Food Composition Databases: Does It Matter to Human Health?
Abstract
:1. Introduction
2. Main Features and Historical Background
3. Current Uses, State-of-the-Art, and Future Challenges of Food Composition Databases
4. Main Whole Food Composition Databases
4.1. Food Data Central
4.2. CIQUAL—French Food Composition Table
- Starters and dishes, which in turn divide into six sub-groups: mixed salads (21), soups (46), dishes (159), pizzas, crepe and pies (47), sandwiches (40), savoury pastries, and other starters (24);
- Fruits, vegetables, legumes, and nuts: divided into vegetables (303), potatoes and other tubers (51), legumes (38), fruits (170), and nuts and seeds (52);
- Cereal products: pasta, rice, and grains (71), breads and similar (56), and savoury biscuits (18);
- Meat, egg, and fish: of which the largest sub-groups include cooked meat (133), raw meat (162), delicatessen meat and similar (173), other meat products (16), fish, cooked (63), fish, raw (106), seafood, cooked (24), seafood, raw (25), fish products (56), eggs (24), and meat substitutes (6);
- Milk and milk products are divided into four sub groups;
- Beverages, including water, alcoholic, and non-alcoholic drinks;
- Sugar and confectionery, including products such as jam, sweet biscuits, cakes, and pastry, etc.;
- Ice cream and sorbet, presented as ice cream (11), sorbet (5), and frozen desserts (12);
- Fats and oils (75), such as butters, vegetables oils, margarines, fish oils, and other fats;
- Miscellaneous group exhibit sauces (75), condiments (17), cooking aids (12), salts (6), spices (25), herbs (28), seaweed (17), foods for particular nutritional uses (5), and miscellaneous ingredients for vegetarians (26);
- Finally, the group of baby foods represented by four sub-groups: baby milk and beverages (17), baby dishes (13), baby deserts (5), and baby biscuits and cereals (4).
4.3. EuroFIR, European Food Information Resource
4.4. FoodDB
4.5. Frida Food Data
4.6. National Whole Food Composition Databases
4.7. Specific Purpose’s Food Databases
4.7.1. FDBs Directly Related with Human Metabolism
4.7.2. FDBs Concerning Food Processing
4.7.3. FDBs Concerning Environmental Impact of Foods
5. Main Limitations of Food Databases: Missing Dimensions for Human Health?
5.1. The Matrix Effect Is Not Considered
5.2. Some Important Bioactive Compounds and Food Properties Are Still Missing
5.3. The Important Dimension of the Degree of Food Processing
6. Emerging Applications and Trends of Food Databases
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Issaoui, M.; Delgado, A.M.; Caruso, G.; Micali, M.; Barbera, M.; Atrous, H.; Ouslati, A.; Chammem, N. Phenols, Flavors, and the Mediterranean Diet. J. AOAC Int. 2020, 103, 915–924. [Google Scholar] [CrossRef]
- Gan, Z.; Wei, W.; Li, Y.; Wu, J.; Zhao, Y.; Zhang, L.; Wang, T.; Zhong, X. Curcumin and Resveratrol Regulate Intestinal Bacteria and Alleviate Intestinal Inflammation in Weaned Piglets. Molecules 2019, 24, 1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, Y.; Ikeda, S.; Uwai, K.; Taguchi, R.; Chayama, K.; Sakaguchi, T.; Narita, R.; Yao, W.L.; Takeuchi, F.; Otakaki, Y.; et al. Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS ONE 2018, 13, e0197664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, F.N.; Lourenço, S.; Fidalgo, L.G.; Santos, S.; Silvestre, A.; Jerónimo, E.; Saraiva, J.A. Long-Term Effect on Bioactive Components and Antioxidant Activity of Thermal and High-Pressure Pasteurization of Orange Juice. Molecules 2018, 23, 2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amini, A.; Liu, M.; Ahmad, Z. Understanding the link between antimicrobial properties of dietary olive phenolics and bacterial ATP synthase. Int. J. Biol. Macromol. 2017, 101, 153–164. [Google Scholar] [CrossRef]
- Delgado, A.; Arroyo López, F.N.; Brito, D.; Peres, C.; Fevereiro, P.; Garrido-Fernández, A. Optimum bacteriocin production by Lactobacillus plantarum 17.2b requires absence of NaCl and apparently follows a mixed metabolite kinetics. J. Biotechnol. 2007, 130, 193–201. [Google Scholar] [CrossRef]
- From Science to Practice: Research and Knowledge to Achieve the SDGs. Policy Brief 38|July 2021, UNRIDS, Geneve, Switzerland. Available online: www.unrisd.org/rpb38 (accessed on 24 March 2021).
