Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Testing
2.4. Measurements and Procedures
2.5. Adverse Events and Side Effect Monitoring
2.6. Calculations and Statistical Analyses
2.7. Sample Size
3. Results
3.1. Baseline Participant Characteristics
3.2. Controlled Diet
3.3. Side Effects
3.4. Insulin Sensitivity, Skeletal Muscle Substrate Oxidation, and Mitochondrial Enzyme Activities
3.5. Bifidobacteria, Intestinal Permeability, and Endotoxin Concentrations
4. Discussion
Implications for the Future
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control. National Diabetes Statistics Report. 2017. Available online: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (accessed on 1 May 2018).
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2015, 38, S8–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikenberg, J.D.; Davy, B.M. Prediabetes: A prevalent and treatable, but often unrecognized, clinical condition. J. Acad. Nutr. Diet. 2013, 113, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreault, L.; Pan, Q.; Mather, K.J.; Watson, K.E.; Hamman, R.F.; Kahn, S.E. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: Results from the Diabetes Prevention Program Outcomes Study. Lancet 2012, 379, 2243–2251. [Google Scholar] [CrossRef] [Green Version]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Hemmingsen, B.; Gimenez-Perez, G.; Mauricio, D.; Figuls, M.R.; Metzendorf, M.-I.; Richter, B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2017, 12, CD003054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Erridge, C.; Attina, T.; Spickett, C.M.; Webb, D.J. A high-fat meal induces low-grade endotoxemia: Evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 2007, 86, 1286–1292. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Tuttolomondo, A.; di Raimondo, D.; Pecoraro, R.; Arnao, V.; Pinto, A.; Licata, G. Atherosclerosis as an inflammatory disease. Curr. Pharm. Des. 2012, 18, 4266–4288. [Google Scholar] [CrossRef]
- Creely, S.J.; McTernan, P.G.; Kusminski, C.M.; Fisher, F.M.; da Silva, N.F.; Khanolkar, M.; Evans, M.; Harte, A.L.; Kumar, S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E740–E747. [Google Scholar] [CrossRef] [Green Version]
- Pussinen, P.J.; Havulinna, A.S.; Lehto, M.; Sundvall, J.; Salomaa, V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 2011, 34, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Frisard, M.I.; McMillan, R.P.; Marchand, J.; Wahlberg, K.A.; Wu, Y.; Voelker, K.A.; Heilbronn, L.; Haynie, K.; Muoio, B.; Li, L.; et al. Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am. J. Physiol. Metab. 2010, 298, E988–E998. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, P.; Gargari, B.P.; Asgharijafarabadi, M. Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: A randomized, placebo-controlled clinical trial. Health Promot. Perspect. 