The Relationship between Adherence to the Mediterranean Diet, Intake of Specific Foods and Depression in an Adult Population (45–75 Years) in Primary Health Care. A Cross-Sectional Descriptive Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Study Population
2.3. Sample Size
2.4. Study Variables
2.5. Statistical Analysis
2.6. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Cassano, P.; Fava, M. Depression and Public Health: An Overview. J. Psychosom. Res. 2002, 53, 849–857. [Google Scholar] [CrossRef]
- Katon, W.J. Clinical and Health Services Relationships between Major Depression, Depressive Symptoms, and General Medical Illness. Biol. Psychiatry 2003, 54, 216–226. [Google Scholar] [CrossRef]
- O’Neil, A.; Jacka, F.N.; Quirk, S.E.; Cocker, F.; Taylor, C.B.; Oldenburg, B.; Berk, M. A Shared Framework for the Common Mental Disorders and Non-Communicable Disease: Key Considerations for Disease Prevention and Control. BMC Psychiatry 2015, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Read, J.R.; Sharpe, L.; Modini, M.; Dear, B.F. Multimorbidity and Depression: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2017, 221, 36–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Ma, L. Depression and Cardiovascular Disease in Elderly: Current Understanding. J. Clin. Neurosci. 2018, 47, 1–5. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Non Communicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Lassale, C.; Batty, G.; Baghdadli, A.; Jacka, F.; Villegas, A.S.; Kivimäki, M.; Akbaraly, T. Healthy Dietary Indices and Risk of Depressive Outcomes: A Systematic Review and Meta-Analysis of Observational Studies. Mol. Psychiatry 2018, 24, 965–986. [Google Scholar] [CrossRef] [Green Version]
- Molendijk, M.; Molero, P.; Sánchez-Pedreño, F.O.; Van der Does, W.; Martínez-González, M.A. Diet Quality and Depression Risk: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidaka, B.H. Depression as a Disease of Modernity: Explanations for Increasing Prevalence. J. Affect. Disord. 2012, 140, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Lopresti, A.L.; Hood, S.; Drummond, P.D. A Review of Lifestyle Factors that Contribute to Important Pathways Associated with Major Depression: Diet, Sleep and Exercise. J. Affect. Disord. 2013, 148, 12–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, M.; Sarris, J.; Coulson, C.E.; Jacka, F.N. Lifestyle Management of Unipolar Depression. Acta Psychiatr. Scand. 2013, 127, 38–54. [Google Scholar] [CrossRef]
- Kupfer, D.J.; Frank, E.; Phillips, M.L. Major Depressive Disorder: New Clinical, Neurobiological, And Treatment Perspectives. Lancet 2012, 379, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Patten, S.B.; Kennedy, S.H.; Lam, R.W.; O’Donovan, C.; Filteau, M.J.; Parikh, S.V.; Ravindran, A.V. Canadian Network for Mood and Anxiety Treatments (CANMAT) Clinical Guidelines for the Management of Major Depressive Disorder in Adults. I. Classification, Burden and Principles of Management. J. Affect Disord. 2009, 117, 5–14. [Google Scholar] [CrossRef]
- Sarris, J.; O’Neil, A.; Coulson, C.E.; Schweitzer, I.; Berk, M. Lifestyle Medicine for Depression. BMC Psychiatry 2014, 14, 107. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Villegas, A.; Henríquez-Sánchez, P.; Ruiz-Canela, M.; Lahortiga, F.; Molero, P.; Toledo, E.; Martínez-González, M.A. A Longitudinal Analysis of Diet Quality Scores and the Risk of Incident Depression in the SUN Project. BMC Med. 2015, 13, 197. [Google Scholar] [CrossRef] [Green Version]
- García-Toro, M.; Vicens-Pons, E.; Gili, M.; Roca, M.; Serrano-Ripoll, M.; Vives, M.; Leiva, A.; Yáñez, A.; Bennasar-Veny, M.; Blazquez, B.O. Obesity, Metabolic Syndrome and Mediterranean Diet: Impact on Depression Outcome. J. Affect. Disord. 