Associations of Serum Folate and Holotranscobalamin with Cardiometabolic Risk Factors in Rural and Urban Cameroon
Abstract
:1. Introduction
2. Methods
2.1. Serum Folate and Holotranscobalamin Measurement
2.2. Assessment of Fruit and Vegetable Intake
2.3. Measurement of Covariates
2.4. Other Biochemical Measurements
2.5. Outcome Measurement
2.6. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kahn, R.; Buse, J.; Ferrannini, E.; Stern, M. The Metabolic Syndrome: Time for a Critical Appraisal: Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2005, 28, 2289–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Ding, J.; Liang, J.; Zhang, Y. Association of Red Meat and Poultry Consumption With the Risk of Metabolic Syndrome: A Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2021, 8. [Google Scholar] [CrossRef]
- Daboer, J.C.; Ismaila, E.L.; Ibrahim, Z.S.; Gomwalk, J.J.; Adoga, E.Y. Prevalence of noncommunicable disease risk factors among market traders in Jos North Local Government Area, Plateau State Nigeria. Niger. J. Clin. Pract. 2021, 24, 476–482. [Google Scholar]
- Mphekgwana, P.M.; Malema, N.; Monyeki, K.D.; Mothiba, T.M.; Makgahlela, M.; Kgatla, N.; Makgato, I.; Sodi, T. Hypertension Prevalence and Determinants among Black South African Adults in Semi-Urban and Rural Areas. Int. J. Environ. Res. Public Health 2020, 17, 7463. [Google Scholar] [CrossRef]
- Nkondjock, A.; Bizome, E. Dietary patterns associated with hypertension prevalence in the Cameroon defence forces. Eur. J. Clin. Nutr. 2010, 64, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Mensah, D.O.; Nunes, A.R.; Bockarie, T.; Lillywhite, R.; Oyebode, O. Meat, fruit, and vegetable consumption in sub-Saharan Africa: A systematic review and meta-regression analysis. Nutr. Rev. 2021, 79, 651–692. [Google Scholar] [CrossRef]
- Pennant, M.; Steur, M.; Moore, C.; Butterworth, A.; Johnson, L. Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2015, 114, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Souverein, O.W.; de Vries, J.H.M.; Freese, R.; Watzl, B.; Bub, A.; Miller, E.R.; Castenmiller, J.J.M.; Pasman, W.J.; Hof, K.V.H.; Chopra, M.; et al. Prediction of fruit and vegetable intake from biomarkers using individual participant data of diet-controlled intervention studies. Br. J. Nutr. 2015, 113, 1396–1409. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.-S.; Sharp, S.J.; Imamura, F.; Chowdhury, R.; Gundersen, T.E.; Steur, M.; Sluijs, I.; van der Schouw, Y.T.; Agudo, A.; Aune, D.; et al. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries. BMJ 2020, 370, m2194. [Google Scholar] [CrossRef]
- Brevik, A.; Vollset, S.E.; Tell, G.S.; Refsum, H.; Ueland, P.M.; Loeken, E.B.; Drevon, C.A.; Andersen, L.F. Plasma concentration of folate as a biomarker for the intake of fruit and vegetables: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2005, 81, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Hof, K.H.; van het Tijburg, L.B.M.; Pietrzik, K.; Weststrate, J.A. Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. Br. J. Nutr. 1999, 82, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Castenmiller, J.J.; Van De Poll, C.J.; West, C.E.; Brouwer, I.A.; Thomas, C.M.; Van Dusseldorp, M. Bioavailability of Folate from Processed Spinach in Humans. Ann. Nutr. Metab. 2000, 44, 163–169. [Google Scholar] [CrossRef]
