Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Consideration
2.3. Data Collection and Variables
2.4. Bacterial DNA Extraction from Feces
2.5. DNA Sequence Analysis
2.6. Statistical Analysis
3. Results
3.1. Demographic Profiles of Subjects
3.2. Comparison of Alpha and Beta Diversities in the Gut Microbiome before and after the Intervention of Acarbose
3.3. Assignment and Identification of Microbial Species Significantly Associated with Acarbose Intervention
3.4. Association between Habitual Dietary Intake and Changes in Microbial Data Related to Acarbose Intervention
4. Discussion
4.1. Alterations of the Gut Microbial Species Associated with the Intervention of Acarbose
4.2. Associations between Habitual Dietary Nutrient Intake and Alterations of Microbial Data Associated with Acarbose Intervention
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergstroöm, G.; Behre, C.J.; Fagerberg, B.; Nietlsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 2013, 8, e71108. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Páez, A.; Sanz, Y.; Haller, D.; Holzer, P.; Delzenne, N.M. The potential role of the dipeptidyl peptidase-4-like activity from the gut microbiota on the host health. Front. Microbiol. 2018, 9, 1900. [Google Scholar]
- Zhao, L.; Chen, Y.; Xia, F.; Abudukerimu, B.; Zhang, W.; Guo, Y.; Wang, N.; Lu, Y. A Glucagon-like peptide-1 receptor agonist lowers weight by modulating the structure of gut microbiota. Front. Endocrinol. 2018, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Mannerås-Holm, L.; Stahlman, M.; Olsson, L.M.; Serino, M.; Planas-Felix, M.; et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017, 23, 850–858. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, X.; Li, J.; Zhang, Y.; Zhong, H.; Liu, R.; Zhang, D.; Feng, Q.; Xie, X.; Hongmei, Z.; et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun. 2017, 8, 1785. [Google Scholar] [CrossRef]
- Standl, E.; Schnell, O. Alpha-glucosidase inhibitors 2012-cardiovascular considerations and trial evaluation. Diabet. Vasc. Dis. Res. 2012, 9, 163–169. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P. Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: A systematic review. Clin. Ther. 2012, 34, 1221–1236. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323. [Google Scholar]
- Zhang, F.; Wang, M.; Yang, J.; Xu, Q.; Liang, C.; Chen, B.; Zhang, J.; Yang, Y.; Wang, H.; Shang, Y.; et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine 2019, 66, 485–493. [Google Scholar] [CrossRef]
- Su, B.; Liu, H.; Li, J.; Sunli, Y.; Liu, B.; Liu, D.; Zhang, P.; Meng, X. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J. Diabetes 2015, 7, 729–739. [Google Scholar] [CrossRef]
- Cao, T.B.; Wu, K.C.; Hsu, J.L.; Chang, C.S.; Chou, C.; Lin, C.Y.; Liao, Y.-M.; Lin, P.-C.; Yang, L.-Y.; Lin, H.-W. Effects of non-insulin anti-hyperglycemic agents on gut microbiota: A systematic review on human and animal studies. Front. Endocrinol. 2020, 11, 573891. [Google Scholar] [CrossRef]
- Qiu, Y.; Shen, L.; Fu, L.; Yang, J.; Cui, C.; Li, T.; Li, X.; Fu, C.; Gao, X.; Wang, W.; et al. The glucose-lowering effects of α-glucosidase inhibitor require a bile acid signal in mice. Diabetologia 2020, 63, 1002–1016. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019. Diabetes Care 2019, 42 (Suppl. 1), S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Mineoka, Y.; Ishii, M.; Hashimoto, Y.; Tanaka, M.; Nakamura, N.; Katsumi, Y.; Isono, M.; Fukui, M. Relationship between limited joint mobility of hand and carotid atherosclerosis in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2017, 132, 79–84. [Google Scholar] [CrossRef]
- Mogensen, C.E.; Christensen, C.K.; Vittinghus, E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983, 32 (Suppl. 2), 64–78. [Google Scholar] [CrossRef]