2016, 194, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Villegas, A.; Delgado-Rodríguez, M.; Alonso, A.; Schlatter, J.; Lahortiga, F.; Majem, L.S.; Martínez-González, M.A. Association of the Mediterranean Dietary Pattern with the Incidence of Depression: The Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) Cohort. Arch. Gen. Psychiatry 2009, 66, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.N.; Sabia, S.; Shipley, M.J.; Batty, G.D.; Kivimaki, M. Adherence to Healthy Dietary Guidelines and Future Depres-sive Symptoms: Evidence for Sex Differentials in the Whitehall II Study. Am. J. Clin. Nutr. 2013, 97, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Le Port, A.; Gueguen, A.; Kesse-Guyot, E.; Melchior, M.; Lemogne, C.; Nabi, H.; Goldberg, M.; Zins, M.; Czernichow, S. Association between Dietary Patterns and Depressive Symptoms Over Time: A 10-Year Follow-Up Study of the GAZEL Cohort. PLoS ONE 2012, 7, e51593. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Villegas, A.; Toledo, E.; DE Irala, J.; Ruiz-Canela, M.; Pla-Vidal, J.; Martinez-Gonzalez, M.A. Fast-Food and Commercial Baked Goods Consumption and the Risk of Depression. Public Health Nutr. 2011, 15, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Abildgaard, A.; Solskov, L.; Volke, V.; Harvey, B.H.; Lund, S.; Wegener, G. A High-Fat Diet Exacerbates Depressive-Like Behav-ior in the Flinders Sensitive Line (FSL) Rat, a Genetic Model of Depression. Psychoneuroendocrinology 2011, 36, 623–633. [Google Scholar] [CrossRef]
- Perveen, T.; Hashmi, B.M.; Haider, S.; Tabassum, S.; Saleem, S.; Siddiqui, M.A. Role of Monoaminergic System in the Etiology of Olive Oil Induced Antidepressant and Anxiolytic Effects in Rats. ISRN Pharmacol. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Perveen, T.; Haider, S.; Zuberi, N.A.; Saleem, S.; Sadaf, S.; Batool, Z. Increased 5-HT Levels Following Repeated Administration of Nigella sativa L. (Black Seed) Oil Produce Antidepressant Effects in Rats. Sci. Pharm. 2014, 82, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-Y.; Su, K.-P. A Meta-Analytic Review of Double-Blind, Placebo-Controlled Trials of Antidepressant Efficacy of Omega-3 Fatty Acids. J. Clin. Psychiatry 2007, 68, 1056–1061. [Google Scholar] [CrossRef]
- Sanhueza, C.; Ryan, L.; Foxcroft, D.R. Diet and the Risk of Unipolar Depression in Adults: Systematic Review of Cohort Stud-ies. J. Hum. Nutr. Diet 2013, 26, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Appelhans, B.M.; Whited, M.C.; Schneider, K.L.; Ma, Y.; Oleski, J.L.; Merriam, P.A.; Waring, M.E.; Olendzki, B.C.; Mann, D.M.; Ockene, I.S.; et al. Depression Severity, Diet Quality, and Physical Activity in Women with Obesity and Depression. J. Acad. Nutr. Diet. 2012, 112, 693–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Exebio, J.C.; Zarini, G.G.; Exebio, C.; Huffman, F.G. Healthy Eating Index Scores Associated with Symptoms of Depression in Cuban-Americans with and without type 2 Diabetes: A Cross Sectional Study. Nutr. J. 2011, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Akbaraly, T.N.; Brunner, E.J.; Ferrie, J.E.; Marmot, M.G.; Kivimaki, M.; Singh-Manoux, A. Dietary Pattern and Depressive Symp-toms in Middle Age. Br. J. Psychiatry 2009, 195, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacka, F.N.; Mykletun, A.; Berk, M.; Bjelland, I.; Tell, G.S. The Association between Habitual Diet Quality and the Common Mental Disorders in Community-Dwelling Adults: The Hordaland Health Study. Psychosom. Med. 2011, 73, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Villegas, A.S. Food Patterns and the Prevention of Depression. Proc. Nutr. Soc. 2016, 75, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The Mediterranean Diets: What Is So Special about the Diet of Greece? The Scientific Evidence. J. Nutr. 2001, 131, 3065S–3073S. [Google Scholar] [CrossRef] [PubMed]
- Skarupski, K.A.; Tangney, C.C.; Li, H.; Evans, D.A.; Morris, M.C. Mediterranean Diet and Depressive Symptoms among Older Adults over Time. J. Nutr. Health Aging 2013, 17, 441–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyrozis, A.; Psaltopoulou, T.; Stathopoulos, P.; Trichopoulos, D.; Vassilopoulos, D.; Trichopoulou, A. Dietary Lipids and Ger-iatric Depression Scale Score among Elders: The EPIC-Greece Cohort. J. Psychiatry Res. 2009, 43, 763–769. [Google Scholar] [CrossRef]