- Duthie, S.; Duthie, G.G.; Russell, W.; Kyle, J.A.M.; MacDiarmid, J.I.; Rungapamestry, V.; Stephen, S.; Megias-Baeza, C.; Kaniewska, J.J.; Shaw, L.; et al. Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: A randomised trial. Eur. J. Nutr. 2018, 57, 1855–1872. [Google Scholar] [CrossRef] [Green Version]
- Vogiatzoglou, A.; Smith, D.; Nurk, E.; Berstad, P.; Drevon, C.A.; Ueland, P.M.; Vollset, S.E.; Tell, G.S.; Refsum, H. Dietary sources of vitamin B-12 and their association with plasma vitamin B-12 concentrations in the general population: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2009, 89, 1078–1087. [Google Scholar] [CrossRef]
- Lederer, A.-K.; Hannibal, L.; Hettich, M.; Behringer, S.; Spiekerkoetter, U.; Steinborn, C.; Gründemann, C.; Zimmermann-Klemd, A.M.; Müller, A.; Simmet, T.; et al. Vitamin B12 Status Upon Short-Term Intervention with a Vegan Diet—A Randomized Controlled Trial in Healthy Participants. Nutrients 2019, 11, 2815. [Google Scholar] [CrossRef] [Green Version]
- Nexo, E.; Hoffmann-Lücke, E. Holotranscobalamin, a marker of vitamin B-12 status: Analytical aspects and clinical utility. Am. J. Clin. Nutr. 2011, 94, 359S–365S. [Google Scholar] [CrossRef] [Green Version]
- Assah, F.K.; Ekelund, U.; Brage, S.; Mbanya, J.C.; Wareham, N.J. Urbanization, Physical Activity, and Metabolic Health in Sub-Saharan Africa. Diabetes Care 2011, 34, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Fazili, Z.; Whitehead, R.D.; Paladugula, N.; Pfeiffer, C.M. A high-throughput LC-MS/MS method suitable for population biomonitoring measures five serum folate vitamers and one oxidation product. Anal. Bioanal. Chem. 2013, 405, 4549–4560. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO STEPS Surveillance Manual: The WHO STEPwise Approach to Chronic Disease Risk Factor Surveillance; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Assah, F.K.; Ekelund, U.; Brage, S.; Wright, A.; Mbanya, J.C.; Wareham, N.J. Accuracy and validity of a combined heart rate and motion sensor for the measurement of free-living physical activity energy expenditure in adults in Cameroon. Int. J. Epidemiol. 2011, 40, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical Activity and Public Health: Updated Recommendation for Adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio-Ugarriza, R.; Palacios, G.; Alder, M.; Gonzalez-Gross, M. A review of the cut-off points for the diagnosis of vitamin B12 deficiency in the general population. Clin. Chem. Lab. Med. 2015, 53, 1149–1159. [Google Scholar] [CrossRef]
