Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Populations
2.2. Dietary Intake Data Assessment
2.3. Biochemical Analyses
2.4. Extraction of Fecal Genomic DNA and Gut Microbiota Sequencing
2.5. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Protein Intake and Metabolic Status
3.3. Macronutrient Intake and Gut Microbiota Alpha Diversity
3.4. Macronutrient Intake and Gut Microbiota Beta Diversity
3.5. Species Associated with Animal Protein Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADA | American Diabetes Association |
BCAA | branch chained amino acids |
BMI | Body Mass Index |
BMR | Basal Metabolic Rate |
CI | Confidence Interval |
HbA1c | Hemoglobin A1c |
ImP | Imidazole Propionate |
mOTU | molecular Operational Taxinomical Unit |
OGTT | Oral Glucose Tolerance Test |
OR | Odds Ratio |
OTU | Operational Taxinomical Unit |
pre-T2D | Pre-Diabetes |
RPAQ | Recent Physical Activity Questionnaire |
T2D | Type 2 Diabetes |
TMA | Trimethylamines |
TMAO | Trimethylamine N-oxide |
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2019, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Veelen, A.; Tapia, E.E.; Oscarsson, J.; Schrauwen, P. Type 2 Diabetes Subgroups and Potential Medication Strategies in Relation to Effects on Insulin Resistance and Beta-Cell Function: A Step towards Personalized Diabetes Treatment? Mol. Metab. 2020, 46, 101158. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Cassader, M. Obesity, Diabetes, and Gut Microbiota: The Hygiene Hypothesis Expanded? Diabetes Care 2010, 33, 2277–2284. [Google Scholar] [CrossRef] [Green Version]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.; Echeverria, S.; Mayer, V.; Janevic, T. Diabetes Risk and Control in Multi-Ethnic US Immigrant Populations. Curr. Diabetes Rep. 2020, 20, 73. [Google Scholar] [CrossRef] [PubMed]
- Deschasaux, M.; Bouter, K.E.; Prodan, A.; Levin, E.; Groen, A.K.; Herrema, H.; Tremaroli, V.; Bakker, G.J.; Attaye, I.; Pinto-Sietsma, S.-J.; et al. Depicting the Composition of Gut Microbiota in a Population with Varied Ethnic Origins but Shared Geography. Nat. Med. 2018, 24, 1526–1531. [Google Scholar] [CrossRef]
- Li, Q.; Chang, Y.; Zhang, K.; Chen, H.; Tao, S.; Zhang, Z. Implication of the Gut Microbiome Composition of Type 2 Diabetic Patients from Northern China. Sci. Rep. 2020, 10, 5450. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Yang, W.; Chen, G.; Shafiq, M.; Javed, S.; Ali Zaidi, S.S.; Shahid, R.; Liu, C.; Bokhari, H. Analysis of Gut Microbiota of Obese Individuals with Type 2 Diabetes and Healthy Individuals. PLoS ONE 2019, 14, e0226372. [Google Scholar] [CrossRef] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature That Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Molinaro, A.; Bel Lassen, P.; Henricsson, M.; Wu, H.; Adriouch, S.; Belda, E.; Chakaroun, R.; Nielsen, T.; Bergh, P.-O.; Rouault, C.; et al. Imidazole Propionate Is Increased in Diabetes and Associated with Dietary Patterns and Altered Microbial Ecology. Nat. Commun. 2020, 11, 5881. [Google Scholar] [CrossRef] [PubMed]
- Sami, W.; Ansari, T. Effect of Diet on Type 2 Diabetes Mellitus: A Review. Int. J. Health Sci. 2017, 11, 7. [Google Scholar]
- Attaye, I.; Pinto-Sietsma, S.-J.; Herrema, H.; Nieuwdorp, M. A Crucial Role for Diet in the Relationship Between Gut Microbiota and Cardiometabolic Disease. Annu. Rev. Med. 2020, 71, 149–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojo, O.; Feng, Q.-Q.; Ojo, O.O.; Wang, X.-H. The Role of Dietary Fibre in Modulating Gut Microbiota Dysbiosis in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2020, 12, 3239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.; Gallagher, E.; Horton, F.; Ellis, R.J.; Ijaz, U.Z.; Wu, H.; Jaiyeola, E.; Diribe, O.; Duparc, T.; Cani, P.D.; et al. Host–Microbiome Interactions in Human Type 2 Diabetes Following Prebiotic Fibre (Galacto-Oligosaccharide) Intake. Br. J. Nutr. 2016, 116, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Franco, O.H.; Lamballais, S.; Ikram, M.A.; Schoufour, J.D.; Muka, T.; Voortman, T. Associations of Specific Dietary Protein with Longitudinal Insulin Resistance, Prediabetes and Type 2 Diabetes: The Rotterdam Study. Clin. Nutr. 2020, 39, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Yu, Q.; Mai, W.; Liang, P.; Liu, X.; Wang, Y. Dietary Protein Intake and Subsequent Risk of Type 2 Diabetes: A Dose–Response Meta-Analysis of Prospective Cohort Studies. Acta Diabetol. 2019, 56, 851–870. [Google Scholar] [CrossRef]