- Rienks, J.; Dobson, A.J.; Mishra, G.D. Mediterranean Dietary Pattern and Prevalence and Incidence of Depressive Symptoms in Mid-Aged Women: Results from a Large Community-Based Prospective Study. Eur. J. Clin. Nutr. 2012, 67, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quirk, E.S.; Williams, L.J.; O’Neil, A.; Pasco, A.J.; Jacka, F.N.; Housden, S.; Berk, M.; Brennan, S.L. The Association between Diet Quality, Dietary Patterns and Depression in Adults: A Systematic Review. BMC Psychiatry 2013, 13, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Villegas, A.; Galbete, C.; Martinez-González, M.A.; Martinez, J.A.; Razquin, C.; Salas-Salvadó, J.; Estruch, R.; Buil-Cosiales, P.; Martí, A. The Effect of the Mediterranean Diet on Plasma Brain-Derived Neurotrophic factor (BDNF) Levels: The PREDIMED-NAVARRA Randomized Trial. Nutr. Neurosci. 2011, 14, 195–201. [Google Scholar] [CrossRef] [PubMed]
- León-Muñoz, L.M.; Guallar-Castillón, P.; Graciani, A.; López-García, E.; Mesas, A.E.; Aguilera, M.T.; Banegas, J.R.; Rodríguez-Artalejo, F. Adherence to the Mediterranean Diet Pattern Has Declined in Spanish Adults. J. Nutr. 2012, 142, 1843–1850. [Google Scholar] [CrossRef] [Green Version]
- Downer, M.K.; Gea, A.; Stampfer, M.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Estruch, R.; Fitó, M.; Gómez-Gracia, E.; et al. Predictors of Short- and Long-Term Adherence with a Mediterranean-Type Diet Intervention: The PREDIMED Randomized Trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Raparelli, V.; Romiti, G.F.; Spugnardi, V.; Borgi, M.; Cangemi, R.; Basili, S.; Proietti, M. The EVA Collaborative Group Gender-Related Determinants of Adherence to the Mediterranean Diet in Adults with Ischemic Heart Disease. Nutrients 2020, 12, 759. [Google Scholar] [CrossRef] [Green Version]
- Zabaleta-Del-Olmo, E.; Pombo, H.; Pons-Vigués, M.; Casajuana-Closas, M.; Pujol-Ribera, E.; López-Jiménez, T.; Cabezas-Peña, C.; Martín-Borràs, C.; Serrano-Blanco, A.; Rubio-Valera, M.; et al. Complex Multiple Risk Intervention to Promote Healthy Behaviours in People between 45 to 75 Years Attended in Primary Health Care (EIRA Study): Study Protocol for a Hybrid Trial. BMC Public Health 2018, 18, 1–15. [Google Scholar]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a Brief Depression Severity Measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Diez-Quevedo, C.; Rangil, T.; Sanchez-Planell, L.; Kroenke, K.; Spitzer, R.L. Validation and Utility of the Patient Health Ques-tionnaire in Diagnosing Mental Disorders in 1003, General Hospital Spanish Inpatients. Psychosom. Med. 2001, 63, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Manea, L.; Gilbody, S.; McMillan, D. A Diagnostic Meta-Analysis of the Patient Health Questionnaire-9 (PHQ-9) Algorithm Scoring Method as a Screen for Depression. Gen. Hosp. Psychiatry 2015, 37, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C. A new Method of Classifying Prognostic Comorbidity in Longitudinal studies: Development and Validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gonzalez, M.A.; Fernández-Jarne, E.; Serrano-Martínez, M.; Wright, M.; Gomez-Gracia, E. Development of a Short Dietary Intake Questionnaire for the Quantitative Estimation of Adherence to a Cardioprotective Mediterranean Diet. Eur. J. Clin. Nutr. 2004, 58, 1550–1552. [Google Scholar] [CrossRef] [Green Version]
- Lubin Pigouche, P.; Maciá Antón, R. Mathematical Psychology; Universidad Nacional de Educación a Distancia: Madrid, Spain, 2005. [Google Scholar]
- Núñez, E.; Steyerberg, E.; Núñez, J. Estrategias Para la Elaboración de Modelos Estadísticos de Regresión. Rev. Esp. Cardiol. 2011, 64, 501–507. [Google Scholar] [CrossRef]
- Hamilton, J.D.; James, D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994; 799p. [Google Scholar]
- IBM Corp. Released. IBM SPSS Statistics Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Paans, N.P.; Gibson-Smith, D.; Bot, M.; van Strien, T.; Brouwer, I.A.; Visser, M.; Penninx, B.W. Depression and Eating Styles are Independently Associated with Dietary Intake. Appetite 2018, 134, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Bocchio-Chiavetto, L.; Bagnardi, V.; Zanardini, R.; Molteni, R.; Nielsen, M.G.; Placentino, A.; Giovannini, C.; Rillosi, L.; Ventriglia, M.; Riva, M.A.; et al. Serum and Plasma BDNF Levels In Major Depression: A Replication Study and Meta-Analyses. World J. Biol. Psychiatry 2010, 11, 763–773. [Google Scholar] [CrossRef]