2013, 3, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.; Stasse-Wolthuis, M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur. J. Clin. Nutr. 2009, 63, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Simpson, H.L.; Campbell, B.J. Review article: Dietary fibre-microbiota interactions. Aliment. Pharmacol. Ther. 2015, 42, 158–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliasgharzadeh, A.; Khalili, M.; Mirtaheri, E.; Gargari, B.P.; Tavakoli, F.; Farhangi, M.A.; Babaei, H.; Dehghan, P. A combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with type 2 diabetes: A randomized controlled clinical trial. Adv. Pharm. Bull. 2015, 5, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghan, P.; Farhangi, M.A.; Tavakoli, F.; Aliasgarzadeh, A.; Akbari, A.M. Impact of prebiotic supplementation on T-cell subsets and their related cytokines, anthropometric features and blood pressure in patients with type 2 diabetes mellitus: A randomized placebo-controlled trial. Complement. Ther. Med. 2016, 24, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Frost, G.S. A randomised crossover trial: The effect of inulin on glucose homeostasis in subtypes of prediabetes. Ann. Nutr. Metab. 2015, 68, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Bell, J.D.; Thomas, E.L.; Frost, G.S. A randomized controlled trial: The effect of inulin on weight management and ectopic fat in subjects with prediabetes. Nutr. Metab. 2015, 12, 36. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.M.; Davy, B.M.; Halliday, T.; Hulver, M.W.; Neilson, A.P.; Ponder, M.A.; Davy, K.P. The effect of prebiotic supplementation with inulin on cardiometabolic health: Rationale, design, and methods of a controlled feeding efficacy trial in adults at risk of type 2 diabetes. Contemp. Clin. Trials 2015, 45, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Godin, G.; Shephard, R.J. Godin leasiure-time exercise questionnaire. Med. Sci. Sports Exerc. 1997, 29, S36. [Google Scholar]
- Bang, H.; Edwards, A.M.; Bomback, A.S.; Ballantyne, C.M.; Brillon, D.; Callahan, M.A.; Teutsch, S.M.; Mushlin, A.I.; Kern, L.M. Development and validation of a patient self-assessment score for diabetes risk. Ann. Intern. Med. 2009, 151, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, S.; Chan, C.; Campbell, M.; Bond, C.; Hopewell, S.; Thabane, L.; Lancaster, G. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. BMJ 2016, 355, i5239. [Google Scholar]
- Bonnema, A.L.; Kolberg, L.W.; Thomas, W.; Slavin, J.L. Gastrointestinal tolerance of chicory inulin products. J. Am. Diet. Assoc. 2010, 110, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Boston, R.C.; Stefanovski, D.; Moate, P.; Sumner, A.E.; Watanabe, R.M.; Bergman, R.N. MINMOD millennium: A computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol. Ther. 2003, 5, 1003–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinik, E.L.; Frisard, M.I.; Hulver, M.W.; Davy, B.M.; Rivero, J.M.; Savla, J.S.; Davy, K.P. Angiotensin II receptor blockade and insulin sensitivity in overweight and obese adults with elevated blood pressure. Ther. Adv. Cardiovasc. Dis. 2013, 7, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.; Matthews, D.R.; Hermans, M.P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J. Clin. Lab. Investig. 1975, 35, 609–616. [Google Scholar] [CrossRef]
- Evans, W.J.; Phinney, S.D.; Young, V.R. Suction applied to a muscle biopsy maximizes sample size. Med. Sci. Sports Exerc. 1982, 14, 101–102. [Google Scholar] [CrossRef]
- Hulver, M.W.; Berggren, J.R.; Carper, M.J.; Miyazaki, M.; Ntambi, J.M.; Hoffman, E.P.; Thyfault, J.P.; Stevens, R.; Dohm, G.L.; Houmard, J.A.; et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005, 2, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulver, M.W.; Berggren, J.R.; Cortright, R.N.; Dudek, R.W.; Thompson, R.P.; Pories, W.J.; MacDonald, K.G.; Cline, G.W.; Shulman, G.I.; Dohm, G.L.; et al. Skeletal muscle lipid metabolism with obesity. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E741–E747. [Google Scholar] [CrossRef]
