory index, hs-CRP level in the second trimester and neonatal birth weight: A cohort study. J. Clin. Biochem. Nutr. 2020, 66, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Banaem, L.M.; Mohamadi, B.; Jaafarabadi, M.A.; Moghadam, N.A. Maternal serum C-reactive protein in early pregnancy and occurrence of preterm premature rupture of membranes and preterm birth. J. Obstet. Gynaecol. Res. 2012, 38, 780–786. [Google Scholar] [CrossRef]
- Moore, B.; Sauder, K.A.; Starling, A.P.; Hébert, J.R.; Shivappa, N.; Ringham, B.M.; Glueck, D.H.; Dabelea, D. Proinflammatory Diets during Pregnancy and Neonatal Adiposity in the Healthy Start Study. J. Pediatr. 2018, 195, 121–127.e2. [Google Scholar] [CrossRef] [PubMed]
- Segovia, S.A.; Vickers, M.H.; Zhang, X.D.; Gray, C.; Reynolds, C.M. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring. J. Nutr. Biochem. 2015, 26, 1448–1457. [Google Scholar] [CrossRef]
- Middleton, P.; Gomersall, J.; Gould, J.F.; Shepherd, E.; Olsen, S.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef] [PubMed]
- De Seymour, J.V.; Simmonds, L.; Gould, J.; Makrides, M.; Middleton, P. Omega-3 fatty acids to prevent preterm birth: Australian pregnant women’s preterm birth awareness and intentions to increase omega-3 fatty acid intake. Nutr. J. 2019, 18, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, Y.; Xie, W.; Xue, X. Association between omega-3 fatty acid supplementation and lower risk of preterm delivery: A systematic review and meta-analysis. J. Matern. Neonatal Med. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. China Food Composition Tables Standard Edition; Peking University Medical Press: Beijing, China, 2019. [Google Scholar]
Food Groups | Food Items |
---|---|
Cereals and their products | Cereals and their products, such as rice, oatmeal, corn, oats, noodles, steamed buns, dumplings, wontons |
Potatoes and their products | Potatoes and other tubers and their products, such as vermicelli, vermicelli |
Vegetables | Legume vegetables, solanaceous vegetables, cole crops, root vegetables, leaf vegetables |
Beans and their products | Soybean and its products, such as soy milk, soy milk, dried bean curd |
Thallophytes | Fungus, tremella, mushroom, seaweed, kelp |
Fruits | Apples, pears, oranges, bananas and other fruits |
Dairy products | Milk, yoghurt |
Nuts | Walnut, pine nuts, almonds, hazelnuts, pistachios, peanuts and other nuts |
Poultry | Chickens, ducks, geese |
Livestock | Pigs, cows, sheep |
Fish | Freshwater fish, sea fish |
Other aquatic products | Shrimp, crabs, shells, jellyfish, squid, sea cucumbers, octopus |
Eggs | Eggs, duck eggs |
Salted products | Animal salted products, plant salted products, marinated meat, sauce |
Dietary Pattern | Factor Loadings | Eigenvalues | % of Variance Explained | % of Accumulated Variance Explained |
---|---|---|---|---|
Vegetarian Pattern | 3.360 | 16.748 | 16.748 | |
Fruits | 0.617 | |||
Potatoes and their products | 0.582 | |||
Cereals and their products | 0.544 | |||
Vegetables | 0.517 | |||
Thallophytes | 0.514 | |||
Salted products | 0.489 | |||
Beans and their products | 0.477 | |||
Nuts | 0.442 | |||
AFP | 1.174 | 14.914 | 31.662 | |
Other aquatic products | 0.756 | |||
Fish | 0.741 | |||
Poultry | 0.589 | |||
Livestock | 0.557 | |||
Dairy and Egg Pattern | 1.138 | 8.851 | 40.513 | |
Dairy products | 0.754 | |||
Eggs | 0.708 |