- Dupraz, J.; Burnand, B. Role of Health Professionals Regarding the Impact of Climate Change on Health—An Exploratory Review. Int. J. Environ. Res. Public Health 2021, 18, 3222. [Google Scholar] [CrossRef]
- Ocké, M.C.; Westenbrink, S.; van Rossum, C.T.M.; Temme, E.H.M.; van der Vossen-Wijmenga, W.; Verkaik-Kloosterman, J. The essential role of food composition databases for public health nutrition–Experiences from the Netherlands. J. Food Compost. Anal. 2021, 101, 103967. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data: Production, Management and Use, 2nd ed.; FAO: Rome, Italy, 2003. [Google Scholar]
- UN, Sustainable Development Goals, News, Sustainable Development Agenda, 24 September 2015. Available online: https://www.un.org/sustainabledevelopment/blog/2015/09/summit-charts-new-era-of-sustainable-development-world-leaders-to-gavel-universal-agenda-to-transform-our-world-for-people-and-planet/ (accessed on 11 July 2021).
- Food and Agriculture Organization of the United Nations, FAO. International Network of Food Data Systems (INFOODS). Available online: http://www.fao.org/infoods/infoods/en/ (accessed on 24 March 2021).
- FAO/WHO. Codex Alimentarius, International Food Standards. Codex Online Databases. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/en/ (accessed on 24 March 2021).
- European Food Information Resource, EuroFIR. Available online: https://www.eurofir.org/about_eurofir/ (accessed on 20 March 2021).
- U.S. Department of Agriculture, USDA. Agricultural Research Service. FoodData Central. 2019. Available online: https://fdc.nal.usda.gov (accessed on 10 March 2021).
- ANSES-CIQUAL Food Composition Table. 2020. Available online: https://www.anses.fr/en/content/anses-ciqual-food-composition-table (accessed on 12 March 2021).
- DTU. Food Data (frida.fooddata.dk), Version 4; National Food Institute, Technical University of Denmark: Lyngby, Denmark, 2019; Available online: https://frida.fooddata.dk/?lang=en (accessed on 12 March 2021).
- Dembska, K.; Recanati, F.; Casari, S.; Antonelli, M.; Vaccaro, O.; Calabrese, I.; Giosuè, A.; Riccardi, G. A One Health Approach to Food, the Double Pyramid Connecting Food Culture, Health and Climate; Barilla Foundation & Research Unit on Nutrition, Diabetes and Metabolism, University of Naples Federico II: Parma, Italy, 2021. [Google Scholar]
- Church, S.M. The history of food composition databases. Nutr. Bull. 2006, 31, 15–20. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Food Balance Sheets, a Handbook; FAO: Rome, Italy, 2001. [Google Scholar]
- Jacobs, D.R.; Tapsell, L.C.; Temple, N.J. Food Synergy: The Key to Balancing the Nutrition Research Effort. Public Health Rev. 2011, 33, 507–529. [Google Scholar] [CrossRef] [Green Version]
- Fardet, A.; Rock, E. Exclusive reductionism, chronic diseases and nutritional confusion: Degree of processing as a lever for improving public health. Crit. Rev. Food Sci. Nutr. 2020, 1–16. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef]
- Heinrich, M. “Nutraceutical” In Encyclopedia Britannica. Available online: https://www.britannica.com/science/nutraceutical (accessed on 23 March 2021).
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006, on nutrition and health claims made on foods. Off. J. Eur. Union 2006, L404, 9–25.
- Langual. The International Framework for Food Description, Danish Food Informatics. 2017. Available online: https://www.langual.org/default.asp (accessed on 16 March 2021).
- Møller, A.; Ireland, J. LanguaL™ 2017-Multilingual Thesaurus (English–Czech–Danish–French–German–Italian–Portuguese–Spanish); Technical Report Danish Food Informatics; Danish Food Informatics: Roskilde, Danmark, 2018. [Google Scholar] [CrossRef]
- FoodOn, 2021. Available online: https://foodon.org/about/ (accessed on 24 March 2021).
- European Food Safety Authority. The Food Classification and Description System FoodEx2 (Revision 2); EN-804; EFSA Supporting Publication: Parma, Italy, 2015; 90p. [Google Scholar]
- Barabási, A.L.; Menichetti, G.; Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Food 2020, 1, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2008, 37, D603–D610. [Google Scholar] [CrossRef]
- Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.; Dong, E.; et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Allison, P.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- FoodDB Version 1.0. 2021. Available online: www.foodb.ca (accessed on 10 March 2021).