- Lachance, L.; Ramsey, D. Food, Mood, and Brain Health: Implications for the Modern Clinician. Mo. Med. 2015, 112, 111–115. [Google Scholar]
- Oliver-Quetglas, A.; Torres, E.; March, S.; Socias, I.M.; Esteva, M. Risk Factors of Depressive Syndrome in Young Adults. Actas Espanolas De Psiquiatr. 2013, 41, 84–96. [Google Scholar]
- Patten, S.B.; Wang, J.L.; Williams, J.V.; Lavorato, D.H.; Khaled, S.; Bulloch, A.G. Predictors of the Longitudinal Course of Major Depression in a Canadian Population Sample. Can. J. Psychiatry 2010, 55, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Bot, M.; Brouwer, I.A.; Roca, M.; Kohls, E.; Penninx, B.W.J.H.; Watkins, E.; Van Grootheest, G.; Cabout, M.; Hegerl, U.; Gili, M.; et al. Effect of Multinutrient Supplementation and Food-Related Behavioral Activation Therapy on Prevention of Major Depressive Disorder among Overweight or Obese Adults with Subsyndromal Depressive Symptoms: The MooDFOOD Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2019, 321, 858–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okereke, O.I.; Cook, N.R.; Albert, C.; Van Denburgh, M.; Buring, J.E.; Manson, J.E. Effect of Long-Term Supplementation with Folic Acid and B Vitamins on Risk of Depression in Older Women. Br. J. Psychiatry 2015, 206, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.; Thompson, A.; Warren-Perry, M.; Galassini, R.; Catterick, J.; Hall, E.; Lawrence, D.; Bliss, J. Impact of Selenium on Mood and Quality of Life: A Randomized, Controlled Trial. Biol. Psychiatry 2006, 59, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Rogers, P.J.; Appleton, K.M.; Kessler, D.; Peters, T.J.; Gunnell, D.; Hayward, R.C.; Heatherley, S.V.; Christian, L.M.; McNaughton, S.A.; Ness, A.R. No effect of n-3 Long-Chain Polyunsatu-Rated Fatty Acid (EPA and DHA) Supplementation on Depressed Mood and Cognitive Function: A Randomised Controlled Trial. Br. J. Nutr. 2008, 99, 421–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, A.H.; Flicker, L.; Thomas, J.; Norman, P.; Jamrozik, K.; Almeida, O.P. Vitamins B12, B6, and Folic Acid for Onset of Depres-sive Symptoms in Older Men: Results from a 2-year Placebo-Controlled Randomized Trial. J. Clin. Psychiatry 2008, 69, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Haro, J.M.; Palacín, C.; Vilagut, G.; Martínez, M.; Bernal, M.; Luque, I.; Codony, M.; Dolz, M.; Alonso, J. Prevalence of Mental Disorders and Associated Factors: Results from the ESEMeD-Spain Study. Med. Clin. Barc. 2006, 126, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Gili, M.; Roca, M.; Basu, S.; McKee, M.; Stuckler, D. The Mental Health Risks of Economic Crisis in Spain: Evidence from Pri-mary Care Centres, 2006 and 2010. Eur. J. Public Health 2013, 23, 103–108. [Google Scholar] [CrossRef]
- Melchior, M.; Chastang, J.-F.; Head, J.; Goldberg, M.; Zins, M.; Nabi, H.; Younès, N. Socioeconomic Position Predicts Long-Term Depression Trajectory: A 13-Year Follow-Up of the GAZEL Cohort Study. Mol. Psychiatry 2013, 18, 112–121. [Google Scholar] [CrossRef]
- Trainor, K.; Mallett, J.; Rushe, T. Age Related Differences in Mental Health Scale Scores and Depression Diagnosis: Adult Responses to the CIDI-SF and MHI-5. J. Affect. Disord. 2013, 151, 639–645. [Google Scholar] [CrossRef]
- Roberts, R.E.; Kaplan, G.A.; Shema, S.J.; Strawbridge, W.J. Does Growing Old Increase the Risk for Depression? Am. J. Psychiatry 1997, 154, 1384–1390. [Google Scholar]
- Nuggerud-Galeas, S.; Suescun, L.S.-B.; Torrijo, N.B.; Suescun, A.S.-B.; Aguilar-Latorre, A.; Botaya, M.R.M.; Blazquez, B.O. Analysis of Depressive Episodes, Their Recurrence and Pharmacologic Treatment in Primary Care Patients: A Retrospective Descriptive Study. PLoS ONE 2020, 15, e0233454. [Google Scholar] [CrossRef]
- Kessler, R.C.; Bromet, E.J. The Epidemiology of Depression Across Cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luppino, F.S.; De Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression: A Systematic Review and Meta-Analysis of Longitudinal Studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Vilarnau, C.; Stracker, D.M.; Funtikov, A.; Da Silva, R.; Estruch, R.; Bach-Faig, A. Worldwide Adherence to Mediterranean Diet between 1960 and 2011. Eur. J. Clin. Nutr. 2018, 72, 83–91. [Google Scholar] [CrossRef]