- de Benoist, B. Conclusions of a WHO Technical Consultation on Folate and Vitamin B 12 Deficiencies. Food Nutr. Bull. 2008, 29 (Suppl. 1), S238–S244. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Fezeu, L.; Balkau, B.; Kengne, A.-P.; Sobngwi, E.; Mbanya, J.-C. Metabolic syndrome in a sub-Saharan African setting: Central obesity may be the key determinant. Atherosclerosis 2007, 193, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Appiah, F.; Ameyaw, E.K.; Oduro, J.K.; Baatiema, L.; Sambah, F.; Seidu, A.-A.; Ahinkorah, B.O.; Budu, E. Rural-urban variation in hypertension among women in Ghana: Insights from a national survey. BMC Public Health 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Kabwama, S.N.; Bahendeka, S.K.; Wesonga, R.; Mutungi, G.; Guwatudde, D. Low consumption of fruits and vegetables among adults in Uganda: Findings from a countrywide cross-sectional survey. Arch. Public Health 2019, 77, 1–8. [Google Scholar] [CrossRef]
- Nerurkar, P.; Gandhi, K.; Chen, J. Correlations between Coffee Consumption and Metabolic Phenotypes, Plasma Folate, and Vitamin B12: NHANES 2003 to 2006. Nutrients 2021, 13, 1348. [Google Scholar] [CrossRef]
- Villatoro-Santos, C.R.; Ramirez-Zea, M.; Villamor, E.; for the Nine Mesoamerican Countries Metabolic Syndrome (NiMeCoMeS) Study Group. B-vitamins and metabolic syndrome in Mesoamerican children and their adult parents. Public Health Nutr. 2020, 24, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Gueant-Rodriguez, R.-M.; Quilliot, D.; Sirveaux, M.-A.; Meyre, D.; Gueant, J.-L.; Brunaud, L. Folate and vitamin B12 status is associated with insulin resistance and metabolic syndrome in morbid obesity. Clin. Nutr. 2018, 37, 1700–1706. [Google Scholar] [CrossRef]
- Navarrete-Muñoz, E.-M.; Vioque, J.; Toledo, E.; Oncina-Canovas, A.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Romaguera, D.; Alonso-Gómez, Á.M.; et al. Dietary folate intake and metabolic syndrome in participants of PREDIMED-Plus study: A cross-sectional study. Z. Ernährungswissenschaft 2021, 60, 1125–1136. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Wang, W.; Zhang, D. Associations of dietary vitamin B1, vitamin B2, niacin, vitamin B6, vitamin B12 and folate equivalent intakes with metabolic syndrome. Int. J. Food Sci. Nutr. 2020, 71, 1–12. [Google Scholar] [CrossRef]
- Dhonukshe-Rutten, R.A.M.; de Vries, J.H.M.; de Bree, A.; van der, P.N.; van Staveren, W.A.; de Groot, L.C.P.G.M. Dietary intake and status of folate and vitamin B12 and their association with homocysteine and cardiovascular disease in European populations. Eur. J. Clin. Nutr. 2009, 63, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic Acid Food Fortification—Its History, Effect, Concerns, and Future Directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Okube, O.T.; Kimani, S.; Waithira, M. Association of dietary patterns and practices on metabolic syndrome in adults with central obesity attending a mission hospital in Kenya: A cross-sectional study. BMJ Open 2020, 10, e039131. [Google Scholar] [CrossRef]
- Hosseini, B.; Berthon, B.S.; Saedisomeolia, A.; Starkey, M.R.; Collison, A.; Wark, P.A.B.; Wood, L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 136–155. [Google Scholar] [CrossRef] [Green Version]