- Berryman, C.E.; Lieberman, H.R.; Fulgoni, V.L.; Pasiakos, S.M. Protein Intake Trends and Conformity with the Dietary Reference Intakes in the United States: Analysis of the National Health and Nutrition Examination Survey, 2001–2014. Am. J. Clin. Nutr. 2018, 108, 405–413. [Google Scholar] [CrossRef]
- Van Woudenbergh, G.J.; Kuijsten, A.; Tigcheler, B.; Sijbrands, E.J.G.; van Rooij, F.J.A.; Hofman, A.; Witteman, J.C.M.; Feskens, E.J.M. Meat Consumption and Its Association With C-Reactive Protein and Incident Type 2 Diabetes: The Rotterdam Study. Diabetes Care 2012, 35, 1499–1505. [Google Scholar] [CrossRef] [Green Version]
- Menni, C.; Zhu, J.; Le Roy, C.I.; Mompeo, O.; Young, K.; Rebholz, C.M.; Selvin, E.; North, K.E.; Mohney, R.P.; Bell, J.T.; et al. Serum Metabolites Reflecting Gut Microbiome Alpha Diversity Predict Type 2 Diabetes. Gut Microbes 2020, 11, 1632–1642. [Google Scholar] [CrossRef]
- Koh, A.; Molinaro, A.; Ståhlman, M.; Khan, M.T.; Schmidt, C.; Mannerås-Holm, L.; Wu, H.; Carreras, A.; Jeong, H.; Olofsson, L.E.; et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through MTORC1. Cell 2018, 175, 947–961.e17. [Google Scholar] [CrossRef] [Green Version]
- DiNicolantonio, J.J.; McCarty, M.; OKeefe, J. Association of Moderately Elevated Trimethylamine N-Oxide with Cardiovascular Risk: Is TMAO Serving as a Marker for Hepatic Insulin Resistance. Open Heart 2019, 6, e000890. [Google Scholar] [CrossRef]
- Snijder, M.B.; Galenkamp, H.; Prins, M.; Derks, E.M.; Peters, R.J.G.; Zwinderman, A.H.; Stronks, K. Cohort Profile: The Healthy Life in an Urban Setting (HELIUS) Study in Amsterdam, The Netherlands. BMJ Open 2017, 7, e017873. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Classification and Diagnosis of Diabetes; American Diabetes Association: Arlington, VA, USA, 2015; pp. 8–16. [Google Scholar]
- American Diabetes Association. Standards of Medical Care in Diabetes—2014. Diabetes Care 2014, 37 (Suppl. 1), S14–S80. [Google Scholar] [CrossRef] [Green Version]
- Stronks, K.; Kulu-Glasgow, I.; Agyemang, C. The Utility of ‘Country of Birth’ for the Classification of Ethnic Groups in Health Research: The Dutch Experience. Ethn. Health 2009, 14, 255–269. [Google Scholar] [CrossRef]
- Verger, E.O.; Armstrong, P.; Nielsen, T.; Chakaroun, R.; Aron-Wisnewsky, J.; Gøbel, R.J.; Schütz, T.; Delaere, F.; Gausseres, N.; Clément, K.; et al. Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food Frequency Questionnaire. J. Acad. Nutr. Diet. 2017, 117, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Besson, H.; Brage, S.; Jakes, R.W.; Ekelund, U.; Wareham, N.J. Estimating Physical Activity Energy Expenditure, Sedentary Time, and Physical Activity Intensity by Self-Report in Adults. Am. J. Clin. Nutr. 2010, 91, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, L.H.; Snijder, M.B.; Beukers, M.H.; de Vries, J.H.; Brants, H.A.; de Boer, E.J.; van Dam, R.M.; Stronks, K.; Nicolaou, M. A Prospective Cohort Study of Dietary Patterns of Non-Western Migrants in the Netherlands in Relation to Risk Factors for Cardiovascular Diseases: HELIUS-Dietary Patterns. BMC Public Health 2011, 11, 441. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, V.; Clark, J.; Doré, J. Fecal Microbiota Analysis: An Overview of Sample Collection Methods and Sequencing Strategies. Future Microbiol. 2015, 10, 1485–1504. [Google Scholar] [CrossRef]
- Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; et al. An Integrated Catalog of Reference Genes in the Human Gut Microbiome. Nat. Biotechnol. 2014, 32, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- Les Protéines|Anses—Agence Nationale de Sécurité Sanitaire de L’alimentation, de l’environnement et Du Travail. Available online: https://www.anses.fr/fr/content/les-prot%C3%A9ines (accessed on 10 August 2021).