- Mamalakis, G.; Tornaritis, M.; Kafatos, A. Depression and Adipose Essential Polyunsaturated Fatty Acids. Prostaglandins Leukot. Essent. Fat. Acids 2002, 67, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamalakis, G.; Kalogeropoulos, N.; Andrikopoulos, N.; Hatzis, C.; Kromhout, D.; Moschandreas, J.; Kafatos, A. Depression and Long Chain n-3 Fatty Acids in Adipose Tissue in Adults from Crete. Eur. J. Clin. Nutr. 2006, 60, 882–888. [Google Scholar] [CrossRef]
- Su, K.P. Biological Mechanism of Antidepressant Effect of Omega-3 Fatty Acids: How does Fish Oil Act as a “Mind-Body Interface”? Neurosignals 2009, 17, 144–152. [Google Scholar] [CrossRef]
- Su, K.-P. Mind-Body Interface: The Role of n-3 Fatty Acids in Psychoneuroimmunology, Somatic Presentation, and Medical Illness Comorbidity of Depression. Asia Pac. J. Clin. Nutr. 2008, 17, 151–157. [Google Scholar]
- Sinn, N.; Milte, C.; Street, S.; Buckley, J.; Coates, A.M.; Petkov, J.; Howe, P. Effects of n-3 Fatty Acids, EPA v. DHA, on Depressive Symptoms, Quality of Life, Memory and Executive Function in Older Adults with Mild Cognitive Impairment: A 6-Month Randomised Controlled Trial. Br. J. Nutr. 2011, 107, 1682–1693. [Google Scholar] [CrossRef] [Green Version]
- Dinan, T.G.; Stanton, C.; Long-Smith, C.; Kennedy, P.; Cryan, J.F.; Cowan, C.S.; Cenit, M.C.; van der Kamp, J.W.; Sanz, Y. Feeding Melancholic Microbes: MyN-ewGut Recommendations on Diet and Mood. Churchill Livingstone. Clin. Nutr. 2019, 38, 1995–2001. [Google Scholar] [CrossRef]
- Fresán, U.; Bes-Rastrollo, M.; Siapco, G.; Villegas, A.S.; Lahortiga, F.; De La Rosa, P.-A.; Martínez-Gonzalez, M.-A. Does the MIND Diet Decrease Depression Risk? A Comparison with Mediterranean Diet in the SUN Cohort. Eur. J. Nutr. 2018, 58, 1271–1282. [Google Scholar] [CrossRef] [PubMed]
- Mujcic, R.; Oswald, J.A. Evolution of Well-Being and Happiness after Increases in Consumption of Fruit and Vegetables. Am. J. Public Health 2016, 106, 1504–1510. [Google Scholar] [CrossRef]
- Merete, C.; Falcon, L.M.; Tucker, K.L. Vitamin B6 is Associated with Depressive Symptomatology in Massachusetts Elders. J. Am. Coll. Nutr. 2008, 27, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, D.; Donohoe, R.T. The Effects of Nutrients on Mood. Public Health Nutr. 1999, 2, 403–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolmunen, T.; Hintikka, J.; Ruusunen, A.; Voutilainen, S.; Tanskanen, A.; Valkonen, V.P.; Viinamäki, H.; Kaplan, G.A.; Salonen, J.T. Dietary Folate and the Risk of Depression in Finnish Middle-Aged Men: A Prospective Follow-Up Study. Psychother. Psychosom. 2004, 73, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Wisner, K. Nutrition and Depression: Implications for Improving Mental Health Among Childbearing-Aged Women. Biol. Psychiatry 2005, 58, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Maserejian, N.N.; Hall, S.A.; McKinlay, J.B. Low Dietary or Supplemental Zinc is Associated with Depression Symptoms among Women, but not Men, in a Population-Based Epidemiological Survey. J. Affect. Disord. 2012, 136, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Pasco, J.A.; Jacka, F.N.; Williams, L.J.; Evans-Cleverdon, M.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Ball, M.J.; Berk, M. Dietary Selenium and Major Depression: A Nested Case-Control Study. Complement. Ther. Med. 2012, 20, 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, R.; Armah, C.N.; Dainty, J.R.; Hart, D.J.; Teucher, B.; Goldson, A.J.; Broadley, M.R.; Motley, A.K.; Fairweather-Tait, S.J. Establishing Optimal Selenium Status: Results of a Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2010, 91, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenium Intake, Status, and Health: A Complex Relationship. Hormones 2019, 19, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Jones, D.P.; Goldberg, J.; Ziegler, T.R.; Bostick, R.M.; Wilson, P.W.; Manatunga, A.K.; Shallenberger, L.; Jones, L.; Vaccarino, V. Association between Adherence to the Mediter-Ranean Diet and Oxidative Stress. Am. J. Clin. Nutr. 2008, 88, 1364–1370. [Google Scholar]