- Yubero-Serrano, E.M.; Delgado-Lista, J.; Peña-Orihuela, P.; Martínez, P.P.; Fuentes, F.; Marin, C.; Tunez, I.; Tinahones, F.J.; Perez-Jimenez, F.; Roche, H.; et al. Oxidative stress is associated with the number of components of metabolic syndrome: LIPGENE study. Exp. Mol. Med. 2013, 45, e28. [Google Scholar] [CrossRef] [Green Version]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Lauro, M.R.; CarbonE, C.; Reis, F.; Pandey, A.K. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [Green Version]
- Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 2021, 70, 1174–1182. [Google Scholar] [CrossRef]
- Chen, J.-P.; Chen, G.-C.; Wang, X.-P.; Qin, L.; Bai, Y. Dietary Fiber and Metabolic Syndrome: A Meta-Analysis and Review of Related Mechanisms. Nutrients 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The Relationship between Vegetable Intake and Weight Outcomes: A Systematic Review of Cohort Studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef] [Green Version]
- Catena, C.; Colussi, G.; Nait, F.; Capobianco, F.; Sechi, L.A. Elevated Homocysteine Levels Are Associated With the Metabolic Syndrome and Cardiovascular Events in Hypertensive Patients. Am. J. Hypertens. 2014, 28, 943–950. [Google Scholar] [CrossRef]
- Piazzolla, G.; Candigliota, M.; Fanelli, M.; Castrovilli, A.; Berardi, E.; Antonica, G.; Battaglia, S.; Solfrizzi, V.; Sabbà, C.; Tortorella, C. Hyperhomocysteinemia is an independent risk factor of atherosclerosis in patients with metabolic syndrome. Diabetol. Metab. Syndr. 2019, 11, 87–89. [Google Scholar] [CrossRef]
- Li, Y.; Huang, T.; Zheng, Y.; Muka, T.; Troup, J.; Hu, F.B. Folic Acid Supplementation and the Risk of Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J. Am. Hear. Assoc. 2016, 5, e003768. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.V.; Schooling, C.M.; Zhao, J.X. The effects of folate supplementation on glucose metabolism and risk of type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Ann. Epidemiol. 2018, 28, 249–257.e1. [Google Scholar] [CrossRef]
- Smulders, Y.M.; Smith, D.E.C.; Kok, R.M.; Teerlink, T.; Swinkels, D.W.; Stehouwer, C.D.A.; Jakobs, C. Cellular folate vitamer distribution during and after correction of vitamin B12 deficiency: A case for the methylfolate trap. Br. J. Haematol. 2006, 132, 623–629. [Google Scholar] [CrossRef]
- de Oliveira Otto, M.C.; Alonso, A.; Lee, D.-H.; Delclos, G.L.; Bertoni, A.G.; Jiang, R.; Lima, J.A.; Symanski, E.; Jacobs, D.R., Jr.; Nettleton, J.A. Dietary Intakes of Zinc and Heme Iron from Red Meat, but Not from Other Sources, Are Associated with Greater Risk of Metabolic Syndrome and Cardiovascular Disease. J. Nutr. 2012, 142, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Shahab-Ferdows, S.; Engle-Stone, R.; Hampel, D.; Ndjebayi, A.O.; Nankap, M.; Brown, K.H.; Allen, L.H. Regional, Socioeconomic, and Dietary Risk Factors for Vitamin B-12 Deficiency Differ from Those for Folate Deficiency in Cameroonian Women and Children. J. Nutr. 2015, 145, 2587–2595. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-N.; Hwang, J.H.; Cho, Y.-O. The effects of exercise training and acute exercise duration on plasma folate and vitamin B12. Nutr. Res. Pr. 2016, 10, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, E.H.J.M.; Beekhof, P.K. Stability of Folate and Vitamin B12in Human Serum after Long-Term Storage: A Follow-Up after 13 Years. J. Nutr. Metab. 2018, 2018, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Folate Median (IQR) = 12.9 (8.6–20.5) nmol/L β (95 Confidence Interval) | p-Value | Holotranscobalamin Mean ± SD = 75 ± 34.3 pmol/L β (95 Confidence Interval) | p-Value |