- PortFir Version 4.1. 2019. Available online: http://portfir.insa.pt/ (accessed on 10 March 2021).
- Turkish Food Composition Database. Available online: http://www.turkomp.gov.tr/main (accessed on 11 March 2021).
- United Nations Educational Scientific and Cultural Organization, UNESCO. 2013. Intangible Cultural Heritage. Decision of the Intergovernmental Committee: 8.COM 8.10. Available online: https://ich.unesco.org/en/decisions/8.COM/8.10 (accessed on 18 March 2021).
- El Khayate, R. Ebauche d’Une Table de Composition Alimentaire Marocaine. Ph.D. Thesis, University Hassan II, Institute of Agronomy and Veterinary Medicine, Casablanca, Morocco, 1984. [Google Scholar]
- Khalis, M.; Garcia-Larsen, V.; Charaka, H.; Sidi-Deoula, M.M.; El Kinany, K.; Benslimane, A.; Charbotel, B.; Soliman, A.S.; Huybrechts, I.; Soliman, G.A.; et al. Update of the Moroccan Food Composition Tables: Towards a more reliable tool for nutrition research. J. Food Compost. Anal. 2020, 87, 103397. [Google Scholar] [CrossRef]
- El Ati, J.; Béji, C.; Farhat, A.; Haddad, S.; Chérif, S.; Trabelsi, T.; Danguir, J.; Gaigi, S.; Le Bihan, G.; Landais, E.; et al. Table de Composition des Aliments Tunisiens; Institut National de Nutrition et de Technologie Alimentaire (INNTA): Tunis, Tunisia, 2007. [Google Scholar]
- Musaiger, A.O. Food Composition Tables for Kingdom of Bahrain; Arab Center for Nutrition: Manama, Bahrain, 2011. [Google Scholar]
- Bian, Y.Y.X.Z. China Food Composition Table (Chinese Edition); Beijing Medical University Press: Beijing, China, 2004; Volume 2, ISBN 978-7810716789. [Google Scholar]
- Durazzo, A.; Nazhand, A.; Lucarini, M.; Delgado, A.M.; De Wit, M.; Nyam, K.L.; Santini, A.; Ramadan, M.F. Occurrence of Tocols in Foods: An Updated Shot of Current Databases. J. Food Qual. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Almeida, A.; Stephen, N.; Boland, M.; Strozzi, F.; Beracochea, M.; Shi, Z.J.; Pollard, K.S.; Sakharova, E.; Parks, D.H.; Hugenholtz, P.; et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 2020, 39, 105–114. [Google Scholar] [CrossRef]
- Missbach, B.; Schwingshackl, L.; Billmann, A.; Mystek, A.; Hickelsberger, M.; Bauer, G.; König, J. Gluten-free food database: The nutritional quality and cost of packaged gluten-free foods. Peer J. 2015, 3, e1337. [Google Scholar] [CrossRef] [PubMed]
- Lemgo D- and z-value Database for Food. OWL University of Applied Sciences and Arts. Available online: https://www.th-owl.de/fb4/ldzbase/index.pl?link=aboutus (accessed on 10 May 2021).
- Database of Physical Properties of Food. Nelfood.com. Available online: http://www.nelfood.com (accessed on 10 May 2021).
- European Commission. Sustainable Consumption and Production. Sustainable Food. Available online: https://ec.europa.eu/environment/eussd/food.htm (accessed on 12 May 2021).
- TEEB, The Economics of Ecosystems and Biodiversity. TEEB for Agriculture & Food: Scientific and Economic Foundations; UN Environment: Geneva, Switzerland, 2018. [Google Scholar]
- Guiné, R.P.F.; Bartkiene, E.; Florença, S.G.; Djekić, I.; Bizjak, M.Č.; Tarcea, M.; Leal, M.; Ferreira, V.; Rumbak, I.; Orfanos, P.; et al. Environmental Issues as Drivers for Food Choice: Study from a Multinational Framework. Sustainability 2021, 13, 2869. [Google Scholar] [CrossRef]
- Sachs, J.; Schmidt-Traub, G.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. The Sustainable Development Goals and COVID-19. Sustainable Development Report 2020; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Food and Agriculture Organization of the United Nations, FAO, 2021. Food Loss and Waste Database. Available online: http://www.fao.org/platform-food-loss-waste/flw-data/en/ (accessed on 12 May 2021).
- Poore, J.; Nemecek, T. Supplementary materials for Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Agribalyse. Discover the Environmental Impact for Food Consumed Products. Available online: https://agribalyse.ademe.fr (accessed on 12 May 2021).
