Upregulation of Irisin and Vitamin D-Binding Protein Concentrations by Increasing Maternal 25-Hydrovitamin D Concentrations in Combination with Specific Genotypes of Vitamin D-Binding Protein Polymorphisms
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
2.2. Demographic and Dietary Data—Biochemical and Hormonal Assays
2.3. VDBP Analysis
2.4. UVB Measurements
2.5. Statistical Analysis
3. Results
3.1. Demographics of the Study Participants
3.2. Distribution of Neonatal Adiponectin, Irisin, and VDBP Concentrations According to Maternal Vitamin D Status or Maternal VDBP Polymorphisms
3.3. Neonatal Serum Biomarkers according to Neonatal Vitamin D Status at Birth and Neonatal VDBP Polymorphism
3.4. Maternal Serum Biomarkers according to Maternal Vitamin D Status and Maternal VDBP Polymorphisms
3.5. Neonatal Serum Biomarkers According to Maternal Vitamin D Status and Maternal VDBP Polymorphisms
3.6. Neonatal Serum Biomarkers According to Neonatal Vitamin D Status at Birth and Maternal VDBP Polymorphisms
4. Discussion
- (i)
- Neonatal serum biomarkers were not affected by any included neonatal VDBP polymorphism according to different cut-offs of neonatal vitamin D status at birth;
- (ii)
- Neonatal VDBP concentration was increased in neonates with maternal rs7041 GG genotype;
- (iii)
- Elevated maternal 25(OH)D at ≤75 nmol/L resulted in increased concentrations of maternal VBDP and irisin concentrations in women with CC genotype for rs2298850 and rs4588,whereas this effect was also evident for this cut-off for neonatal VDBP concentrations at birth for GC genotype for rs 7041;
- (iv)
- No significant effect of neonatal VDBP polymorphisms was observed on neonatal VDBP, adiponectin, or irisin levels when stratified according to maternal 25(OH)D cut-offs.
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Speeckaert, M.M.; Speeckaert, R.; van Geel, N.; Delanghe, J.R. Vitamin D binding protein: A multifunctional protein of clinical importance. Adv. Clin. Chem. 2014, 63, 1–57. [Google Scholar]
- Haddad, J.G. Plasma vitamin D-binding protein (Gc-globulin): Multiple tasks. J. Steroid Biochem. Mol. Biol. 1995, 53, 579–582. [Google Scholar] [CrossRef]
- Kissmeyer, A.; Mathiasen, I.S.; Latini, S.; Binderup, L. Pharmacokinetic studies of vitamin D analogues: Relationship to vitamin D binding protein (DBP). Endocrine 1995, 3, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R.; Kessler, M.J.; Pritzker, K.P. Species differences in the binding kinetics of 25-hydroxyvitamin D3 to vitamin D binding protein. Can. J. Physiol. Pharmacol. 1990, 68, 1368–1371. [Google Scholar] [CrossRef]