- Srere, P.A. Citrate synthase. Meth. Enzymol. 1969, 13, 3–26. [Google Scholar]
- Smith, L. Spectrophotometric assay of cytochrome c oxidase. In Methods of Biochemical Analysis; Glick, D., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1955; Volume 2, pp. 427–434. [Google Scholar]
- Langendijk, P.S.; Schut, F.; Jansen, G.J.; Raangs, G.C.; Kamphuis, G.R.; Wilkinson, M.H.; Welling, G.W. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Env. Microbiol. 1995, 61, 3069–3075. [Google Scholar] [CrossRef] [Green Version]
- Martín, R.; Jiménez, E.; Heilig, H.; Fernández, L.; Marín, M.L.; Zoetendal, E.G.; Rodríguez, J.M. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 2009, 75, 965–969. [Google Scholar] [CrossRef] [Green Version]
- Satokari, R.M.; Vaughan, E.E.; Akkermans, A.D.; Saarela, M.; de Vos, W.M. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2001, 67, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Camilleri, M.; Nadeau, A.; Lamsam, J.; Nord, S.L.; Ryks, M.; Burton, D.; Sweetser, S.; Zinsmeister, A.R.; Singh, R. Understanding measurements of intestinal permeability in healthy humans with urine lactulose and mannitol excretion. Neurogastroenterol. Motil. 2009, 22, e15–e26. [Google Scholar] [CrossRef] [Green Version]
- Dastych, M.; Dastych, M., Jr.; Novotna, H.; Cihalova, J. Lactulose/mannitol test and specificity, sensitivity, and area under curve of intestinal permeability parameters in patients with liver cirrhosis and Crohn’s disease. Dig. Dis. Sci. 2008, 53, 2789–2792. [Google Scholar] [CrossRef]
- Farhadi, A.; Gundlapalli, S.; Shaikh, M.; Frantzides, C.; Harrell, L.; Kwasny, M.; Keshavarzian, A. Susceptibility to gut leakiness: A possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int. 2008, 28, 1026–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilsden, R.J.; Meddings, J.B.; Sutherland, L.R. Intestinal permeability changes in response to acetylsalicylic acid in relatives of patients with Crohn’s disease. Gastroenterology 1996, 110, 1395–1403. [Google Scholar] [CrossRef]
- Rao, A.S.; Camilleri, M.; Eckert, D.J.; Busciglio, I.; Burton, D.D.; Ryks, M.; Wong, B.S.; Lamsam, J.; Singh, R.; Zinsmeister, A.R. Urine sugars for in vivo gut permeability: Validation and comparisons in irritable bowel syndrome-diarrhea and controls. Am. J. Physiol. Liver Physiol. 2011, 301, G919–G928. [Google Scholar] [CrossRef] [PubMed]
- Grabitske, H.A.; Slavin, J.L. Gastrointestinal effects of low-digestible carbohydrates. Crit. Rev. Food Sci. Nutr. 2009, 49, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Tripathy, D.; Almgren, P.; Tuomi, T.; Groop, L. Contribution of insulin-stimulated glucose uptake and basal hepatic insulin sensitivity to surrogate measures of insulin sensitivity. Diabetes Care 2004, 27, 2204–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, E.S.; Byrne, C.S.; Morrison, D.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut 2019, 68, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, P.; Gargari, B.P.; Jafarabadi, M.A.; Aliasgharzadeh, A. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized-controlled clinical trial. Int. J. Food Sci. Nutr. 2014, 65, 117–123. [Google Scholar] [CrossRef]