- van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- FAO/WHO. Sustainable Healthy Diets–Guiding Principles; FAO and WHO: Rome, Italy, 2019. [Google Scholar]
- Fardet, A.; Rock, E. Toward a new philosophy of preventive nutrition: From a reductionist to a holistic paradigm to improve nutritional recommendations. Adv. Nutr. 2014, 5, 430–446. [Google Scholar] [CrossRef]
- Davidou, S.; Christodoulou, A.; Fardet, A.; Frank, K. The holistico-reductionist Siga classification according to degree of food processing: An evaluation of ultra-processed foods in French supermarkets. Food Funct. 2020, 11, 2026–2039. [Google Scholar] [CrossRef] [PubMed]
- Davidou, S.; Christodoulou, A.; Frank, K.; Fardet, A. A study of ultra-processing marker profiles in 22,028 packaged ultra-processed foods using the Siga classification. J. Food Compos. Anal. 2021, 99, 103848. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. Ultra-processed foods and food system sustainability: What are the links? Sustainability 2020, 12, 6280. [Google Scholar] [CrossRef]
- Chambers, L. Food texture and the satiety cascade. Nutr. Bull. 2016, 41, 277–282. [Google Scholar] [CrossRef]
- Fardet, A.; Dupont, D.; Rioux, L.-E.; Turgeon, S.L. Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Crit. Rev. Food Sci. Nutr. 2019, 50, 1987–2010. [Google Scholar] [CrossRef]
- Grundy, M.M.; Lapsley, K.; Ellis, P. A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. Int. J. Food Sci. Technol. 2016, 51, 1937–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster-Powell, K.; Miller, J.B. International tables of glycemic index. Am. J. Clin. Nutr. 1995, 62, 871S–890S. [Google Scholar] [CrossRef] [PubMed]
- USDA Database for the Choline Content of Common Foods, Release 2 2008. Available online: https://data.nal.usda.gov/dataset/usda-database-choline-content-common-foods-release-2-2008 (accessed on 14 May 2021).
- FAO/INFOODS/IZiNCG Global Food Composition Database for Phytate Version 1.0. (PhyFoodComp1.0)—2018 User Guide; FAO/IZiNCG: Rome, Italy, 2018.
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barba, F.J.; Tonello-Samson, C.; Puértolas, E.; Lavilla, M. (Eds.) Present and Future of High Pressure Processing; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Nowosad, K.; Sujka, M.; Pankiewicz, U.; Kowalski, R. The application of PEF technology in food processing and human nutrition. J. Food Sci. Technol. 2021, 58, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Neves, F.I.G.; Silva, C.L.M.; Vieira, M.C. Combined pretreatments effects on zucchini (Cucurbita pepo L.) squash microbial load reduction. Int. J. Food Microbiol. 2019, 305, 108257. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Vieira, M.C.; Silva, C.L.M. Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics. Innov. Food Sci. Emerg. Technol. 2008, 9, 483–488. [Google Scholar] [CrossRef]
- Vieira, M.C.; Teixeira, A.A.; Silva, C.L.M. Mathematical modelling of the thermal degradation kinetics of vitamin C in cupuaçu (Theobroma grandiflorum) nectar. J. Food Eng. 2000, 43, 1–7. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Vieira, M.C.; Fonseca, S.C.; Silva, C.L.M. Impact of Thermal Blanching and Thermosonication Treatments on Watercress (Nasturtium officinale) Quality: Thermosonication Process Optimisation and Microstructure Evaluation. Food Bioprocess Technol. 2011, 4, 1197–1204. [Google Scholar] [CrossRef]
- Raponi, F.; Moscetti, R.; Monarca, D.; Colantoni, A.; Massantini, R. Monitoring and Optimization of the Process of Drying Fruits and Vegetables Using Computer Vision: A Review. Sustainability 2017, 9, 2009. [Google Scholar] [CrossRef] [Green Version]
- Lucarini, M.; Zuorro, A.; Di Lena, G.; Lavecchia, R.; Durazzo, A.; Benedetti, B.; Lombardi-Boccia, G. Sustainable Management of Secondary Raw Materials from the Marine Food-Chain: A Case-Study Perspective. Sustainability 2020, 12, 8997. [Google Scholar] [CrossRef]
- Open Food Facts. Available online: https://world.openfoodfacts.org/ (accessed on 14 May 2021).