- Jassil, N.K.; Sharma, A.; Bikle, D.; Wang, X. Vitamin D binding protein and 25-hydroxyvitamin D levels: Emerging clinical applications. Endocr. Pract. 2017, 23, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Karras, S.N.; Wagner, C.L.; Castracane, V.D. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes. Metabolism 2018, 86, 112–123. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Fakhoury, H.; Kotsa, K. Deconvoluting the Biological Roles of Vitamin D-Binding Protein During Pregnancy: A Both Clinical and Theoretical Challenge. Front. Endocrinol. 2018, 9, 259. [Google Scholar] [CrossRef]
- Ma, R.; Gu, Y.; Zhao, S.; Sun, J.; Groome, L.J.; Wang, Y. Expressions of vitamin D metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic pregnancies. Am. J. Physiol. Metab. 2012, 303, E928–E935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, S.N.; Polyzos, S.A.; Newton, D.A.; Wagner, C.L.; Hollis, B.W.; Ouweland, J.V.D.; Dursun, E.; Gezen-Ak, D.; Kotsa, K.; Annweiler, C.; et al. Adiponectin and vitamin D-binding protein are independently associated at birth in both mothers and neonates. Endocrine 2018, 59, 164–174. [Google Scholar] [CrossRef] [Green Version]
- Karras, S.N.; Polyzos, S.A.; Tsekmekidou, X.; Gerou, S.; Gavana, E.; Papageorgiou, V.; Kotsa, K. Adiponectin and vitamin D-binding protein concentrations are independently associated in apparently healthy women but not men: A validation cohort. Hormones 2019, 18, 99–102. [Google Scholar] [CrossRef]
- Karras, S.N.; Dursun, E.; Alaylıoğlu, M.; Gezen-Ak, D.; Annweiler, C.; Al Anouti, F.; Fakhoury, H.M.A.; Bais, A.; Kiortsis, D. Investigating the Role of Functional Polymorphism of Maternal and Neonatal Vitamin D Binding Protein in the Context of 25-Hydroxyvitamin D Cutoffs as Determinants of Maternal-Neonatal Vitamin D Status Profiles in a Sunny Mediterranean Region. Nutrients 2021, 13, 3082. [Google Scholar] [CrossRef] [PubMed]
- Karras, S.N.; Dursun, E.; Alaylıoglu, M.; Gezen-Ak, D.; Annweiler, C.; Skoutas, D.; Evangelidis, D.; Kiortsis, D. Diverse Effects of Combinations of Maternal-Neonatal VDR Polymorphisms and 25-Hydroxyvitamin D Concentrations on Neonatal Birth Anthropometry: Functional Phenocopy Variability Dependence, Highlights the Need for Targeted Maternal 25-Hydroxyvitamin D Cut-Offs during Pregnancy. Nutrients 2021, 13, 443. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Antonopoulou, V.; Goulis, D.G.; Alaylıoğlu, M.; Dursun, E.; Gezen-Ak, D.; Annweiler, C.; Pilz, S.; Fakhoury, H.; et al. Vitamin D receptor Fokl polymorphism is a determinant of both maternal and neonatal vitamin D concentrations at birth. J. Steroid Biochem. Mol. Biol. 2019, 199, 105568. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.K.; Shin, S.; Kim, M.Y.; Joung, H.; Chung, J. Effects of maternal genetic polymorphisms in vitamin D-binding protein and serum 25-hydroxyvitamin D concentration on infant birth weight. Nutrition 2017, 35, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.S.; Assar, S.; Harnpanich, D.; Bouillon, R.; Lambrechts, D.; Prentice, A.; Schoenmakers, I. 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J. Clin. Endocrinol. Metab. 2014, 99, 3373–3381. [Google Scholar] [CrossRef] [Green Version]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; El-Hajj, F.G.; Bouillon, R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: A position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, P23–P54. [Google Scholar] [CrossRef] [Green Version]