n, % | Vegetarian Pattern | p | AFP | p | Dairy and Egg Pattern | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | |||||
Age (n, %) | 0.736 | 0.775 | 0.528 | ||||||||||
<35 years | 3771(86.5) | 1262 (86.9) | 1250 (85.9) | 1259 (86.6) | 1254 (86.2) | 1264 (87.0) | 1253 (86.2) | 1252 (85.9) | 1248 (87.3) | 1271 (86.3) | |||
≥35 years | 590(13.5) | 191 (13.1) | 205 (14.1) | 194 (13.4) | 200 (13.8) | 189 (13.0) | 201 (13.8) | 206 (14.1) | 182 (12.7) | 202 (13.7) | |||
Educational level (n, %) | 0.435 | 0.578 | 0.740 | ||||||||||
≤9 years | 671(15.4) | 212 (14.6) | 238 (16.4) | 221 (15.2) | 213 (14.6) | 229 (15.8) | 229 (15.8) | 229 (15.7) | 218 (15.2) | 224 (15.2) | |||
10–15 years | 3182(73.0) | 1057 (72.7) | 1059 (72.8) | 1066 (73.5) | 1074 (73.9) | 1042 (71.8) | 1066 (73.3) | 1048 (71.9) | 1057 (73.9) | 1077 (73.2) | |||
≥16 years | 506(11.6) | 184 (12.7) | 158 (10.9) | 164 (11.3) | 167 (11.5) | 181 (12.5) | 158 (10.9) | 180 (12.4) | 155 (10.8) | 171 (11.6) | |||
Family income last year, Yuan (n, %) | 0.363 | 0.462 | 0.416 | ||||||||||
<100,000 | 745(17.1) | 263 (18.1) | 244 (16.8) | 238 (16.4) | 258 (17.8) | 233 (16.1) | 254 (17.5) | 249 (17.1) | 236 (16.5) | 260 (17.7) | |||
100,000–200,000 | 1792(41.2) | 572 (39.4) | 622 (42.8) | 598 (41.3) | 610 (42.0) | 604 (41.7) | 578 (39.9) | 614 (42.2) | 566 (39.7) | 612 (41.6) | |||
≥200,000 | 1814(41.7) | 615 (42.4) | 586 (40.4) | 613 (42.3) | 583 (40.2) | 613 (42.3) | 618 (42.6) | 592 (40.7) | 624 (43.8) | 598 (40.7) | |||
Drinking during pregnancy (n, %) | 51 (1.2) | 11 (0.8) | 23 (1.6) | 17 (1.2) | 0.120 | 19 (1.3) | 12 (0.8) | 20 (1.4) | 0.323 | 17 (1.2) | 17 (1.2) | 17 (1.2) | 0.996 |
Height (cm, median, P25, P75) | 160.0 (158.0, 164.0) | 160.0 (158.0, 164.0) | 160.0 (158.0, 164.0) | 161.0 (158.0, 165.0) | 0.034 | 160.0 (158.0, 164.1) | 160.0 (158.0, 164.0) | 161.0 (158.0, 165.0) | 0.121 | 160.7 (158.0, 164.5) | 160.0 (158.0, 164.0) | 161.0 (158.0, 164.0) | 0.227 |
Pre-pregnancy weight (kg, median, P25, P75) | 55.0 (50.0, 60.0) | 55.0 (50.0, 60.0) | 54.5 (50.0, 60.0) | 55.0 (50.0, 60.0) | <0.001 | 55.0 (50.0, 60.0) | 55.0 (50.0, 60.0) | 54.0 (50.0, 60.0) | 0.011 | 55.0 (50.0, 60.0) | 53.0 (49.0, 58.0) | 55.0 (50.0, 62.0) | <0.001 |
Pre-pregnancy BMI (n, %) | <0.001 | 0.012 | <0.001 | ||||||||||
<18.5 | 540 (12.4) | 172 (11.8) | 200 (13.7) | 168 (11.6) | 174 (12.0) | 201 (13.8) | 165 (11.3) | 171 (11.7) | 219 (15.3) | 150 (10.2) | |||
18.5–23.9 | 3071 (70.4) | 1044 (71.9) | 1041 (71.5) | 986 (67.9) | 1004 (69.1) | 1038 (71.4) | 1029 (70.8) | 1043 (71.5) | 1015 (71.0) | 1013 (68.8) | |||
≥24 | 750 (17.2) | 237 (16.3) | 214 (14.7) | 299(20.6) | 276(19.0) | 214(14.7) | 260(17.9) | 244(16.7) | 196(13.7) | 310 (21.0) |
Characteristics | n, % | Vegetarian Pattern | p | AFP | p | Dairy and Egg Pattern | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | Q1 | Q2 | Q3 | |||||
Gender (n, %) | 0.669 | 0.758 | 0.875 | ||||||||||
boy | 2134 (50.9) | 714 (51.4) | 722 (51.3) | 698 (49.9) | 727 (51.6) | 699 (50.3) | 708 (50.7) | 713 (51.1) | 703 (51.2) | 718 (50.3) | |||
girl | 2061 (49.1) | 675 (48.6) | 685 (48.7) | 701 (50.1) | 681 (48.4) | 692 (49.7) | 688 (49.3) | 681 (48.9) | 671 (48.8) | 709 (49.7) | |||
Preterm birth (n, %) | 185 (4.2) | 62(4.3) | 58(4.0) | 65(4.5) | 0.807 | 43 (3.0) | 63 (4.3) | 79 (5.4) | 0.004 | 70 (4.8) | 58 (4.1) | 57 (3.9) | 0.418 |
Birth weight (g, median, P25, P75) | 3339 (3080, 3600) | 3339 (3060, 3600) | 3340 (3100, 3600) | 3340 (3080, 3600) | 0.665 | 3339 (3080, 3600) | 3339 (3070, 3339) | 3339 (3100, 3600) | 0.457 | 3339 (3100, 3600) | 3340 (3069, 3600) | 3339 (3079, 3600) | 0.767 |