- Emerson, S.D.; Carbert, N.S. An Apple a Day: Protective Associations between Nutrition and the Mental Health of Immigrants in Canada. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 54, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Harrell, C.S.; Burgado, J.; Kelly, S.D.; Johnson, Z.P.; Neigh, G.N. High-Fructose Diet during Periadolescent Development in-creases Depressive-Like Behavior and Remodels the Hypothalamic Transcriptome in Male Rats. Psychoneuroendocrinology 2015, 62, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrell, C.S.; Zainaldin, C.; McFarlane, D.; Hyer, M.M.; Stein, D.; Sayeed, I.; Neigh, G.N. High-Fructose Diet during Adolescent Development increases Neuroinflammation and Depressive-Like Behavior without Exacerbating Outcomes after Stroke. Brain Behav. Immun. 2018, 73, 340–351. [Google Scholar] [CrossRef]
- Cheng, B.; Chu, X.; Yang, X.; Wen, Y.; Jia, Y.; Liang, C.; Yao, Y.; Ye, J.; Cheng, S.; Liu, L.; et al. Dietary Habit Is Associated with Depression and Intelligence: An Observational and Genome-Wide Environmental Interaction Analysis in the UK Biobank Cohort. Nutrients 2021, 13, 1150. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Beidler, J.; Hong, M.Y. Resveratrol and Depression in Animal Models: A Systematic Review of the Biological Mechanisms. Molecules 2018, 23, 2197. [Google Scholar] [CrossRef] [Green Version]
- Nucci, D.; Fatigoni, C.; Amerio, A.; Odone, A.; Gianfredi, V. Red and Processed Meat Consumption and Risk of Depression: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6686. [Google Scholar] [CrossRef] [PubMed]
- Reis, D.J.; Ilardi, S.S.; Namekata, M.S.; Wing, E.K.; Fowler, C. The Depressogenic Potential of Added Dietary Sugars. Med. Hypotheses 2020, 134, 109421. [Google Scholar] [CrossRef]
Variables | N (%) Mean (SD) | Presence of Chronic Diseases | |||
---|---|---|---|---|---|
Yes N = 1795 | No N = 1043 | p-Value | |||
SEX | Males | 1381 (45.1%) | 887 (49.4%) | 400 (38.4%) | <0.001 |
Females | 1681 (54.9%) | 908 (50.6%) | 643 (61.6%) | ||
AGE | 58.03 (8.10) | 59.79 (7.98) | 55.39 (7.52) | <0.001 * | |
45–54 range | 1186 (38.7%) | 528 (29.4%) | 546 (52.3%) | ||
55–64 range | 1077 (35.2%) | 673 (37.5%) | 331 (31.7%) | <0.001 | |
65–75 range | 799 (26.1%) | 594 (33.1%) | 166 (15.9%) | ||
MARITAL STATUS | Single | 341 (11.2%) | 187 (10.4%) | 130 (12.5%) | |
Married or couple | 2079 (68.5%) | 1232 (68.8%) | 705 (68%) | 0.057 | |
Separated or divorced | 413 (13.6%) | 236 (13.2%) | 148 (14.3%) | ||
Widower | 201 (6.6%) | 135 (7.5%) | 53 (5.1%) | ||
Other | 2 (0.1%) | 1 (0.1%) | 1 (0.1%) | ||
EDUCATIONAL LEVEL | Higher education | 514 (16.9%) | (14.1%) | 226 (21.8%) | |
Secondary studies | 1194 (39.4%) | 665 (37.2%) | 446 (43%) | <0.001 | |
Primary studies | 1146 (37.8%) | 743 (41.5%) | 326 (31.4%) | ||
No studies | 179 (5.9%) | 129 (7.2%) | 39 (3.8%) | ||
WORK ACTIVITY | Student | 8 (0.3%) | 3 (0.2%) | 4 (0.4%) | |
Actively employed | 1374 (45.3%) | 663 (37.1%) | 605 (58.4%) | ||
Temporary work disability | 82 (2.7%) | 55 (3.1%) | 25 (2.4%) | <0.001 | |
Unemployed | 286 (9.4%) | 164 (9.2%) | 95 (9.2%) | ||
Housewife/househusband | 368 (12.1%) | 234 (13.1%) | 109 (10.5%) | ||
Permanent disability | 111 (3.7%) | 86 (4.8%) | 19 (1.8%) | ||
Retired | 802 (26.5%) | 583 (32.6%) | 179 (17.3%) | ||
COUNTRY OF BIRTH | Spain | 2848 (93.9%) | 1689 (94.1%) | 963 (93%) | |
Rest of Europe | 49 (1.6%) | 31 (1.7%) | 16 (1.5%) | 0.303 | |
America | 116 (3.8%) | 58 (3.2%) | 48 (4.6%) | ||
Asia | 1 (0.0%) | 1 (0.1%) | 0 (0%) | ||
Africa | 20 (0.7%) | 11(0.6%) | 9 (0.9%) | ||
CHRONIC DISEASE (Yes %) | 1795 (63.2%) | ||||
Cardiopathy | 125 (4.1%) | ||||
Vascular disease | 94 (3.1%) | ||||
Cerebrovascular disease | 45 (1.5%) | ||||
Hypertension | 1197 (39.4%) | ||||
Dementia | 2 (0.1%) | ||||
COPD | 125 (4.1%) | ||||
Connective tissue disease | 117 (3.9%) | ||||
Liver disease | 78 (2.6%) | ||||
Diabetes | 600 (19.7%) | ||||
Chronic kidney disease | 32 (1.1%) | ||||
Cancer | 130 (4.3%) | ||||
AIDS | 5 (0.2) | ||||
Osteoporosis | 94 (3.1%) | ||||
CCI * | 2.88 (1.40) | ||||
ANTHROPOMETRIC VARIABLES | Weight * | 80.46 (17.69) | 82.89 (18.31) | 76.63 (16.34) | <0.001 * |