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1453. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; et al. Effects of Dietary Fat on Gut Microbiota and Faecal Metabolites, and Their Relationship with Cardiometabolic Risk Factors: A 6-Month Randomised Controlled-Feeding Trial. Gut 2019, 68, 1417–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite Profiles and the Risk of Developing Diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-Based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.; Vandeputte, D.; et al. Population-Level Analysis of Gut Microbiome Variation. Science 2016, 352, 560–564. [Google Scholar] [CrossRef]
- Brooks, A.W.; Priya, S.; Blekhman, R.; Bordenstein, S.R. Gut Microbiota Diversity across Ethnicities in the United States. PLoS Biol. 2018, 16, e2006842. [Google Scholar] [CrossRef] [Green Version]
- Travis, A.J.; Kelly, D.; Flint, H.J.; Aminov, R.I. Complete Genome Sequence of the Human Gut Symbiont Roseburia Hominis. Genome Announc. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Canani, R.B. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. 2011, 17, 1519. [Google Scholar] [CrossRef]
- Cuevas-Sierra, A.; Romo-Hualde, A.; Aranaz, P.; Goni, L.; Cuervo, M.; Martínez, J.A.; Milagro, F.I.; Riezu-Boj, J.I. Diet- and Sex-Related Changes of Gut Microbiota Composition and Functional Profiles after 4 Months of Weight Loss Intervention. Eur. J. Nutr. 2021, 60, 3279–3301. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Pasolli, E.; Tett, A.; Tarallo, S.; Naccarati, A.; De Angelis, M.; Neviani, E.; Cocolin, L.; Gobbetti, M.; Segata, N.; et al. Distinct Genetic and Functional Traits of Human Intestinal Prevotella Copri Strains Are Associated with Different Habitual Diets. Cell Host Microbe 2019, 25, 444–453.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natividad, J.M.; Lamas, B.; Pham, H.P.; Michel, M.-L.; Rainteau, D.; Bridonneau, C.; da Costa, G.; van Hylckama Vlieg, J.; Sovran, B.; Chamignon, C.; et al. Bilophila Wadsworthia Aggravates High Fat Diet Induced Metabolic Dysfunctions in Mice. Nat. Commun. 2018, 9, 2802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; et al. Mediterranean Diet Intervention Alters the Gut Microbiome in Older People Reducing Frailty and Improving Health Status: The NU-AGE 1-Year Dietary Intervention across Five European Countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef] [Green Version]