- Ghavami, A.; Roshanravan, N.; Alipour, S.; Barati, M.; Mansoori, B.; Ghalichi, F.; Nattagh-Eshtivan, E.; Ostadrahimi, A. Assessing the effect of high performance inulin supplementation via KLF5 mRNA expression in adults with type 2 diabetes: A randomized placebo controlled clinical trial. Adv. Pharm. Bull. 2018, 8, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Gargari, B.P.; Dehghan, P.; Aliasgharzadeh, A.; Jafar-Abadi, M.A. Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes. Diabetes Metab. J. 2013, 37, 140–148. [Google Scholar] [CrossRef]
- Baxter, N.T.; Schmidt, A.W.; Venkataraman, A.; Kim, K.S.; Waldron, C.; Schmidt, T.M. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 2019, 10, e02566-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Causey, J.L.; Feirtag, J.M.; Gallaher, D.D.; Tungland, B.C.; Slavin, J.L. Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr. Res. 2000, 20, 191–201. [Google Scholar] [CrossRef]
- Kolida, S.; Meyer, D.; Gibson, G.R. A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur. J. Clin. Nutr. 2007, 61, 1189–1195. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, G.; Cao, H.; Yu, D.; Fang, X.; de Vos, W.M.; Wu, H. Gut dysbacteriosis and intestinal disease: Mechanism and treatment. J. Appl. Microbiol. 2020, 129, 787–805. [Google Scholar] [CrossRef] [Green Version]
- Farhangi, M.A.; Javid, A.Z.; Dehghan, P. The effect of enriched chicory inulin on liver enzymes, calcium homeostasis and hematological parameters in patients with type 2 diabetes mellitus: A randomized placebo-controlled trial. Prim. Care Diabetes 2016, 10, 265–271. [Google Scholar] [CrossRef]
- Van Dokkum, W.; Wezendonk, B.; Srikumar, T.S.; van den Heuvel, E.G. Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur. J. Clin. Nutr. 1999, 53, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghan, P.; Gargari, B.P.; Jafarabadi, M.A. Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized controlled clinical trial. Nutrition 2014, 30, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Linsalata, M.; Clemente, C.; Chiloiro, M.; Orlando, A.; Marconi, E.; Chimienti, G.; Riezzo, G. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr. Res. 2012, 32, 940–946. [Google Scholar] [CrossRef] [PubMed]
Descriptives | Placebo (n = 9) | Inulin (n = 13) |
---|---|---|
Sex | Males = 3 Female = 6 | Males = 5 Female = 8 |
Race | Caucasian = 9 | Caucasian = 12 African = 1 |
ADA Risk Score | 5 ± 0 | 5 ± 0 |
Age (years) | 54.2 ± 3.2 | 54.5 ± 2.1 |
Anthropometrics | ||
Height (cm) | 168.7 ± 3.0 | 169.2 ± 3.0 |
Weight (kg) | 89.3 ± 3.0 | 89.5 ± 3.9 |
BMI (kg/m2) | 31.2 ± 0.8 | 31.4 ± 0.9 |
Body fat (%) | 42.3 ± 9.9 | 40.1 ± 6.7 |
Blood Chemistries and Blood Pressure | ||
FBG (mg/dL) | 90 ± 4 | 96 ± 4 |
Fasting Insulin uIU/mL | 9 ± 2 | 15 ± 2 * |
2-hr glucose (mg/dL) | 118 ± 17 | 121 ± 12 |
HbA1c (%) | 5.7 ± 0.1 | 5.4 ± 0.1 |
TC (mg/dL) | 209 ± 10 | 215 ± 8 |
HDL (mg/dL) | 57 ± 6 | 50 ± 3 |
LDL (mg/dL) | 123 ± 14 | 138 ± 9 |
VLDL (mg/dL) | 29 ± 7 | 27 ± 3 |
TG (mg/dL) | 147 ± 33 | 134 ± 14 |
SBP (mmHg) | 128 ± 3 | 130 ± 3 |
DBP (mmHg) | 79 ± 3 | 77 ± 2 |
Habitual Dietary Intake | ||
Kcals | 2119 ± 191 | 2094 ± 165 |