Abdominal perimeter * | 100.87 (14.72) | 103.42 (14.76) | 96.72 (14.11) | <0.001 * | |
BMI * | 29.91 (5.78) | 30.81 (5.83) | 28.45 (5.42) | <0.001 * | |
PHQ-9 score * | 4.56 (5.007) | 4.76 (5.21) | 4.06 (4.58) | <0.001 | |
Subclinical and major depression (Yes %) | 508 (16.6%) | 308 (17.2%) | 143 (13.7%) | 0.015 | |
ADHERENCE TO DIET (Yes %) | 555 (18.2%) | 323 (18%) | 207 (19.9%) | 0.226 | |
Olive oil for cooking (Yes %) | 2795 (91.5%) | 1635 (91.2%) | 966 (92.7%) | 0.170 | |
+4 Tablespoons olive oil per day | 1703 (55.7%) | 995 (55.5%) | 587 (56.3%) | 0.676 | |
+2 Servings of vegetables per day | 802 (26.2%) | 462 (25.8%) | 281 (27%) | 0.489 | |
+3 Fruit per day | 762 (24.9%) | 478 (26.7%) | 226 (21.7%) | 0.003 | |
−1 Red meat per day | 1961 (64.2%) | 1194 (66.6%) | 662 (63.5%) | 0.094 | |
−1 Butter or cream per day | 2509 (82.1%) | 1460 (81.5%) | 877 (84.2%) | 0.069 | |
−1 Sugary drinks per day | 2212 (72.4%) | 1292 (72.1%) | 766 (73.5%) | 0.416 | |
+7 Wine per week | 610 (20%) | 387 (21.6%) | 176 (16.9%) | 0.002 | |
+3 Legumes per week | 636 (20.8%) | 369 (20.6%) | 230 (22.1%) | 0.352 | |
+3 Fish-seafood per week | 1081 (35.4%) | 618 (34.5%) | 374 (35.9%) | 0.449 | |
−2 Pastries per week | 1471 (48.1%) | 874 (48.8%) | 519 (49.8%) | 0.595 | |
+3 Nuts per week | 792 (25.9%) | 428 (23.9%) | 309 (29.7%) | 0.001 | |
Preferable white meat | 1803 (59%) | 1095 (61.1%) | 632 (60.7%) | 0.812 | |
+2 Vegetables cooked in olive oil per week | 1539 (50.4%) | 892 (49.8%) | 553 (53.1%) | 0.091 | |
Total MEDAS rating * | 6.77 (1.98) | 6.80 (1.95) | 6.87 (2.0) | 0.344 * |
Items MEDAS | PHQ-9 | PHQ-9 Score by Presence of Chronic Diseases | ||
---|---|---|---|---|
Yes | No | |||
SEX | Man | 3.62 (4.42) | 3.78 (4.69) | 3.31 (3.92) |
Woman | 5.33 (5.32) | 5.72 (5.53) | 4.54 (4.89) | |
p-value | <0.001 | <0.001 | <0.001 | |
AGE | Pearson | −0.084 | −0.116 | −0.091 |
p-value | <0.001 | <0.001 | 0.003 | |
EDUCATIONAL LEVEL | Secondary and higher education | 4.53 (5.04) | 4.79 (5.27) | 4.13 (4.71) |
Primary studies/non-studies | 4.59 (4.97) | 4.72 (5.16) | 3.94 (4.34) | |
p-value | 0.741 | 0.777 | 0.535 | |
BMI | Pearson | 0.042 | 0.026 | 0.039 |
p-value | 0.023 | 0.269 | 0.209 | |
Olive oil for cooking | Yes | 4.49 (4.97) | 4.69 (5.18) | 4.04 (4.57) |
No | 5.23 (5.29) | 5.41 (5.55) | 4.38 (4.64) | |
p-value | 0.036 | 0.128 | 0.547 | |
+4 Tablespoons olive oil per day | Yes | 4.58 (5.13) | 4.78 (5.33) | 4.04 (4.63) |
No | 4.52 (4.84) | 4.72 (5.07) | 4.09 (4.52) | |
p-value | 0.734 | 0.824 | 0.854 | |
+2 Servings of vegetables per day | Yes | 4.90 (5.02) | 5.27 (5.23) | 4.15 (4.36) |
No | 4.44 (4.99) | 4.58 (5.20) | 4.03 (4.66) | |
p-value | 0.029 | 0.018 | 0.697 | |
+3 Fruit per day | Yes | 4.79 (5.13) | 5.22 (5.49) | 3.86 (4.36) |
No | 4.48 (4.96) | 4.58 (5.11) | 4.12 (4.64) | |
p-value | 0.145 | 0.029 | 0.439 | |
−1 Red meat per day | Yes | 4.30 (4.98) | 4.61 (5.29) | 3.69 (4.36) |
No | 5.01 (5.01) | 5.05 (5.05) | 4.72 (4.86) | |
p-value | <0.001 | 0.092 | 0.001 | |
−1 Butter or cream day | Yes | 4.48 (5.02) | 4.68 (5.24) | 3.96 (4.56) |
No | 4.91 (4.93) | 5.08 (5.12) | 4.63 (4.65) | |
p-value | 0.074 | 0.212 | 0.09 | |
−1 Sugary drinks per day | Yes | 4.35 (4.78) | 4.53 (4.97) | 3.90 (4.39) |
No | 5.09 (5.51) | 5.35 (5.77) | 4.51 (5.03) | |
p-value | 0.001 | 0.006 | 0.067 | |
+7 Wine per week | Yes | 3.96 (4.56) | 3.94 (4.65) | 3.83 (4.62) |
No | 4.71 (5.10) | 4.98 (5.34) | 4.11 (4.57) | |
p-value | <0.001 | 0.001 | 0.459 | |
+3 Legumes per week | Yes | 4.31 (5.05) | 4.67 (5.33) | 3.71 (4.76) |
No | 4.62 (4.99) | 4.78 (5.19) | 4.16 (4.52) | |
p-value | 0.173 | 0.726 | 0.203 | |
+3 Fish-seafood per week | Yes | 4.49 (4.87) | 4.86 (5.19) | 3.74 (4.27) |
No | 4.59 (5.08) | 4.69 (5.23) | 4.24 (4.73) | |
p-value | 0.583 | 0.522 | 0.083 | |
−2 Commercial pastries per week | Yes | 4.39 (5.09) | 4.63 (5.28) | 3.86 (4.73) |
No | 4.71 (4.92) | 4.87 (5.15) | 4.27 (4.42) | |
p-value | 0.09 | 0.319 | 0.153 | |
+3 Nuts per week | Yes | 4.19 (4.68) | 4.32 (4.85) | 3.92 (4.46) |
No | 4.68 (5.11) | 4.89 (5.32) | 4.12 (4.63) | |
p-value | 0.014 | 0.042 | 0.520 | |
Preferably white meat | Yes | 4.54 (5.02) | 4.81 (5.27) | 4.01 (4.50) |