- Yasuda, H.; Sanada, M.; Kitada, K.; Terashima, T.; Kim, H.; Sakaue, Y.; Fujitani, M.; Kawai, N.; Maeda, K.; Kashiwagi, A. Rationale and usefulness of newly devised abbreviated diagnostic criteria and staging for diabetic polyneuropathy. Diabetes Res. Clin. Pract. 2007, 77 (Suppl. 1), S178–S183. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- Matsuki, T.; Watanabe, K.; Fujimoto, J.; Kado, Y.; Takada, T.; Matsumoto, K.; Tanaka, R. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl. Environ. Microbiol. 2004, 70, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-W.; Suda, W.; Oshima, K.; Fukuda, S.; Ohno, H.; Morita, H.; Hattori, M. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res. 2013, 20, 241–253. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Hamaguchi, M.; Kaji, A.; Sakai, R.; Osaka, T.; Inoue, R.; Kashiwagi, S.; Mizushima, K.; Uchiyama, K.; Takagi, T.; et al. Intake of sucrose affects gut dysbiosis in patients with type 2 diabetes. J. Diabetes Investig. 2020, 11, 1623–1634. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Z.; Zhang, C.; Xia, H.; Jie, Z.; Han, X.; Jie, Z.; Han, X.; Chen, Y.; Ji, L. Effects of acarbose on the gut microbiota of prediabetic patients: A randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017, 8, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Baxter, N.T.; Lesniak, N.A.; Sinani, H.; Schloss, P.D.; Koropatkin, N.M. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome. mSphere 2019, 4, e00528-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, S.; Suda, W.; Oshima, K.; Kim, S.W.; Hirose, Y.; Morita, H.; Hattori, M. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016, 23, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, P.; Young, P.; Holtrop, G.; Flint, H.J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 2010, 12, 304–314. [Google Scholar] [CrossRef]
- Vital, M.; Karch, A.; Pieper, D.H. Colonic butyrate-producing communities in humans: An overview using omics data. mSystems 2017, 2, e00130-17. [Google Scholar] [CrossRef] [Green Version]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; Gonzalez, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Corrigendum: Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 1486. [Google Scholar] [CrossRef] [Green Version]
- Holt, P.R.; Atillasoy, E.; Lindenbaum, J.; Ho, S.B.; Lupton, J.R.; McMahon, D.; Moss, S.F. Effect of acarbose on fecal nutrients, colonic pH; and short-chain fatty acids and rectal proliferative indices. Metabolism 1996, 45, 1179–1187. [Google Scholar] [CrossRef]
- Weaver, G.A.; Tangel, C.T.; Krause, J.A.; Parfitt, M.M.; Jenkins, P.L.; Rader, J.M.; Lewis, B.A.; Miller, T.L.; Wolin, M.J. Acarbose enhances human colonic butyrate production. Hum. Clin. Nutr. 1997, 127, 717–723. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.J.; Miller, R.A.; Ericsson, A.C.; Harrison, D.C.; Strong, R.; Schmidt, T.M. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019, 19, 130. [Google Scholar] [CrossRef] [Green Version]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef]
- Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vich Vila, A.; Vosa, U.; Mijagic, Z.; Masclee, A.A.M.; Jonkers, D.M.A.; Oosting, M.; et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 2019, 51, 600–605. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Sano, M.; Hayashida, K.; Ohsawa, I.; Ohta, S.; Fukuda, K. Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett. 2009, 583, 2157–2159. [Google Scholar] [CrossRef] [Green Version]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.-I.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef]
- Zhu, Q.; Tong, Y.; Wu, T.; Li, J.; Tong, N. Comparison of hypoglycemic effect of acarbose monotherapy in patients with type 2 diabetes mellitus consuming an Eastern or Western diet: A systematic meta-analysis. Clin. Ther. 2013, 35, 880–899. [Google Scholar] [CrossRef]
- Weng, J.; Soegondo, S.; Schnell, O.; Sheu, W.H.; Grzezczak, W.; Watada, H.; Yamamoto, N.; Kalra, S. Efficacy of acarbose in different geographical regions of the world: Analysis of a real-life database. Diabetes Metab. Res. Rev. 2015, 31, 155–167. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, N.; Tan, H.Y.; Li, S.; Zhang, C.; Feng, Y. Function of Akkermansia muciniphila in obesity: Inter- actions with lipid metabolism, immune response and gut systems. Front. Microbiol. 2020, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Van Hul, M.; Le Roy, T.; Prifti, E.; Dao, M.C.; Paquot, A.; Zucker, J.D. From correlation to causality: The case of Subdoligranulum. Gut Microbes 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Hamaguchi, M.; Fukui, M. Microbe-associated metabolites as targets for incident type 2 diabetes. J. Diabetes Investig. 2021, 12, 476–478. [Google Scholar] [CrossRef]