- Karras, S.; Paschou, S.A.; Kandaraki, E.; Anagnostis, P.; Annweiler, C.; Tarlatzis, B.C.; Hollis, B.W.; Grant, W.B.; Goulis, D.G. Hypovitaminosis D in pregnancy in the Mediterranean region: A systematic review. Eur. J. Clin. Nutr. 2016, 70, 979–986. [Google Scholar] [CrossRef]
- Karras, S.N.; Shah, I.; Petroczi, A.; Goulis, D.G.; Bili, H.; Papadopoulou, F.; Harizopoulou, V.; Tarlatzis, B.C.; Naughton, D.P. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: Implications of a new assay on the roles of vitamin D forms. Nutr. J. 2013, 12, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, S.N.; Koufakis, T.; Antonopoulou, V.; Goulis, D.G.; Annweiler, C.; Pilz, S.; Bili, H.; Naughton, D.P.; Shah, I.; Harizopoulou, V.; et al. Characterizing neonatal vitamin D deficiency in the modern era: A maternal-neonatal birth cohort from Southern Europe. J. Steroid Biochem. Mol. Biol. 2020, 198, 105555. [Google Scholar] [CrossRef]
- Shah, I.; James, B.; Barker, J.; Petroczi, A.; Naughton, D.P. Misleading measures in Vitamin D analysis: A novel LC-MS/MS assay to account for epimers and isobars. Nutr. J. 2011, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef] [PubMed]
- Gezen-Ak, D.; Dursun, E.; Bilgiç, B.; Hanagasi, H.; Ertan, T.; Gürvit, H.; Emre, M.; Eker, E.; Ulutin, T.; Uysal, O.; et al. Vitamin D receptor gene haplotype is associated with late-onset Alzheimer’s disease. Tohoku J. Exp. Med. 2012, 228, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, A.B.; Park, H.; Malysheva, O.V.; Caudill, M.A. Vitamin D binding protein rs7041 genotype alters vitamin D metabolism in pregnant women. FASEB J. 2018, 32, 2012–2020. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, O.; Li, W.; Ma, L.; Ping, F.; Chen, L.; Nie, M. Variants in vitamin D binding protein gene are associated with gestational diabetes mellitus. Medicine 2015, 94, e1693. [Google Scholar] [CrossRef]
- Shi, A.; Wen, J.; Liu, G.; Liu, H.; Fu, Z.; Zhou, J.; Zhu, Y.; Liu, Y.; Guo, X.; Xu, J. Geneticvariants in vitaminDsignalingpathways and risk of gestationaldiabetesmellitus. Oncotarget 2016, 7, 67788–67795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia, G.; Mårild, K.; Dahl, S.R.; Lund-Blix, N.A.; Viken, M.K.; Lie, B.A.; Njølstad, P.R.; Joner, G.; Skrivarhaug, T.; Cohen, A.S.; et al. Maternal and Newborn Vitamin D—Binding Protein, Vitamin D Levels, Vitamin D Receptor Genotype, and Childhood Type 1 Diabetes. Diabetes Care 2019, 42, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, I.M.; Joner, G.; Jenum, P.A.; Eskild, A.; Brunborg, C.; Torjesen, P.A.; Stene, L.C. Vitamin