LBW (n, %) | 103 (2.4) | 31 (2.1) | 40 (2.7) | 32 (2.2) | 0.512 | 33 (2.3) | 31 (2.1) | 39 (2.7) | 0.583 | 39 (2.7) | 34 (2.4) | 30 (2.0) | 0.508 |
NBW (n, %) | 3990 (91.5) | 1328 (91.4) | 1333 (91.6) | 1329 (91.5) | 1323 (91.0) | 1343 (92.4) | 1324 (91.1) | 1322 (90.7) | 1315 (92.0) | 1353 (91.9) | |||
Macrosomia (n, %) | 268 (6.1) | 94 (6.5) | 82 (5.6) | 92 (6.3) | 0.632 | 98 (6.7) | 79 (5.4) | 91 (6.3) | 0.327 | 97 (6.7) | 81 (5.7) | 90 (6.1) | 0.526 |
Body Length (cm, median, P25, P75) | 50 (50, 50) | 50 (50, 50) | 50 (50, 50) | 50 (50, 50) | 0.355 | 50 (50, 60) | 50 (50, 60) | 50 (50, 60) | 0.067 | 50 (50, 50) | 50 (50, 50) | 50 (50, 50) | 0.965 |
Gestational age (week, median, P25, P75) | 39.0 (38, 40) | 39 (38, 40) | 39 (38, 40) | 39 (38, 40) | 0.218 | 39 (38, 40) | 39 (38, 40) | 39 (38, 40) | 0.301 | 39 (38, 40) | 39 (38, 40) | 39 (38, 40) | 0.587 |
SGA (n, %) | 405 (9.3) | 149 (10.3) | 127 (8.7) | 129 (8.9) | 0.246 | 132 (9.1) | 139 (9.6) | 134 (9.2) | 0.982 | 146 (10.0) | 126 (8.8) | 133 (9.0) | 0.465 |
AGA (n, %) | 3217 (73.8) | 1052 (72.4) | 1096 (75.3) | 1069 (73.6) | 1048 (18.8) | 1091 (75.1) | 1078 (74.1) | 1061 (72.8) | 1055 (73.8) | 1101 (74.7) | |||
LGA (n, %) | 739 (16.9) | 252 (17.3) | 232 (15.9) | 255 (17.5) | 0.381 | 274 (18.8) | 223 (15.3) | 242 (16.6) | 0.043 | 251 (17.2) | 249 (17.4) | 239 (16.2) | 0.461 |
Head Circumference (cm, median, P25, P75) | 34 (33, 35) | 34 (33, 35) | 34 (33, 35) | 34 (33, 35) | 0.968 | 34 (33, 35) | 34 (33, 35) | 34 (33, 35) | 0.770 | 34 (33, 35) | 34 (33, 35) | 34 (33, 35) | 0.237 |
Model 1 a | Model 2 b | Model 3 c | |||||||
---|---|---|---|---|---|---|---|---|---|
p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | |
Vegetarian Pattern | |||||||||
Q1 | Reference | Reference | Reference | ||||||
Q2 | 0.553 | / | / | 0.496 | / | / | 0.534 | / | / |
Q3 | 0.592 | / | / | 0.125 | / | / | 0.725 | / | / |
AFP | |||||||||
Q1 | Reference | Reference | Reference | ||||||
Q2 | 0.049 | 1.487 | 1.002–2.207 | 0.049 | 1.487 | 1.002–2.207 | 0.056 | 1.470 | 0.990–2.183 |
Q3 | 0.001 | 1.885 | 1.291–2.754 | 0.001 | 1.885 | 1.291–2.754 | 0.001 | 1.899 | 1.299–2.776 |
Dairy and Egg Pattern | |||||||||
Q1 | Reference | Reference | Reference | ||||||
Q2 | 0.670 | / | / | 0.558 | / | / | 0.611 | / | / |
Q3 | 0.383 | / | / | 0.216 | / | / | 0.216 | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhao, S.; Cui, X.; Song, Q.; Shi, Z.; Su, J.; Zang, J. Effects of Dietary Patterns during Pregnancy on Preterm Birth: A Birth Cohort Study in Shanghai. Nutrients 2021, 13, 2367. https://doi.org/10.3390/nu13072367
Wang Z, Zhao S, Cui X, Song Q, Shi Z, Su J, Zang J. Effects of Dietary Patterns during Pregnancy on Preterm Birth: A Birth Cohort Study in Shanghai. Nutrients. 2021; 13(7):2367. https://doi.org/10.3390/nu13072367
Chicago/Turabian StyleWang, Zhengyuan, Shenglu Zhao, Xueying Cui, Qi Song, Zehuan Shi, Jin Su, and Jiajie Zang. 2021. "Effects of Dietary Patterns during Pregnancy on Preterm Birth: A Birth Cohort Study in Shanghai" Nutrients 13, no. 7: 2367. https://doi.org/10.3390/nu13072367
APA StyleWang, Z., Zhao, S., Cui, X., Song, Q., Shi, Z., Su, J., & Zang, J. (2021). Effects of Dietary Patterns during Pregnancy on Preterm Birth: A Birth Cohort Study in Shanghai. Nutrients, 13(7), 2367. https://doi.org/10.3390/nu13072367