- Tourlousse, D.M.; Narita, K.; Miura, T.; Sakamoto, M.; Ohashi, A.; Shiina, K.; Matsuda, M.; Miura, D.; Shimamura, M.; Ohyama, Y.; et al. Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome 2021, 9, 95. [Google Scholar] [CrossRef]
T2D before Intervention (n = 18) | T2D after Intervention (n = 18) | p-Value | |
---|---|---|---|
Age, year | 66.5 (48–75) | 66.5 (48–75) | - |
Sex (female:male) | 9:9 | 9:9 | - |
Dose (150 mg/day:300 mg/day) | 13:5 | 13:5 | - |
BMI, kg/m2 | 22.8 (19.0–35.9) | 23.0 (19–35.9) | 0.20 |
Systolic BP, mmHg | 125.0 (86–169) | 120.0 (86–154) | 0.19 |
Diastolic BP, mmHg | 73.0 (54–95) | 73.0 (54–86) | 0.11 |
Laboratory examination | |||
HbA1c, % | 7.4 (6.6–9.9) | 7.3 (6.4–9.6) | 0.07 |
Cre, mg/dL | 0.66 (0.49–1.04) | 0.65 (0.50–1.03) | 0.58 |
eGFR, mL/min/1.73 m2 | 76.2 (58.2–113.8) | 73.9 (58.9–136.3) | 0.91 |
AST, IU/L | 21.0 (13–42) | 27.0 (13–45) | 0.001 |
ALT, IU/L | 20.0 (10–59) | 27.0 (10–74) | 0.01 |
GTP, IU/L | 27.0 (10–94) | 23.0 (10–150) | 0.21 |
T-cho, mg/dL | 211.0 (155–284) | 229.0 (106–288) | 0.84 |
LDL-cho, mg/dL | 132.0 (78–169) | 145.5 (86–191) | 0.04 |
HDL-cho, mg/dL | 52.0 (35–113) | 55.0 (37–101) | 0.75 |
TG, mg/dL | 94.5 (60–301) | 104.0 (45–257) | 0.27 |
WBC, /μL | 5700 (3500–) | 6250 (3300–9100) | 0.67 |
Spearman’s Correlation | Habitual Dietary Intake | |||
---|---|---|---|---|
Rice | Bread | Noodle | Potato | |
Bifidobacterium delta | −0.15 | −0.04 | 0.02 | −0.11 |
Bacteroides delta | 0.01 | 0.13 | −0.18 | 0.53 * |
Blautia delta | 0.01 | 0.41 | 0.21 | 0.34 |
Prevotella delta | 0.16 | −0.08 | −0.35 | 0.17 |
Eubacterium delta | 0.12 | −0.25 | −0.11 | 0.02 |
Faecalibacterium delta | 0.55 * | −0.51 * | 0.19 | −0.36 |
Megamonas delta | −0.01 | −0.09 | −0.05 | −0.08 |
Streptococcus delta | −0.19 | 0.05 | −0.25 | 0.12 |
Megasphaera delta | −0.01 | 0.27 | −0.05 | 0.22 |
Fusicatenibacter delta | −0.06 | −0.40 | −0.19 | 0.04 |
Collinsella delta | 0.06 | −0.04 | 0.36 | −0.28 |
Clostridium delta | 0.09 | 0.20 | −0.12 | 0.22 |
Akkermansia delta | 0.21 | 0.03 | 0.21 | −0.48 * |
Lactobacillus delta | −0.24 | −0.59 * | −0.32 | −0.15 |
Subdoligranulum delta | −0.32 | 0.13 | 0.02 | −0.53 * |
Ruminococcus delta | −0.09 | 0.45 | 0.38 | −0.06 |
Dorea delta | 0.17 | −0.57 * | −0.25 | −0.06 |
Parabacteroides delta | −0.09 | 0.29 | 0.15 | −0.07 |
Alistipes delta | −0.02 | 0.38 | −0.01 | −0.29 |
Acidaminococcus delta | 0.13 | 0.05 | −0.11 | 0.03 |
Veillonella delta | −0.15 | −0.17 | −0.05 | −0.08 |
Phascolarctobacterium delta | 0.04 | 0.03 | −0.40 | 0.06 |
Lachnoclostridium delta | −0.46 | 0.37 | −0.16 | 0.39 |
Anaerostipes delta | −0.05 | 0.28 | 0.07 | 0.21 |
Escherichia delta | −0.05 | 0.45 | 0.22 | 0.15 |
Holdemanella delta | 0.24 | −0.09 | −0.24 | 0.28 |
Catenibacterium delta | 0.09 | 0.15 | 0.25 | −0.14 |
Sutterella delta | −0.07 | −0.44 | −0.46 | 0.04 |
Dialister delta | −0.08 | 0.09 | 0.09 | 0.23 |
Roseburia delta | 0.37 | −0.10 | −0.08 | 0.21 |
Oscillibacter delta | 0.12 | 0.23 | 0.40 | −0.04 |
Fusobacterium delta | 0.05 | −0.15 | −0.25 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takewaki, F.; Nakajima, H.; Takewaki, D.; Hashimoto, Y.; Majima, S.; Okada, H.; Senmaru, T.; Ushigome, E.; Hamaguchi, M.; Yamazaki, M.; et al. Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes. Nutrients 2021, 13, 2107. https://doi.org/10.3390/nu13062107
Takewaki F, Nakajima H, Takewaki D, Hashimoto Y, Majima S, Okada H, Senmaru T, Ushigome E, Hamaguchi M, Yamazaki M, et al. Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes. Nutrients. 2021; 13(6):2107. https://doi.org/10.3390/nu13062107
Chicago/Turabian StyleTakewaki, Fumie, Hanako Nakajima, Daiki Takewaki, Yoshitaka Hashimoto, Saori Majima, Hiroshi Okada, Takafumi Senmaru, Emi Ushigome, Masahide Hamaguchi, Masahiro Yamazaki, and et al. 2021. "Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes" Nutrients 13, no. 6: 2107. https://doi.org/10.3390/nu13062107
APA StyleTakewaki, F., Nakajima, H., Takewaki, D., Hashimoto, Y., Majima, S., Okada, H., Senmaru, T., Ushigome, E., Hamaguchi, M., Yamazaki, M., Tanaka, Y., Nakajima, S., Ohno, H., & Fukui, M. (2021). Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes. Nutrients, 13(6), 2107. https://doi.org/10.3390/nu13062107