- Gallardo-Becerra, L.; Cornejo-Granados, F.; García-López, R.; Valdez-Lara, A.; Bikel, S.; Canizales-Quinteros, S.; López-Contreras, B.E.; Mendoza-Vargas, A.; Nielsen, H.; Ochoa-Leyva, A. Metatranscriptomic Analysis to Define the Secrebiome, and 16S RRNA Profiling of the Gut Microbiome in Obesity and Metabolic Syndrome of Mexican Children. Microb. Cell Fact. 2020, 19, 61. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M.; Dekker Nitert, M. Low Dietary Fiber Intake Increases Collinsella Abundance in the Gut Microbiota of Overweight and Obese Pregnant Women. Gut Microbes 2018, 9, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Byrd, D.A.; Carson, T.L.; Williams, F.; Vogtmann, E. Elucidating the Role of the Gastrointestinal Microbiota in Racial and Ethnic Health Disparities. Genome Biol. 2020, 21, 192. [Google Scholar] [CrossRef]
All | Control | Pre-T2D | T2D | |
---|---|---|---|---|
(A) MetaCardis | ||||
100% (N = 1759) | 28.4% (N = 500) | 34.1% (N = 599) | 37.5% (N = 660) | |
Age (years) | 57.0 ± 12.0 | 51.7 ± 14.2 | 57.2 ± 11.1 * | 60.8 ± 9.1 * |
Sex: Female (%) | 50.2 (N = 883) | 61.4% (N = 307) | 46.2 (N = 277) * | 45.3 (N = 299) * |
Ethnicity: | ||||
Caucasians (%) | 88.4 (N = 1555) | 93.4 (N = 467) | 91.3 (N = 547) | 82.0 (N = 541) |
Non Caucasians (%) | 11.6 (N = 204) | 6.6 (N = 33) | 8.7 (N = 52) | 18.0 (N = 119) * |
BMI (kg/m2) | 32.1 ± 8.7 | 30.1 ± 9.8 | 32.4 ± 8.9 * | 33.3 ± 7.1 * |
Total physical activity (MET/h/week) | 96.3 ± 75.1 | 104.4 ± 74.3 | 93.7 ± 72.5 | 92.5 ± 77.5 * |
Diabetes treatment (%) | 30.6 (N = 539) | 0.0 (N = 0) | 0.0 (N = 0) | 81.7 (N = 539) * |
Statin treatment (%) | 35.5 (N = 624) | 21.0 (N = 105) | 33.7 (N = 202) * | 48.0 (N = 317) * |
Energy (kcal/day) | 2128.3 ± 841.4 | 2134.4 ± 846.7 | 2189.7 ± 883.6 | 2068.0 ± 793.7 * |
Protein (g/day) | 94.4 ± 40.4 | 92.3 ± 38.2 | 96.8 ± 44.1 | 93.7 ± 38.4 |
Protein (% of total energy intake) | 18.4 ± 3.4 | 18.0 ± 3.5 | 18.4 ± 3.3 | 18.7 ± 3.2 * |
Animal protein (g/day) | 62.3 ± 33.4 | 60.0 ± 31.4 | 64.4 ± 37.3 | 62.1 ± 31.0 |
Animal protein (% of total energy intake) | 11.9 ± 4.0 | 11.5 ± 4.2 | 11.9 ± 3.9 | 12.1 ± 3.8 * |
Plant protein (g/day) | 32.1 ± 14.5 | 32.3 ± 14.7 | 32.4 ± 14.6 | 31.6 ± 14.2 |
Plant protein (% of total energy intake) | 6.1 ± 1.6 | 6.1 ± 1.5 | 6.0 ± 1.6 | 6.2 ± 1.5 |
Fat (g/day) | 77.6 ± 34.7 | 78.3 ± 33.8 | 80.1 ± 37.1 | 74.8 ± 32.9 |
Carbohydrates (g/day) | 249.0 ± 109.6 | 251.1 ± 115.4 | 256.5 ± 108.8 | 240.6 ± 105.2 |
Fiber (g/day) | 29.5 ± 15.1 | 29.8 ± 15.2 | 29.2 ± 14.5 | 29.6 ± 15.5 |
High protein (>20En%) eater (%) | 27.7 (N = 488) | 22.6 (N = 113) | 26.5 (N = 159) | 32.7 (N = 216) * |
(B) HELIUS | ||||
100% (N = 1528) | 29.3% (N = 447) | 57.3% (N = 876) | 16.7% (N = 255) | |
Age (years) | 52.20 ± 10.55 | 46.14 ± 11.97 | 54.45 ± 8.70 * | 57.97 ± 7.36 * |
Sex: Female (%) | 52.6 (N = 804) | 61.7 (N = 276) | 48.9 (N = 428) * | 50.6 (N = 129) * |
Ethnicity: | ||||
Caucasians (%) | 32.4 (N = 495) | 43.4 (N = 194) | 30.0 (N = 263) | 16.9 (N = 43) |
Non Caucasians (%) | 67.6 (N = 1033) | 56.6 (N = 253) | 70.0 (N = 613) | 83.1 (N = 212) |