Protein (grams) (% energy) | 79 ± 8 15 ± 0 | 98 ± 6 19 ± 0 |
Carbohydrates (grams) (% energy) | 258 ± 24 49 ± 1 | 227 ± 18 43 ± 0 |
Fats (grams) (% energy) | 85 ± 11 36 ± 1 | 92 ± 9 40 ± 0 |
Dietary fiber (g) | 22 ± 2 | 17 ± 2 |
Soluble fiber (g) | 7 ± 1 | 7 ± 1 |
Pectins (g) | 2 ± 0 | 2 ± 0 |
Sodium (mg) | 3166 ± 279 | 3699 ± 270 |
Variable | Placebo | Inulin | Interactions | ||
---|---|---|---|---|---|
Baseline | Week 6 | Baseline | Week 6 | p-Values | |
Glucose Oxidation | 5.8 ± 1.0 | 5.5 ± 1.0 | 5.3 ± 1.0 | 5.9 ± 1.1 | p = 0.90 |
Fatty Acid Oxidation | 6.9 ± 1.1 | 7.4 ± 0.7 | 7.0 ± 1.0 | 7.6 ± 1.0 | p = 0.22 |
Pyruvate Oxidation | 354.5 ± 36.5 | 339.9 ± 45.9 | 248.9 ± 23.4 | 285 ± 29.6 | p = 0.43 |
Metabolic Flexibility | 32.4 ± 3.8 | 23.1 ± 4.0 | 22.5 ± 4.4 | 31.5 ± 3.8 | p = 0.07 |
Citrate synthase | 52.5 ± 8.2 | 53.3 ± 10.0 | 41.6 ± 7.6 | 39.8 ± 5.0 | p = 0.52 |
Cytochrome-c Oxidase | 139.1 ± 25.0 | 171.8 ± 40.2 | 102.7 ± 20.7 | 132.8 ± 15.9 | p = 0.50 |
Variable | Placebo | Inulin | Interactions | ||||
---|---|---|---|---|---|---|---|
Baseline | Week 6 | Δ-Score | Baseline | Week 6 | Δ-Score | p-Values | |
Small intestine permeability | |||||||
0–5 h (ratio) | 0.0117 ± 0.001 | 0.0096 ± 0.0013 | −0.0021 ± 0.0018 | 0.0109 ± 0.0014 | 0.0090 ± 0.0010 | −0.0018 ± 0.0011 | p = 0.88 |
6–24 h (ratio) | 0.0342 ± 0.0065 | 0.0266 ± 0.0043 | −0.0076 ± 0.0058 | 0.0323 ± 0.0053 | 0.0218 ± 0.0032 | −0.0105 ± 0.0040 | p = 0.68 |
Gastroduodenal permeability | |||||||
0–5 h (%) | 0.0241 ± 0.0060 | 0.0289 ± 0.0160 | 0.0048 ± 0.0170 | 0.0226 ± 0.0041 | 0.0326 ± 0.0114 | 0.0010 ± 0.0010 | p = 0.78 |
0–5 h (ratio) | 0.0014 ± 0.0004 | 0.0017 ± 0.0010 | 0.0004 ± 0.0010 | 0.0013 ± 0.0002 | 0.0013 ± 0.0010 | 0.0001 ± 0.0010 | p = 0.72 |
Colonic permeability | |||||||
0–5 h (%) | 1.3910 ± 0.2642 | 1.2620 ± 0.3510 | −0.1292 ± 0.5634 | 1.4440 ± 0.4707 | 1.0520 ± 0.2723 | −0.3920 ± 0.4739 | p = 0.72 |
0–5 h (ratio) | 0.0863 ± 0.0208 | 0.0833 ± 0.0238 | −0.0030 ± 0.0333 | 0.0817 ± 0.0706 | 0.0490 ± 0.0083 | −0.0327 ± 0.0197 | p = 0.43 |
6–24 h (%) | 6.4160 ± 0.8898 | 6.3550 ± 2.718 | −0.0608 ± 2.8890 | 5.4930 ± 1.0450 | 3.1860 ± 1.2270 | −2.3070 ± 0.9152 | p = 0.42 |
6–24 h (ratio) | 0.5011 ± 0.0905 | 0.4764 ± 0.1703 | −0.0248 ± 0.2078 | 0.3616 ± 0.0694 | 0.2121 ± 0.0910 | −0.1496 ± 0.0826 | p = 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitchell, C.M.; Davy, B.M.; Ponder, M.A.; McMillan, R.P.; Hughes, M.D.; Hulver, M.W.; Neilson, A.P.; Davy, K.P. Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients 2021, 13, 3235. https://doi.org/10.3390/nu13093235
Mitchell CM, Davy BM, Ponder MA, McMillan RP, Hughes MD, Hulver MW, Neilson AP, Davy KP. Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients. 2021; 13(9):3235. https://doi.org/10.3390/nu13093235
Chicago/Turabian StyleMitchell, Cassie M., Brenda M. Davy, Monica A. Ponder, Ryan P. McMillan, Michael D. Hughes, Matthew W. Hulver, Andrew P. Neilson, and Kevin P. Davy. 2021. "Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial" Nutrients 13, no. 9: 3235. https://doi.org/10.3390/nu13093235
APA StyleMitchell, C. M., Davy, B. M., Ponder, M. A., McMillan, R. P., Hughes, M. D., Hulver, M. W., Neilson, A. P., & Davy, K. P. (2021). Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients, 13(9), 3235. https://doi.org/10.3390/nu13093235