D-binding protein and 25-hydroxyvitamin D during pregnancy in mothers whose children later developed type 1 diabetes. Diabetes Metab. Res. Rev. 2016, 32, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Shaat, N.I.; Katsarou, A.; Shahida, B.; Prasad, R.B.; Kristensen, K.; Planck, T. Association between the rs1544410 polymorphism in the vitamin D receptor (VDR) gene and insulin secretion after gestational diabetes mellitus. PLoS ONE 2020, 15, e0232297. [Google Scholar] [CrossRef]
- Naidoo, Y.; Moodley, J.; Ramsuran, V.; Naicke, T. Polymorphisms within vitamin D binding protein gene within a Preeclamptic South African population. Hypertens. Pregnancy 2019, 38, 260–267. [Google Scholar] [CrossRef]
- Baca, K.M.; Govil, M.; Zmuda, J.M.; Simhan, H.N.; Marazita, M.L.; Bodnar, L.M. Vitamin D metabolic loci and vitamin D status in Black and White pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 220, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Jiang, S.; Muyiduli, X.; Wang, S.; Mo, M.; Li, M.; Wang, Z.; Yu, Y. Vitamin D pathway gene polymorphisms influenced vitamin D level among pregnant women. Clin. Nutr. 2018, 37, 2230–2237. [Google Scholar] [CrossRef]
- Wu, J.; Shao, B.; Xin, X.; Luo, W.; Mo, M.; Jiang, W.; Si, S.; Wang, S.; Shen, Y.; Yu, Y. Association of vitamin D pathway gene polymorphisms with vitamin D level during pregnancy was modified by season and vitamin D supplement. Clin. Nutr. 2021, 40, 3650–3660. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Harvey, N.C.; Cooper, C.; D’Angelo, S.; Curtis, E.M.; Crozier, S.R.; Barton, S.; Robinson, S.; Godfrey, K.; Graham, N.J.; et al. Response to antenatal cholecalciferol supplementation is associated with common vitamin D-related genetic variants. J. Clin. Endocrinol. Metab. 2017, 102, 2941–2949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampathkumar, A.; Tan, K.M.; Chen, L.; Chong, M.F.F.; Yap, F.; Godfrey, K.M.; Chong, Y.S.; Gluckman, P.D.; Ramasamy, A.; Karnani, N. Genetic Link Determining the Maternal-Fetal Circulation of Vitamin D. Front. Genet. 2021, 12, 721488. [Google Scholar] [CrossRef]
- Ökdemir, D.; Hatipoğlu, N.; Kurtoğlu, S.; Siraz, Ü.G.; Akar, H.H.; Muhtaroğlu, S.; Kütük, M.S. The Role of Irisin, Insulin and Leptin in Maternal and Fetal Interaction. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 307–315. [Google Scholar] [CrossRef]
- Wang, P.; Ma, H.H.; Hou, X.Z.; Song, L.L.; Song, X.L.; Zhang, J.F. Reduced plasma level of irisin in first trimester as a risk factor for the development of gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2018, 142, 130–138. [Google Scholar] [CrossRef]
- Briana, D.D.; Boutsikou, M.; Athanasopoulos, N.; Marmarinos, A.; Gourgiotis, D.; Malamitsi-Puchner, A. Implication of the myokine irisin in maternal energy homeostasis in pregnancies with abnormal fetal growth. J. Matern. Fetal Neonatal Med. 2016, 29, 3429–3433. [Google Scholar] [CrossRef]