---|---|---|---|---|
Age (years) | 0.10 (0.04 to 0.16) | 0.001 | 5.5 (2.1 to 8.9) | 0.002 |
Men (vs women) | 0.06(−0.05 to 0.18) | 0.273 | 0.36 (−5.71 to 6.43) | 0.908 |
Education level (completed) <primary education (ref) Primary Secondary and high school University | 0.04(−0.11 to 0.19) −0.12(−0.29 to 0.05) −0.37(−0.57 to −0.18) | 0.639 0.176 <0.001 | 4.15(−3.58 to 11.88) 9.9(1.29 to 18.69) 13.83(3.35 to 24.31) | 0.292 0.024 0.010 |
Urban (vs rural) | −0.29(−0.39 to −0.19) | <0.001 | 10.8(5.1 to 16.4) | <0.001 |
Smoking status Never smoked (ref) Former smoker Current smoker | 0.08(−0.08 to 0.24) 0.02(−0.21 to 0.25) | 0.359 0.847 | 0.78(−8.07 to 9.63) 4.73(−7.34 to 16.79) | 0.863 0.442 |
Alcohol drinking Never (ref) Former Current | 0.01(−0.21 to 0.22) 0.19(0.04 to 0.34) | 0.931 0.014 | −3.82(−14.62 to 6.99) 7.50(−0.99 to 15.99) | 0.488 0.083 |
Fruits (times/week) | 0.003 (−0.01 to 0.02) | 0.741 | 0.28(−0.61 to 1.16) | 0.54 |
Vegetables (times/week) | 0.001 (−0.01 to 0.01) | 0.897 | −0.46(−1.21 to 0.29) | 0.227 |
PAEE (KJ/Kg/day) | 0.005(0.003 to 0.008) | <0.001 | −0.18(−0.32 to −0.04) | 0.011 |
Sedentary (hour/day) | −0.04 (−0.06 to −0.02) | <0.001 | 0.81 (−0.48 to 2.1) | 0.216 |
LPA (hour/day) | 0.03 (0.001 to 0.07) | 0.041 | 0.15 (−1.77 to 2.08) | 0.874 |
MVPA (hour/day) | 0.06 (0.03 to 0.10) | 0.001 | −2.64 (−4.73 to −0.54) | 0.014 |
GPAQ PAEE (KJ/Kg/day) | 0.001(0.0002 to 0.001) | 0.007 | −0.01(−0.05 to 0.02) | 0.471 |
GPAQ work (MET-h/week) | 0.0005(0.0001 to 0.0008) | 0.013 | −0.004(−0.02 to 0.02) | 0.702 |
GPAQ leisure (MET-h/week) | 0.0005(−0.002 to 0.003) | 0.622 | −0.03(−0.11 to 0.05) | 0.463 |
GPAQ travel (MET-h/week) | 0.001(−0.0004 to 0.003) | 0.141 | −0.06(−0.13 to 0.008) | 0.083 |
BMI (Kg/m2) | −0.01(−0.02 to −0.004) | 0.005 | 1.21(0.65 to 1.77) | <0.001 |
BMI categories (Kg/m2) <25 (ref) 25–29.9 ≥30 | −0.15(−0.26 to −0.03) −0.17(−0.29 to −0.04) | 0.015 0.011 | 5.17(−1.81 to 12.15) 13.22(5.63 to 20.82) | 0.146 0.001 |
Body fat (10%) | −0.09(−0.20 to −0.03) | 0.004 | 10.0(6.8 to 14.1) | <0.001 |
Waist circumference (10 cm) | −0.06(−0.10 to −0.02) | 0.003 | 4.1 (1.6 to 6.7) | 0.002 |
Outcome | Difference in Outcome per 1 SD (10.8 nmol/L) of Serum Folate | |||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | |
Metabolic syndrome score (n = 520) | −0.30 (−0.51 to 0.09) | 0.005 | −0.30 (−0.50 to −0.10) | 0.004 | −0.20 (−0.38 to −0.02) | 0.029 |
Systolic blood pressure (mmHg), (n = 529) | −1.51 (−3.18 to 0.16) | 0.076 | −1.58 (−3.29 to 0.12) | 0.069 | −1.25 (−2.89 to 0.39) | 0.135 |
Diastolic blood pressure (mmHg), (n = 529) | −1.57 (−2.58 to −0.56) | 0.002 | −1.42 (−2.39 to −0.45) | 0.004 | −1.13 (−2.04 to −0.21) | 0.016 |