No | 4.57 (4.98) | 4.66 (5.13) | 4.14 (4.70) | |
p-value | 0.874 | 0.559 | 0.660 | |
+2 Vegetables cooked in olive oil per week | Yes | 4.41 (4.75) | 4.60 (4.99) | 4.03 (4.36) |
No | 4.70 (5.24) | 4.90 (5.43) | 4.11 (4.81) | |
p-value | 0.114 | 0.232 | 0.785 | |
Proper diet | Yes | 4.01 (4.56) | 4.51 (4.90) | 3.11 (3.88) |
No | 4.68 (5.09) | 4.81 (5.28) | 4.30 (4.70) | |
p-value | 0.003 | 0.343 | 0.001 | |
Total MEDAS rating * | Pearson | −0.073 | −0.047 | −0.102 |
p-value | <0.001 | 0.051 | 0.001 |
PHQ-9 Score Global Sample | Coefficient | p-Value | 95% Confidence Interval | |
---|---|---|---|---|
Lower | Upper | |||
Constant | 4.521 | <0.001 | 2.801 | 6.242 |
Sex (women vs. men) | 1.859 | <0.001 | 1.502 | 2.216 |
−1 Red meat per day (Yes vs. No) | −0.735 | <0.001 | −1.109 | −0.361 |
Age (in years) | −0.045 | <0.001 | −0.067 | −0.023 |
−1 Sugary drinks per day (Yes vs. No) | −0.710 | 0.001 | −1.112 | −0.308 |
BMI | 0.036 | 0.023 | 0.005 | 0.067 |
+3 Nuts per week (Yes vs. No) | −0.423 | 0.040 | −0.828 | −0.018 |
+2 Vegetables cooked in olive oil per week | −0.360 | 0.047 | −0.715 | −0.005 |
R2 | 0.051 | |||
R2 adjusted | 0.049 | |||
PHQ-9 score With chronic disease | Coefficient | p-value | 95% Confidence interval | |
Lower | Upper | |||
Constant | 7.749 | <0.001 | 5.683 | 9.815 |
Sex (women vs. men) | 2.010 | <0.001 | 1.527 | 2.494 |
Age (in years) | −0.108 | <0.001 | −0.147 | −0.069 |
−1 Sugary drinks per day (Yes vs. No) | −0.829 | 0.002 | −1.364 | −0.293 |
CCI | 0.291 | 0.008 | 0.078 | 0.505 |
+3 Fruit per day (Yes vs. No) | 0.665 | 0.017 | 0.118 | 1.213 |
+3 Nuts per week (Yes vs. No) | −0.586 | 0.040 | −1.147 | −0.026 |
R2 | 0.062 | |||
R2 adjusted | 0.059 | |||
PHQ-9 score Without chronic disease | Coefficient | p-value | 95% Confidence interval | |
Lower | Upper | |||
Constant | 5.425 | <0.001 | 3.188 | 7.662 |
Sex (women vs. men) | 1.352 | <0.001 | 0.779 | 1.925 |
−1 Red meat per day (Yes vs. No) | −1.073 | <0.001 | −1.656 | −0.489 |
Age (in years) | −0.051 | 0.007 | −0.089 | −0.014 |
R2 | 0.039 | |||
R2 adjusted | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliván-Blázquez, B.; Aguilar-Latorre, A.; Motrico, E.; Gómez-Gómez, I.; Zabaleta-del-Olmo, E.; Couso-Viana, S.; Clavería, A.; Maderuelo-Fernandez, J.A.; Recio-Rodríguez, J.I.; Moreno-Peral, P.; et al. The Relationship between Adherence to the Mediterranean Diet, Intake of Specific Foods and Depression in an Adult Population (45–75 Years) in Primary Health Care. A Cross-Sectional Descriptive Study. Nutrients 2021, 13, 2724. https://doi.org/10.3390/nu13082724
Oliván-Blázquez B, Aguilar-Latorre A, Motrico E, Gómez-Gómez I, Zabaleta-del-Olmo E, Couso-Viana S, Clavería A, Maderuelo-Fernandez JA, Recio-Rodríguez JI, Moreno-Peral P, et al. The Relationship between Adherence to the Mediterranean Diet, Intake of Specific Foods and Depression in an Adult Population (45–75 Years) in Primary Health Care. A Cross-Sectional Descriptive Study. Nutrients. 2021; 13(8):2724. https://doi.org/10.3390/nu13082724
Chicago/Turabian StyleOliván-Blázquez, Bárbara, Alejandra Aguilar-Latorre, Emma Motrico, Irene Gómez-Gómez, Edurne Zabaleta-del-Olmo, Sabela Couso-Viana, Ana Clavería, José A. Maderuelo-Fernandez, José Ignacio Recio-Rodríguez, Patricia Moreno-Peral, and et al. 2021. "The Relationship between Adherence to the Mediterranean Diet, Intake of Specific Foods and Depression in an Adult Population (45–75 Years) in Primary Health Care. A Cross-Sectional Descriptive Study" Nutrients 13, no. 8: 2724. https://doi.org/10.3390/nu13082724
APA StyleOliván-Blázquez, B., Aguilar-Latorre, A., Motrico, E., Gómez-Gómez, I., Zabaleta-del-Olmo, E., Couso-Viana, S., Clavería, A., Maderuelo-Fernandez, J. A., Recio-Rodríguez, J. I., Moreno-Peral, P., Casajuana-Closas, M., López-Jiménez, T., Bolíbar, B., Llobera, J., Sarasa-Bosque, C., Sanchez-Perez, Á., Bellón, J. Á., & Magallón-Botaya, R. (2021). The Relationship between Adherence to the Mediterranean Diet, Intake of Specific Foods and Depression in an Adult Population (45–75 Years) in Primary Health Care. A Cross-Sectional Descriptive Study. Nutrients, 13(8), 2724. https://doi.org/10.3390/nu13082724