- Erol, O.; Erkal, N.; Ellidağ, H.Y.; İsenlik, B.S.; Aydın, Ö.; Derbent, A.U.; Yılmaz, N. Irisin as an early marker for predicting gestational diabetes mellitus: A prospective study. J. Matern. Fetal Neonatal Med. 2016, 29, 3590–3595. [Google Scholar] [CrossRef]
- Ozel, A.; Davutoglu, E.A.; Firat, A.; Erenel, H.; Karslı, M.F.; Korkmaz, S.Ö.; Madazli, R. Maternal serum irisin levels in early and late-onset pre-eclamptic and healthy pregnancies. J. Obstet. Gynaecol. 2018, 38, 642–646. [Google Scholar] [CrossRef]
- Tsuprykov, O.; Buse, C.; Skoblo, R.; Haq, A.; Hocher, B. Reference intervals for measured and calculated free 25-hydroxyvitamin D in normal pregnancy. J. Steroid Biochem. Mol. Biol. 2018, 181, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Karras, S.N.; Kotsa, K.; Angeloudi, E.; Zebekakis, P.; Naughton, D.P. The Road Not So Travelled: Should Measurement of Vitamin D Epimers during Pregnancy Affect Our Clinical Decisions? Nutrients 2017, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikle, D.D.; Schwartz, J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front. Endocrinol. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mothers | |
---|---|
Number (n) | 66 |
Age (years) | 31.92 ± 6.08 |
Prepregnancy weight (kg) | 67.56 ± 14.54 |
Term Weight (kg) | 85.43 ± 14.30 |
Prepregnancy BMI (kg/m2) | 24.91 ± 4.81 |
Term BMI (kg/m2) | 29.62 ± 5.80 |
Duration of gestation (weeks) | 38.80 ± 1.56 |
Small for gestational age (SGA,%) | 0.04 |
Appropriate for gestational age (AGA,%) | 0.96 |
Large for gestational age (LGA,%) | 0.00 |
Daily dietary calcium intake during 3rd trimester (mg) | 792.5 ± 334.0 |
Daily dietary vitamin D intake during 3rd trimester (mcg) | 2.9 ± 1.2 |
Neonates | |
Number (n) | 66 |
Gender; females (n (%)) | 28 (0.42) |
Height (cm) | 50.48 ± 1.96 |
Weight (g) | 3292.12 ± 414.25 |
N | Neonatal VDBP (µg/mL) | N | Neonatal Adiponectin (µg/mL) | N | Neonatal Irisin (ng/mL) | ||
---|---|---|---|---|---|---|---|
Maternal vitamin D status | <25 nmol/L | 17 | 470.29 ± 325.47 (426.69 ± 292.65) | 16 | 20.56 ± 20.53 (20.95 ± 21.53) | 10 | 141.03 ± 90.35 |
>25 nmol/L | 47 | 313.63 ± 176.35 (294.24 ± 125.52) | 47 | 8.97 ± 13.24 (7.28 ± 7.73) | 32 | 184.82 ± 186.36 | |
p-value; adjusted p; power | 0.074 (0.085) * 41% ϕ | 0.048 (0.003) * 88% ϕ | 0.32 | ||||
<50 nmol/L | 42 | 372.86 ± 271.59 | 41 | 12.00 ± 15.36 | 25 | 157.62 ± 139.61 | |
>50 nmol/L | 22 | 321.61 ± 132.69 | 22 | 11.76 ± 17.67 | 17 | 199.06 ± 206.09 | |
p-value | 0.41 | 0.96 | 0.48 | ||||
<75 nmol/L | 53 | 365.10 ± 248.70 | 52 | 11.23 ± 13.99 | 33 | 182.44 ± 172.66 | |
>75 nmol/L | 11 | 307.78 ± 136.31 | 11 | 15.19 ± 24.24 | 9 | 144.91 ± 158.43 | |
p-value | 0.46 | 0.46 | 0.56 |