BMI (kg/m2) | 27.15 ± 4.76 | 24.98 ± 4.03 | 27.69 ± 4.60 * | 29.50 ± 5.00 * |
Total physical activity (h/week) | 43.82 ± 28.35 | 45.57 ± 25.32 | 44.43 ± 30.35 | 40.12 ± 31.36 * |
Diabetes treatment (%) | 10.3 (N = 157) | 0.0 (N = 0) | 6.7 (N = 59) * | 61.6 (N = 157) * |
Statin treatment (%) | 14.0 (N = 218) | 7.6 (N = 99) | 14.3 (N = 125) * | 46.7 (N = 119) * |
Energy (kcal/day) | 2226.11 ± 822.92 | 2253.29 ± 764.94 | 2237.58 ± 854.61 | 2155.57 ± 875.51 |
Protein (g/day) | 89.26 ± 35.41 | 87.50 ± 31.72 | 90.33 ± 37.10 | 90.68 ± 40.02 |
Protein (% of total energy intake) | 16.2 ± 3.2 | 15.7 ± 3.0 | 16.3 ± 3.3 * | 17.0 ± 3.3 * |
Animal protein (g/day) | 52.26 ± 27.01 | 50.11 ± 24.29 | 53.46 ± 28.18 * | 54.00 ± 31.13 |
Animal protein (% of total energy intake) | 9.5 ± 3.6 | 9.0 ± 3.3 | 9.7 ± 3.7 * | 10.0 ± 3.8 * |
Plant protein (g/day) | 36.99 ± 15.31 | 37.38 ± 14.77 | 36.87 ± 15.77 | 36.68 ± 14.93 |
Plant protein (% of total energy intake) | 6.7 ± 1.6 | 6.7 ± 1.7 | 6.7 ± 1.6 | 7.0 ± 1.7 * |
Fat (g/day) | 79.35 ± 35.81 | 81.28 ± 34.69 | 79.42 ± 36.40 | 76.31 ± 36.91 |
Carbohydrates (g/day) | 249.63 ± 104.98 | 251.28 ± 96.03 | 251.43 ± 111.04 | 241.89 ± 106.64 |
Fiber (g/day) | 24.11 ± 9.47 | 24.55 ± 9.46 | 23.97 ± 9.65 | 24.16 ± 9.20 |
High protein (>20En%) eater (%) | 10.7 (N = 163) | 5.1 (N = 23) | 13.2 (N = 116) * | 15.7 (N = 40) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bel Lassen, P.; Attaye, I.; Adriouch, S.; Nicolaou, M.; Aron-Wisnewsky, J.; Nielsen, T.; Chakaroun, R.; Le Chatelier, E.; Forslund, S.; Belda, E.; et al. Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts. Nutrients 2021, 13, 3159. https://doi.org/10.3390/nu13093159
Bel Lassen P, Attaye I, Adriouch S, Nicolaou M, Aron-Wisnewsky J, Nielsen T, Chakaroun R, Le Chatelier E, Forslund S, Belda E, et al. Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts. Nutrients. 2021; 13(9):3159. https://doi.org/10.3390/nu13093159
Chicago/Turabian StyleBel Lassen, Pierre, Ilias Attaye, Solia Adriouch, Mary Nicolaou, Judith Aron-Wisnewsky, Trine Nielsen, Rima Chakaroun, Emmanuelle Le Chatelier, Sofia Forslund, Eugeni Belda, and et al. 2021. "Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts" Nutrients 13, no. 9: 3159. https://doi.org/10.3390/nu13093159
APA StyleBel Lassen, P., Attaye, I., Adriouch, S., Nicolaou, M., Aron-Wisnewsky, J., Nielsen, T., Chakaroun, R., Le Chatelier, E., Forslund, S., Belda, E., Bork, P., Bäckhed, F., Stumvoll, M., Pedersen, O., Herrema, H., Groen, A. K., Pinto-Sietsma, S. -J., Zwinderman, A. H., Nieuwdorp, M., ... on behalf of Metacardis Consortium. (2021). Protein Intake, Metabolic Status and the Gut Microbiota in Different Ethnicities: Results from Two Independent Cohorts. Nutrients, 13(9), 3159. https://doi.org/10.3390/nu13093159