- Średnicka-Tober, D.; Kazimierczak, R.; Rembialkowska, E. Organic food and human health—A review. J. Res Appl. Agric. Eng. 2015, 60, 102–107. [Google Scholar]
- Fardet, A.; Rock, E. How to protect both health and food system sustainability? A holistic ‘global health’-based approach via the 3V rule proposal. Public Health Nutr. 2020, 23, 3028–3044. [Google Scholar] [CrossRef] [PubMed]
Organization | Name of FDB | URL (Available at the Bate of the Current Publication) | Discrimination of Food Composition | Source of Data | Ease of Access | Regularity of Updates | Citation/Site |
---|---|---|---|---|---|---|---|
USDA | FoodData Central | https://fdc.nal.usda.gov accessed on 17 August 2021; | Target important components that make sense in each food; highly discriminated | Laboratory analysis by state-of-the-art methods | Search by food name or by component + API for access with proprietary app; instructions and tips provided | Regularly updated (date is shown) | U.S. Department of Agriculture (USDA), Agricultural Research Service. FoodData Central: Version October 2020.: |
TMIC | FoodB | www.foodb.ca accessed on 17 August 2021 | Content range and average values for an extensive list of compounds | Literature and other FDB | Search by food name or browse foods by constituents | Frequency of updates not mentioned (last update in 2021) | www.foodb.ca accessed on 17 August 2021 |
DTU food (National food Institute (Denmark) | Fødevaredata (Frida Food Data) | http://frida.fooddata.dk/ accessed on 17 August 2021 | DTU foods’ database—Frida Food Data reflects the food supply in Denmark and targets professionals in food and nutrition | Laboratory analysis | Easily searched by food item (alphabetic order), food group or by parameters, which include waste and added sugar | Updated every few years (last update 29/10/19) and food composition referred to be quite stable over the past 50 years | Food data (frida.fooddata.dk accessed on 17 August 2021), version 4, 2019, National Food Institute, Technical University of Denmark |
EuroFIR AISBL, International non-profit association | EuroFIR | https://www.eurofir.org/food-information/ accessed on 17 August 2021 | The dataset presents energy, macronutrients, vitamins, and minerals as well as other bioactive compounds and daily recommended intakes for selected nutrients | Estimations from FDB by expert panels and targets food and nutrition professionals | Search by food name and by component | Updated regularly (each few years)—last update 21 January | European Food Safety Authority (2013) ‘Food composition database for nutrient intake: selected vitamins and minerals in selected European countries’. Zenodo. doi: 10.5281/ZENODO.438313. |
FAO | InFoods | http://www.fao.org/infoods/infoods/en/ accessed on 17 August 2021 | InFoods is a network bringing together food composition compilers, data generators (e.g., chemists), and data users (e.g., nutritionists, food scientists), and decision makers | food composition database compilers retrieve analytical data on food composition for commonly consumed foods and complemented with other published sources | Datasets are downloadable in xls and pdf formats, as well as searchable with software tools for e.g., dietary assessment, labeling and food supply/availability data | Updated regularly | FAO. 2020. International Network of Food Data Systems (InFoods) |
CIQUAL-ANSES | French Food Composition Database | https://ciqual.anses.fr/ accessed on 17 August 2021 | Average nutritional composition of food consumed in France. Average value of each component, a minimum and a maximum, together with a confidence code (A = very reliable, D = less reliable). Information on a specific component (ex. list of food rich in calcium or poor in sodium) | Compilation of different sources: yearly sampling of around 60 to 80 foods in collaboration with subcontractor laboratory; data from OQALI; research programmes on food composition with external partners. Scientific literature and laboratory reports; foreign food composition tables | Easily searched by food item, food group, or by components | Released every 2 to 4 years | French Agency for Food, Environmental and Occupational Health and Safety. ANSES-CIQUAL French food composition table version 2020. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, A.; Issaoui, M.; Vieira, M.C.; Saraiva de Carvalho, I.; Fardet, A. Food Composition Databases: Does It Matter to Human Health? Nutrients 2021, 13, 2816. https://doi.org/10.3390/nu13082816
Delgado A, Issaoui M, Vieira MC, Saraiva de Carvalho I, Fardet A. Food Composition Databases: Does It Matter to Human Health? Nutrients. 2021; 13(8):2816. https://doi.org/10.3390/nu13082816
Chicago/Turabian StyleDelgado, Amélia, Manel Issaoui, Margarida C. Vieira, Isabel Saraiva de Carvalho, and Anthony Fardet. 2021. "Food Composition Databases: Does It Matter to Human Health?" Nutrients 13, no. 8: 2816. https://doi.org/10.3390/nu13082816
APA StyleDelgado, A., Issaoui, M., Vieira, M. C., Saraiva de Carvalho, I., & Fardet, A. (2021). Food Composition Databases: Does It Matter to Human Health? Nutrients, 13(8), 2816. https://doi.org/10.3390/nu13082816