Neonatal Vitamin D Status at Birth ≤ 25 nmol/L | Neonatal Vitamin D Status at Birth ≤ 50 nmol/L | Neonatal Vitamin D Status at Birth ≤ 75 nmol/L | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | Neonatal Genotype | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) |
rs2298850 | CC | 14 | 400.07 ± 296.4 | 8.76 ± 10.6 | 117.44 ± 105.4 | 24 | 406.00 ± 293.6 | 8.76 ± 9.0 | 120.35 ± 115.2 | 29 | 402.94 ± 276.5 | 11.02 ± 13.3 | 126.96 ± 125.9 (152.40 ± 136.5) |
CG + GG | 11 | 389.22 ± 297.3 | 18.57 ± 20.8 | 205.54 ± 198.5 | 26 | 324.81 ± 207.0 | 10.44 ± 15.2 | 202.16 ± 159.2 | 30 | 323.37 ± 193.0 | 10.93 ± 14.4 | 233.56 ± 191.3 (264.81 ± 214.6) * | |
p-value adjusted p | 0.93 | 0.19 | 0.27 | 0.26 | 0.64 | 0.11 | 0.20 | 0.98 | 0.04 0.091 * | ||||
rs4588 | CC | 13 | 406.69 ± 307.4 | 9.34 ± 10.8 | 117.44 ± 105.4 | 22 | 402.11 ± 306.5 | 9.97 ± 9.7 | 132.64 ± 125.6 | 27 | 399.54 ± 286.2 | 12.17 ± 13.7 | 136.18 ± 132.6 |
CA + AA | 12 | 382.95 ± 284.3 | 16.98 ± 20.4 | 117.44 ± 105.4 | 28 | 333.66 ± 202.4 | 9.33 ± 14.5 | 190.63 ± 157.3 | 32 | 331.21 ± 189.7 | 9.93 ± 13.8 | 223.31 ± 191.7 | |
p-value | 0.84 | 0.28 | 0.27 | 0.35 | 0.86 | 0.27 | 0.28 | 0.54 | 0.11 | ||||
rs7041 | GG | 7 | 407.68 ± 352.0 | 9.71 ± 14.1 | 127.62 ± 122.6 | 14 | 353.87 ± 260.3 | 9.19 ± 10.9 | 133.69 ± 130.5 | 15 | 341.49 ± 255.4 | 10.76 ± 12.1 | 130.2 ± 123.6 |
GT + TT | 18 | 390.47 ± 274.59 | 14.14 ± 17.0 | 165.44 ± 166.9 | 36 | 367.63 ± 253.8 | 9.79 ± 13.2 | 174.39 ± 149.7 | 44 | 369.64 ± 235.8 | 11.05 ± 14.4 | 194.3 ± 178.8 | |
p-value | 0.89 | 0.55 | 0.68 | 0.86 | 0.88 | 0.48 | 0.70 | 0.95 | 0.30 |
Maternal Vitamin D Status ≤ 25 nmol/L | Maternal Vitamin D Status ≤ 50 nmol/L | Maternal Vitamin D Status ≤ 75 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | Maternal Genotype | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) |
rs2298850 | CC | 7 | 372.47 ± 79.49 | 4.74 ± 3.88 | 304.16 ± 495.99 | 17 | 384.16 ± 73.08 | 4.15 ± 2.92 | 353.43 ± 414.39 | 22 | 394.67 ± 71.29 (403.06 ± 4.72) * | 4.81 ± 2.93 | 452.99 ± 513.74 |
CG + GG | 10 | 368.12 ± 6 1.91 | 5.02 ± 3.22 | 176.33 ± 134.89 | 25 | 365.70 ± 127.39 | 4.07 ± 2.84 | 277.50 ± 339.70 | 33 | 341.46 ± 121.86 (342.93 ± 64.36) * | 3.82 ± 3.23 | 233.02 ± 298.82 | |
p-value adjusted p power | 0.90 | 0.88 | 0.52 | 0.59 | 0.93 | 0.55 | 0.07 0.007 * 80% ϕ | 0.26 | 0.10 | ||||
rs4588 | CC | 6 | 386.40 ± 77.15 | 5.13 ± 4.10 | 351.67 ± 525.59 | 16 | 390.11 ± 71.09 | 4.26 ± 2.98 | 377.31 ± 419.19 | 21 | 399.70 ± 68.92 (403.06 ± 64.72) * | 4.92 ± 2.95 | 475.83 ± 517.28 (508.57 ± 559.87) * |
CA + AA | 11 | 360.92 ± 63.40 | 4.76 ± 3.14 | 156.68 ± 136.70 | 26 | 362.74 ± 125.72 | 4.00 ± 2.80 | 265.75 ± 336.06 | 34 | 339.92 ± 120.33 (342.93 ± 64.36) * | 3.77 ± 3.19 | 225.89 ± 296.20 (265.22 ± 332.14) * | |
p-value adjusted p power | 0.47 | 0.84 | 0.33 | 0.43 | 0.78 | 0.38 | 0.04 0.007 * 80% ϕ | 0.20 | 0.04 0.03 * 60% ϕ | ||||