Fasting blood glucose (mmol/L), (n = 529) | −0.003 (−0.10 to 0.10) | 0.957 | 0.01 (−0.08 to 0.11) | 0.807 | 0.03 (−0.08 to 0.12) | 0.629 |
2-h blood glucose (mmol/L), (n = 522) | −0.01 (−0.17 to 0.15) | 0.865 | 0.01 (−0.15 to 0.18) | 0.881 | 0.02 (−0.15 to 0.19) | 0.809 |
HOMA_IR, (n = 526) | −0.004 (−0.09 to 0.09) | 0.932 | 0.02 (−0.06 to 0.11) | 0.603 | 0.05 (−0.03 to 0.14) | 0.224 |
HDL cholesterol (mmol/L), (n = 520) | 0.03 (0.002 to 0.06) | 0.037 | 0.04 (0.006 to 0.07) | 0.018 | 0.04 (0.01 to 0.07) | 0.023 |
Triglycerides (mmol/L), (n = 520) | 0.0004 (−0.04 to 0.04) | 0.983 | −0.01 (−0.05 to 0.03) | 0.525 | −0.003 (−0.04 to 0.04) | 0.883 |
Outcome | Difference in Outcome per 1 SD (34.3 pmol/L) of Serum holoTC | |||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||||
β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | |
Metabolic syndrome score, (n = 491) | 0.33 (0.10 to 0.56) | 0.004 | 0.17 (−0.05 to 0.39) | 0.127 | 0.04 (−0.16 to 0.23) | 0.70 |
Systolic blood pressure (mmHg), (n = 500) | 1.72 (0.001 to 3.44) | 0.050 | 0.49 (−1.16 to 2.14) | 0.561 | 0.08 (−1.60 to 1.76) | 0.923 |
Diastolic blood pressure (mmHg), (n = 500) | 1.50 (0.39 to 2.62) | 0.008 | 0.65 (−0.42 to 1.71) | 0.234 | 0.32 (−0.75 to 1.38) | 0.561 |
Fasting blood glucose (mmol/L), (n = 500) | 0.10 (−0.03 to 0.22) | 0.121 | 0.07 (−0.07 to 0.21) | 0.323 | 0.05 (−0.09 to 0.18) | 0.502 |
2-h blood glucose (mmol/L), (n = 494) | 0.22 (0.05 to 0.40) | 0.014 | 0.12 (−0.05 to 0.30) | 0.162 | 0.12 (−0.06 to 0.29) | 0.187 |
HOMA-IR, (n = 497) | 0.09 (−0.003 to 0.18) | 0.059 | 0.12 (0.03 to 0.23) | 0.012 | 0.08 (−0.01 to 0.18) | 0.075 |
Triglycerides (mmol/L), (n = 491) | 0.03 (−0.006 to 0.07) | 0.10 | 0.02 (−0.02 to 0.06) | 0.313 | 0.01 (−0.03 to 0.05) | 0.475 |
HDL cholesterol (mmol/L), (n = 491) | 0.02 (−0.01 to 0.05) | 0.165 | 0.01 (−0.02 to 0.03) | 0.678 | 0.01 (−0.02 to 0.04) | 0.647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mba, C.M.; Koulman, A.; Forouhi, N.G.; Imamura, F.; Assah, F.; Mbanya, J.C.; Wareham, N.J. Associations of Serum Folate and Holotranscobalamin with Cardiometabolic Risk Factors in Rural and Urban Cameroon. Nutrients 2022, 14, 178. https://doi.org/10.3390/nu14010178
Mba CM, Koulman A, Forouhi NG, Imamura F, Assah F, Mbanya JC, Wareham NJ. Associations of Serum Folate and Holotranscobalamin with Cardiometabolic Risk Factors in Rural and Urban Cameroon. Nutrients. 2022; 14(1):178. https://doi.org/10.3390/nu14010178
Chicago/Turabian StyleMba, Camille M., Albert Koulman, Nita G. Forouhi, Fumiaki Imamura, Felix Assah, Jean Claude Mbanya, and Nick J. Wareham. 2022. "Associations of Serum Folate and Holotranscobalamin with Cardiometabolic Risk Factors in Rural and Urban Cameroon" Nutrients 14, no. 1: 178. https://doi.org/10.3390/nu14010178
APA StyleMba, C. M., Koulman, A., Forouhi, N. G., Imamura, F., Assah, F., Mbanya, J. C., & Wareham, N. J. (2022). Associations of Serum Folate and Holotranscobalamin with Cardiometabolic Risk Factors in Rural and Urban Cameroon. Nutrients, 14(1), 178. https://doi.org/10.3390/nu14010178