rs7041 | GG | 5 | 383.98 ± 86.01 | 5.61 ± 4.39 | 139.86 ± 94.03 | 11 | 379.45 ± 80.50 | 4.68 ± 3.50 | 215.67 ± 209.68 (198.10 ± 302.52) * | 13 | 391.84 ± 82.84 | 4.89 ± 3.24 | 446.47 ± 561.90 |
GT + TT | 12 | 364.05 ± 61.42 | 4.58 ± 3.04 | 296.01 ± 437.13 | 31 | 370.94 ± 117.33 | 3.88 ± 2.58 | 340.29 ± 406.95 (178.58 ± 91.93) * | 42 | 353.74 ± 112.89 | 4.02 ± 3.08 | 287.0 ± 356.91 | |
p-value adjusted p | 0.60 | 0.59 | 0.45 | 0.72 | 0.10 | 0.06 0.96 * | 0.27 | 0.38 | 0.26 |
Maternal Vitamin D Status ≤ 25 nmol/L | Maternal Vitamin D status ≤ 50 nmol/L | Maternal Vitamin D Status ≤ 75 nmol/L | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | Maternal Genotype | N | Neonatal VDBP (µg/mL) | Neonatal Adiponectin (µg/mL) | Neonatal Irisin (ng/mL) | N | Neonatal VDBP (µg/mL) | Neonatal Adiponectin (µg/mL) | Neonatal Irisin (ng/mL) | N | Neonatal VDBP (µg/mL) | Neonatal Adiponectin (µg/mL) | Neonatal Irisin (ng/mL) |
rs2298850 | CC | 8 | 550.44 ± 409.76 | 21.51 ± 20.13 | 104.42 ± 108.07 | 18 | 460.17 ± 349.52 | 12.55 ± 16.06 | 131.22 ± 169.93 | 23 | 437.54 ± 320.83 | 11.35 ± 14.59 | 139.29 ± 173.78 |
CG + GG | 9 | 399.04 ± 229.82 | 19.61 ± 22.28 | 177.64 ± 57.76 | 24 | 307.39 ± 175.37 | 11.57 ± 15.15 | 186.23 ± 96.46 | 30 | 309.56 ± 159.58 | 11.13 ± 13.76 | 223.04 ± 166.43 | |
p-value | 0.38 | 0.86 | 0.22 | 0.10 | 0.84 | 0.34 | 0.09 | 0.96 | 0.17 | ||||
rs4588 | CC | 7 | 584.21 ± 430.39 | 24.42 ± 19.84 | 104.42 ± 108.07 | 17 | 468.76 ± 358.31 | 13.22 ± 16.29 | 131.22 ± 169.93 | 22 | 443.15 ± 327.22 | 11.81 ± 14.76 | 139.29 ± 173.78 (508.57 ± 559.87) * |
CA + AA | 10 | 390.54 ± 218.34 | 17.56 ± 21.73 | 177.64 ± 57.76 | 25 | 307.65 ± 171.68 | 11.13 ± 14.97 | 186.23 ± 96.46 | 31 | 309.70 ± 156.90 | 10.80 ± 13.64 | 223.04 ± 166.43 (265.22 ± 332.14) * | |
p-value | 0.30 | 0.53 | 0.22 | 0.10 | 0.67 | 0.34 | 0.09 | 0.80 | 0.17 | ||||
rs7041 | GG | 5 | 735.48 ± 420.43 | 28.19 ± 22.62 | 55.57 ± 61.63 (67.60 ± 82.02) * | 11 | 580.23 ± 404.75 (524.75 ± 331.56) * | 17.00 ± 18.70 | 126.99 ± 212.45 | 13 | 572.62 ± 370.91 (526.26 ± 282.39) * | 14.83 ± 17.89 | 150.78 ± 213.35 |
GT + TT | 12 | 359.79 ± 211.0 | 17.09 ± 19.63 | 177.66 ± 75.90 (177.66 ± 75.90) * | 31 | 299.28 ± 157.60 (302.78 ± 177.35) * | 10.17 ± 13.86 | 172.04 ± 93.80 | 40 | 297.65 ± 145.31 (297.16 ± 161.38) * | 10.03 ± 12.48 | 196.20 ± 155.20 | |
p-value adjusted p power | 0.12 | 0.33 | 0.04 ♦ | 0.04 0.05 * 50% ϕ | 0.21 | 0.46 | 0.02 0.01 * 75% ϕ | 0.29 | 0.50 |
Maternal Vitamin D Status at Birth < 25 nmol/L | Maternal Vitamin D Status at Birth < 50 nmol/L | Maternal Vitamin D Status at Birth < 75 nmol/L | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | Neonatal Genotype | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) | N | VDBP (µg/mL) | Adiponectin (µg/mL) | Irisin (ng/mL) |
rs2298850 | CC | 11 | 438.79 ± 328.87 | 17.25 ± 17.82 | 143.24 ± 108.39 | 21 | 429.05 ± 304.32 | 11.24 ± 14.44 | 132.62 ± 115.01 | 27 | 406.74 ± 281.96 | 10.38 ± 13.04 | 132.92 ± 131.37 (164.56 ± 142.93) |
CG + GG | 6 | 528.03 ± 341.32 | 27.85 ± 26.29 | 135.87 ± 37.76 | 21 | 316.68 ± 227.97 | 12.80 ± 16.62 | 189.45 ± 166.11 | 26 | 321.85 ± 205.29 | 12.14 ± 15.16 | 241.86 ± 200.61 (260.39 ± 239.40) | |
p-value adjusted p | 0.61 | 0.36 | 0.91 | 0.18 | 0.75 | 0.32 | 0.22 | 0.66 | 0.07 0.19 * 25% ϕ | ||||
rs4588 | CC | 10 | 451.27 ± 343.90 | 18.86 ± 17.92 | 143.24 ± 108.39 (161.87 ± 105.76) | 19 | 426.97 ± 320.20 | 12.90 ± 15.15 | 145.80 ± 124.76 | 25 | 403.38 ± 292.79 | 11.58 ± 13.62 | 143.17 ± 138.10 |
CA + AA | 7 | 497.46 ± 321.91 | 23.40 ± 25.92 | 135.87 ± 37.76 (135.87 ± 37.76) | 23 | 328.16 ± 221.27 | 11.22 ± 15.86 | 172.67 ± 161.55 | 28 | 330.91 ± 200.87 | 10.90 ± 14.58 | 229.56 ± 201.54 | |
p-value | 0.88 | 0.15 | 0.057 ♦ | 025 | 0.73 | 0.64 | 0.29 | 0.86 | 0.16 | ||||
rs7041 | GG | 6 | 412.32 ± 387.53 | 14.51 ± 14.23 | 143.15 ± 106.03 | 10 | 376.99 ± 296.05 | 9.50 ± 12.49 | 159.27 ± 138.64 | 14 | 353.88 ± 260.30 | 9.19 ± 10.90 | 133.69 ± 130.52 |
GT + TT | 11 | 501.91 ± 302.14 | 24.19 ± 23.48 | 139.62 ± 89.11 | 32 | 371.58 ± 268.52 | 12.81 ± 16.28 | 156.98 ± 143.98 | 39 | 369.12 ± 247.78 | 11.98 ± 15.03 | 200.72 ± 185.13 | |
p-value | 0.60 | 0.38 | 0.96 | 0.96 | 0.56 | 0.97 | 085 | 0.53 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karras, S.N.; Dursun, E.; Alaylıoglu, M.; Gezen-Ak, D.; Al Anouti, F.; Pilz, S.; Pludowski, P.; Jude, E.; Kotsa, K. Upregulation of Irisin and Vitamin D-Binding Protein Concentrations by Increasing Maternal 25-Hydrovitamin D Concentrations in Combination with Specific Genotypes of Vitamin D-Binding Protein Polymorphisms. Nutrients 2022, 14, 90. https://doi.org/10.3390/nu14010090
Karras SN, Dursun E, Alaylıoglu M, Gezen-Ak D, Al Anouti F, Pilz S, Pludowski P, Jude E, Kotsa K. Upregulation of Irisin and Vitamin D-Binding Protein Concentrations by Increasing Maternal 25-Hydrovitamin D Concentrations in Combination with Specific Genotypes of Vitamin D-Binding Protein Polymorphisms. Nutrients. 2022; 14(1):90. https://doi.org/10.3390/nu14010090
Chicago/Turabian StyleKarras, Spyridon N., Erdinç Dursun, Merve Alaylıoglu, Duygu Gezen-Ak, Fatme Al Anouti, Stefan Pilz, Pawel Pludowski, Edward Jude, and Kalliopi Kotsa. 2022. "Upregulation of Irisin and Vitamin D-Binding Protein Concentrations by Increasing Maternal 25-Hydrovitamin D Concentrations in Combination with Specific Genotypes of Vitamin D-Binding Protein Polymorphisms" Nutrients 14, no. 1: 90. https://doi.org/10.3390/nu14010090
APA StyleKarras, S. N., Dursun, E., Alaylıoglu, M., Gezen-Ak, D., Al Anouti, F., Pilz, S., Pludowski, P., Jude, E., & Kotsa, K. (2022). Upregulation of Irisin and Vitamin D-Binding Protein Concentrations by Increasing Maternal 25-Hydrovitamin D Concentrations in Combination with Specific Genotypes of Vitamin D-Binding Protein Polymorphisms. Nutrients, 14(1), 90. https://doi.org/10.3390/nu14010090